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Abstract— The growing Recurrent Self-Organizing Map
(GRSOM) is embedded into a standard Self-Organizing Map
(SOM) hierarchy. To do so, the KDD benchmark dataset from
the International Knowledge Discovery and Data Mining Tools
Competition is employed. This dataset consists of 500,000
training patterns and 41 features for each pattern. Unlike
most of the previous methods, only 6 of the basic features are
employed. The resulting model has a capability of detection
(false positive) rate of 89.6% (5.66%), where this is as good as
the data-mining approaches that uses all 41 features and twice
as faster than a similar hierarchical SOM architecture.

I. INTRODUCTION

Temporal sequence processing is a research area having
applications in different fields varying from speech recogni-
tion to weather forecasting, signal processing, time series
prediction and intrusion detection. In this work, we are
concerned with the representation of time under the unsuper-
vised learning paradigm where a static neural network (Self-
Organizing Map) is provided with dynamic properties. For
a neural network to be dynamic it must be given a memory.
A traditional way of building short-term memory into the
structure of a neural network that has no capacity for rep-
resenting temporal dependencies is through the use of time
delays, which can be implemented at the input layer of the
network. That is to say, the temporal sequence is converted
into a concatenated vector via a tapped delay line and training
conducted without modification of the learning algorithm [1].
However, this approach has well-known drawbacks, one of
the most serious ones being the difficulty in determining
the proper delay line length. Within the specific context
of Self Organizing Maps (SOM) two models have been
previously proposed: the Temporal Kohonen Map (TKM)
[12] and the Recurrent Self Organizing Map (RSOM) [9].
The two models are very different. A TKM associates all
the temporal processing capacity with the trajectory of the
best matching units. A RSOM explicitly includes recurrent
connectivity into the neural output. This results in RSOM
models having the capacity to explicitly capture temporal
patterns in the original input, whereas the TKM concentrates
on best matching unit sequence learning.
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While RSOM is a promising structure in temporal se-
quence processing area, it is difficult to decide an appropriate
network structure for a given problem. Since a fixed network
structure is used in terms of number and arrangement of
neurons, which has to be defined prior to training, this often
leads to a significant degree of trial and error when deploying
the model. Therefore, previously proposed growing neural
network methods [4], [5], [6] motivate the idea of a Growing
Recurrent Self-Organizing Map (GRSOM). The contribution
of this work is to design a RSOM model that determines the
number and arrangement of units during the unsupervised
training process.

Performance of this work is demonstrated on the 1999
Knowledge Discovery and Data Mining Tools Competition
dataset (KDD-99) [7] where this describes an intrusion de-
tection problem. KDD-99 data set consists of approximately
500,000 training patterns of 41 features and provides the
only labeled dataset for comparing IDS systems, which the
authors are aware of. The previous works in this area are
able to have detection (false positive) rates in the range of
89% (4.6%) to 98% (10%) whilst using all 41 connection
features [2], [8].

This work only uses the six “Basic features of an Indi-
vidual TCP connection” [7]. Six GRSOMs are built for each
feature on the first layer. The standard SOM on the second
level spatially correlates the outputs of the first level feature
specific GRSOMs and third layer SOMs we selectively built
for the worst case second layer neurons that respond to
multiple connection types. Detection rate of the model on the
test set is 89.6% while false positive rate is 5.66%. Moreover,
our model is trained within matter of hours, as opposed to
days when the standard SOM hierarchy is trained without
the built-in memory feature.

The remainder of this paper is organized as follows.
Section II provides the background and Section III provides
the methodology of the work. Results are reported in Section
IV and conclusions and future work are identified in Section
V.

II. BACKGROUND

In a previous work on the aforementioned, a shift register
was utilized to embed the temporal relationship between
incoming connections and a 3-layer SOM hierarchy was em-
ployed to separate normal from attack behavior [2]. However,
for the first layer of the structure, fixed size SOMs were
used. This implies that conservative estimates for the delay
line depth are used to establish sufficient temporal properties
for each feature. This results in a significant computational



Fig. 1. 3 Layer GRSOM-SOM architecture

overhead and requires a post processing step to simplify the
ensuing feature specific SOMs before building the second
layer SOM. In this work, on the other hand, first layer maps
take the form of growing RSOMs, which already have the
ability to capture temporal patterns. To this end, we first
describe the SOM and RSOM models as well as defining
the proposed GRSOM architecture.

A. Self-Organizing Map

The principal goal of the SOM is to transform an incoming
signal pattern of arbitrary dimension into a discrete one
or two-dimensional map, where such a transformation is
performed adaptively in a topologically ordered fashion [13].
The learning process is summarized as follows,

1) Establish map dimension;
2) Assign random numbers to the network weights, wi,j ;
3) Present an input pattern, x, in this case the distances

of original inputs to the first level neurons;
4) Calculate the distance between the input, x, and each

neuron weight wj and identify the winning neuron as,

d = minj ||x− wj || (1)

where ||.|| is the Euclidean norm;
5) Adjust all weights in the neighborhood of the winning

neuron as,

wi,j(n + 1) = wi,j(n) + γ(n)hi(n)(xi(n)− wi,j(n))
(2)

where hi(n) is the value of the neighborhood function
and 0 < γ(n) is the learning rate;

6) Repeat steps 2-4 until the convergence criterion is
satisfied.

Once maps are trained, the best matching unit is used to
facilitate the labeling of the higher level maps.

Fig. 2. Schematic picture of an RSOM unit

B. Recurrent Self-Organizing Map
The recurrent SOM is an extension to the Kohonen’s

SOM that enables neurons to compete to represent temporal
properties in the data. RSOM is inspired by the Temporal
Kohonen Map (TKM) [12]. In TKM, leaky integrators,
which gradually lose their activity over time, are added
into the outputs of the units in order to provide a short
term memory mechanism. However, it is claimed in [9] that
“The Temporal Kohonen Map [12] does not directly use the
temporal contextual information of input sequences in weight
updating at time t: The involvement of the previous inputs is
only taken into account in the best matching unit searching”.
Therefore, the RSOM introduces leaky integrators (i.e. recur-
rent connectivity) to give a solution to this problem. These
integrators are modeled in [9] with

yi(n, α) = (1− α)yi(n− 1, α) + α(x(n)− wi(n)) (3)

where wi(n) is the weight vector, x(n) is the input pattern,
α is the memory coefficient and yi(n, α) is the leaked
difference vector for the unit i at step n while large α
corresponds to short term memory whereas small values
describe long term memory, or a slow activation decay. A
schematic picture of an RSOM unit in [9] is shown in Fig.
2.

The best matching unit (bmu) b at step n is searched by

||yb(n, α)|| = mini∈V ||yi(n, α)|| (4)

where V is the set of all neurons comprising the RSOM.
Then, the map is adopted with a modified Hebbian training
rule as

wi(n + 1) = wi(n) + γ(n)hi,b(n)yi(n, α) (5)

where hi,b(n) is the value of the neighborhood function and
0 < γ(n) ≤ 1 is the monotonically decreasing learning rate
factor. A common choice for the neighborhood function is a
Gaussian

hi,b(n) = exp{−||ri − rb||2/2σ(n)2} (6)

where ri are the map coordinates of the unit i and rb are
the map coordinates of the bmu. The width of the Gaussian
bell is controlled by σ(n) which is normally reduced as the
learning processes.

In comparison to Kohonen’s original TKM, the RSOM
provides a more accurate model for temporal behavior of a
single input. Conversely, