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1. Introduction
Document Clustering: grouping together of "similar" docu-
ments

� Hard Clustering
{ Each document belongs to a single cluster

� Soft Clustering
{ Each document is probabilistically assigned to clusters
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One way clustering vs. co-clustering

� One way clustering
{ Clustering documents base on their word distribution
{ Clustering words by their co-occurrence in documents

� Co-clustering
{ Word clustering induces document clustering while docu-
ment clustering induces word clustering
� Implicit dimensionality reduction at each step
� Computationally economical
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Co-clustering Methods

� Information-Theoretic Co-clustering
Co-clustering by �nding a pair of maps from rows to row-
clusters and from columns to column-clusters, with minimum
mutual information loss. Dhillon, et al(2003)

� Bipartite Spectral Graph Partitioning
Co-clustering by �nding minimum cut vertex partitions in
a bipartite graph between documents and words. Dhillon, et
al(2001)
Drawback: Each word cluster need to be associated with a
document clustering.
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2. Information Theory Concepts
Entropy of a random variable X with probability distribution
p:

H(p) = �X
x
p(x) log p(x)

� Measure of the average uncertainty
The Kullback-Leibler(KL) Divergence:

D(pkq) =X
x
p(x) log p(x)q(x)

� Measure of how di�erent two probability distributions are.
� D(pkq) � 0;D(pkq) = 0 i� p = q
� Not strictly a distance.
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Mutual Information between random variables X and Y :
I(X;Y ) = H(X)�H(XjY ) =X

xy
p(x; y) log p(x; y)

p(x)p(y)
� The amount of information X contains about Y
� Vice versa
� I(X;Y ) = I(Y ;X);
� I(X;Y ) � 0
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"Optimal" Co-Clustering
Finding maps Cx and Cy,

CX : fx1; x2; :::; xmg ! fx̂1; x̂2; :::; x̂kg
CY : fy1; y2; :::; yng ! fŷ1; ŷ2; :::; ŷlg

� hard-clustering of the rows and columns
� loss in mutual information is minimized

I(X;Y )� I(X̂; Ŷ )

Example:
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Finding optimal Co-Clustering
Lemma: The loss in mutual information can be expressed as
the distance of p(X, Y ) to an approximation q(X, Y )

I(X;Y )� I(X̂; Ŷ ) = D(p(X;Y ) k q(X;Y ))
q is approximation of p:

q(x; y) = p(x̂; ŷ)p(xjx̂)p(yjŷ), where x 2 x̂; y 2 ŷ:
Related to data compression problem
� Transmit the cluster identi�es X̂ and Ŷ ;
� Transmit X given X̂;
� Transmit Y given Ŷ
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Example: Calculating q(x; y): approximation of p(x; y)
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Objective function for loss in mutual information
The loss in mutual information can be expressed as
� a weighted sum of relative entropies between row distribution
and row cluster distribution

D(p(X;Y ) k q(X;Y )) =X
x̂

X
x:2x̂

p(x)D(p(Y jx) k q(Y jx̂))
� a weighted sum of relative entropies between column distribu-
tion and column cluster distribution

D(p(X;Y ) k q(X;Y )) =X
ŷ

X
y2ŷ

p(y)D(p(Xjy) k q(Xjŷ))
It allows us to de�ne:
� a row cluster prototype: q(Y jx̂)
� a column cluster prototype: q(Xjŷ)
Lead to a "natural" algorithm
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3. Co-Clustering Algorithm
� Input:
p(X;Y ) - the joint probability distribution
k - the desired number of row clusters
l - the desired number of column clusters
� Output:
The partition function CX and CY

1. Inititalization: Set t = 0. Start with some initial partition
functions C(0)

X and C(0)
Y . Compute q(0)(X̂; Ŷ ) and the distribu-

tion for each row-cluster prototype q(0)(Y jx̂), 1 � x̂ � k
2. Row re-clustering: For each row x, assign it to the "closet"
row-cluster prototype. Update C(t+1)

X . C(t+1)
Y = C(t)

Y .
3. Computer q(t+1)(X̂; Ŷ ) and the distribution for each column-
cluster prototype q(t+1)(Xjŷ), 1 � ŷ � l
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Co-clustering Algorithm (con't)
4. Column re-clustering: For each column y, assign it to the
"closest" column-cluster prototype. Update C(t+2)

Y . C(t+2)
X =

C(t+1)
X .

5. Compute q(t+2)(X̂; Ŷ ) and the distribution for each row clus-
ter prototype q(t+2)(Y jx̂).
6. If the change of the loss in mutual information, i.e.

D(p(X;Y )jjqt(X;Y ))�D(p(X;Y ) k qt+2(X;Y ))
is small (say 10�3), Return C(t+2)

X and C(t+2)
Y ; Else set t = t+2

and go to step 2.
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Properties of Co-clustering Algorithm
� Co-clustering monotonically decreases loss in mutual informa-
tion
� Co-clustering converges to a local minimum
� Can be generalized to multi-dimensional contingency tables
� Implicit dimensionality reduction at each step helps overcome
sparsity & high-dimensionality
� Computationally e�cient: O(nt(k+ l)), where
n is the number of non zeros in the input joint distribution
t is the number of iterations
k is the desired number of row clusters
l is the desired number of column clusters
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4. Experimental Results

� Algorithms to be compared

� Data sets

� Evaluation measures

� Results and discussion

14



Algorithms to be compared:
� IB-double: Information Bottleneck Double Clustering
� IDC: Iterative Double Clustering
� 1D-clustering: without any word clustering (information theo-
retic method?)
Data sets:
� NG20: Binary, Multi5 and Multi10 (with and without sub-
jects, 500 documents each)
� SMART: CLASSIC3 - MEDLINE (1033), CISI (1460) and
CRANFIELD (1400)
� Top 2000 words were selected by mutual information (fre-
quency ?) after the stop words were removed.
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Evaluation Measures:
� Confusion matrix:
Each entry(i; j) represents the number of documents in the clus-
ter i that belong to true class j

� Micro-averaged-precision:
p =

Pl
1 ai
N

where:
ai - the number of correctly assigned documents in cluster
l - the number of document clusters (classes)
N - the total number of documents in a whole data set
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Results

Table 3: Co-clustering (0.9835), 1D-clustering (0.9432)
Table 4: Co-clustering (0.98, 0.96), 1D-clustering(0.67, 0.648)

17



Results (con't)
- Co-clustering performs much better than IB-Double and 1D-
clustering and is comparable with IDC
- Word clustering can alleviate the problem of clustering in high
dimensions

(Note: The peak values were selected.)
18



Results (con't)
- Di�erent data sets achieve their maximum at di�erent number
of word clusters
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Results (con't)

Correlation between Figure 2 & 3: the lower the loss in mutual
information, the better is the clustering
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Results (con't)

Co-clustering converges quickly in about 20 iterations on all the
tested datasets
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Results (con't)
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5. Conclusions and Future Work
� Information-theoretic approach to co-clustering
� Implicit dimensionality reduction at each step to overcome
sparsity & high-dimensionality
� Theoretical approach has the potential of extending to other
problems:
- Multi-dimensional co-clustering
- MDL (Minimum Description Length) to choose number of co-
clusters
- Generalize co-clustering to an abstract multivariate clustering
setting
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