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1. Introduction

Document Clustering: grouping together of "similar’ docu-
ments

e Hard Clustering

— Each document belongs to a single cluster

e Soft Clustering

— Each document is probabilistically assigned to clusters



One way clustering vs. co-clustering

e One way clustering
— Clustering documents base on their word distribution

— Clustering words by their co-occurrence in documents

e Co-clustering

— Word clustering induces document clustering while docu-
ment clustering induces word clustering

x Implicit dimensionality reduction at each step

x Computationally economical



Co-clustering Methods

e Information-T heoretic Co-clustering

Co-clustering by finding a pair of maps from rows to row-
clusters and from columns to column-clusters, with minimum
mutual information loss. Dhillon, et al(2003)

e Bipartite Spectral Graph Partitioning

Co-clustering by finding minimum cut vertex partitions in
a bipartite graph between documents and words. Dhillon, et

al(2001)
Drawback: Each word cluster need to be associated with a

document clustering.



2. Information Theory Concepts

Entropy of a random variable X with probability distribution
p:

H(p) = —) p(z)logp(z)

e Measure of the average uncertainty

The Kullback-Leibler(KL) Divergence:

DGrlla) = Y. p() g pg"”;

e Measure of how different two probability distributions are.

e D(pllg) > 0; D(p|lg) =0 iff p=gq
e Not strictly a distance.



Mutual Information between random variables X and Y:

p(x,y)
p(x)p(y)

The amount of information X contains about Y
Vice versa

I(X;Y)=1(Y; X);

e I(X;Y)>0

I(X;Y)=H(X) - H(X|Y) =Y p(z,vy)log
Ty



”Optimal” Co-Clustering

Finding maps C; and CYy,

e hard-clustering of the rows and columns
e lOoss in mutual information is minimized

Example:

CX . {:Bl,a?z, ...,a:m} — {fv\l,fI\SQ, ,fi‘k}
Cy {y1,92, - Yn} = {¥1, Y2, -, Ut}
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Finding optimal Co-Clustering

Lemma: The loss in mutual information can be expressed as
the distance of p(X, Y ) to an approximation q(X, Y )

I(X;Y) - I(X;Y) = D(p(X,Y) || ¢(X,Y))
q IS approximation of p:
q(z,y) = p(Z,y)p(z|2)p(y|y), where xz € 7,y € ¥.
Related to data compression problem
e Transmit the cluster identifies X and Y;

e Transmit X given X;
e Transmit Y given Y



Example: Calculating ¢(z,y): approximation of p(x,vy)
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Objective function for loss in mutual information

The loss in mutual information can be expressed as

e a2 weighted sum of relative entropies between row distribution
and row cluster distribution

D(p(X,Y) | (X, Y)) =3 ) p(z)D(p(Y]z) || ¢(Y]2))

T T.ET
e a2 weighted sum of relative entropies between column distribu-
tion and column cluster distribution

D(p(X,Y) | ¢(X,Y)) = > p(y)D(p(X|y) Il ¢(X|9))

—~

Yy ye€y

It allows us to define:

e a row cluster prototype: q(Y|z)

e a column cluster prototype: q(X|y)

Lead to a "natural” algorithm
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3. Co-Clustering Algorithm

e Input:

p(X,Y) - the joint probability distribution
k - the desired number of row clusters

[ - the desired number of column clusters
e Output:

The partition function Cx and Cy

1. Inititalization: Set t = 0. Start with some initial partition
functions ¢ and ¢{?. Compute ¢(O(X,¥) and the distribu-
tion for each row- cluster prototype q(o)(Y|x) 1<z<k

2. Row re-clustering: For each row z, assign it to the " closet”
row-cluster prototype. Update C(H'l). C(H'l) C(t)

3. Computer ¢+ (X, ¥) and the dlstnbutlon for each column-
cluster prototype ¢+ (X|7), 1 <§ <!
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Co-clustering Algorithm (con’t)

4. Column re-clustering: For each column gy, assign it to the

"closest” column-cluster prototype. Update C$+2). C%‘I'Q) =
olt+1)
X :

5. Compute ¢(t+2)(X.7) and the distribution for each row clus-
ter prototype ¢(T2)(Y|z).
6. If the change of the loss in mutual information, i.e.

D(p(X,V)|l¢'(X,Y)) — D(p(X,Y) || ¢!T2(X,Y))

is small (say 1073), Return C§§+2) and C}(}H'Q); Else sett =t+2
and go to step 2.
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Properties of Co-clustering Algorithm

e Co-clustering monotonically decreases loss in mutual informa-
tion

e Co-clustering converges to a local minimum

e Can be generalized to multi-dimensional contingency tables

e Implicit dimensionality reduction at each step helps overcome
sparsity & high-dimensionality

e Computationally efficient: O(nt(k +1)), where

n IS the number of non zeros in the input joint distribution

t is the number of iterations

k is the desired number of row clusters

[ is the desired number of column clusters
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4. Experimental Results

Algorithms to be compared

Data sets

Evaluation measures

Results and discussion
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Algorithms to be compared:

e IB-double: Information Bottleneck Double Clustering
e IDC: Iterative Double Clustering

e 1D-clustering: without any word clustering (information theo-
retic method?)

Data sets:

e NG20: Binary, Multi5 and Multil0 (with and without sub-
jects, 500 documents each)

e SMART: CLASSIC3 - MEDLINE (1033), CISI (1460) and
CRANFIELD (1400)

e Top 2000 words were selected by mutual information (fre-
quency 7) after the stop words were removed.

15



Evaluation Measures:
e Confusion matrix:

Each entry(i, ) represents the number of documents in the clus-
ter ¢ that belong to true class )

e Micro-averaged-precision:

_ >4 a;
N

p

where:

a; - the number of correctly assigned documents in cluster
[ - the number of document clusters (classes)

N - the total number of documents in a whole data set
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Results

Co-clustering 1D-clustering
992 4 8 944 9 08
40 1452 7 71 1431 5
1 4 1387 18 20 1297

Table 3: Co-clustering accurately recovers original
clusters in the CLASSICS data set.

Binary Binaryv_subject
Co-clustering | 1D-clustering | Co-clustering | 1D-clustering
244 4 178 104 241 11 179 94

6 246 72 146 9 239 71 156

Table 4: Co-clustering obtains better clustering re-
sults compared to one dimensional document clus-
tering on Binary and Binary_subject data sets

Table 3: Co-clustering (0.9835), 1D-clustering (0.9432)
Table 4: Co-clustering (0.98, 0.96), 1D-clustering(0.67, 0.648)
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Results (con’t)

- Co-clustering performs much better than IB-Double and 1D-
clustering and is comparable with IDC

- Word clustering can alleviate the problem of clustering in high
dimensions

Co-clustering 1D-clustering IB-Double IDC
Binary 0.98 0.64 0.70
Binary_sub ject 0.96 0.67 0.85
Multib 0.87 0.34 0.5
Multib_subject 0.89 0.37 0.88
Multil0O 0.56 0.17 0.35
MultilO_subject 0.54 0.19 0.55

(Note: The peak values were selected.)
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Results (con’t)

- Different data sets achieve their maximum at different number
of word clusters
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Figure 2: Micro-averaged-precision values with var-
ied number of word clusters using co-clustering on
different NG20 data sets.
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Results (con’t)
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Figure 3: Fraction of mutual information lost with
varied number of word clusters using co-clustering
on different NG20 data sets.

Correlation between Figure 2 & 3: the lower the loss in mutual
information, the better is the clustering
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Results (con’t)
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Figure 4: Loss in mutual information decreases
monotonically with the number of iterations on a
typical co-clustering run on the Multil0 data set.

Co-clustering converges quickly in about 20 iterations on all the
tested datasets
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Results (con’t)
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Figure 5: Sparsity structure of the Binary_subject word-document co-occurrence matrix before(left) and

after(right) co-clustering reveals the underlying structure of various co-clusters (2 document clusters and 100
word clusters). The shaded regions represent the non-zero entries.
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5. Conclusions and Future Work
e Information-theoretic approach to co-clustering

e Implicit dimensionality reduction at each step to overcome
sparsity & high-dimensionality

e [ heoretical approach has the potential of extending to other
problems:

- Multi-dimensional co-clustering
- MDL (Minimum Description Length) to choose number of co-
clusters
- Generalize co-clustering to an abstract multivariate clustering
setting
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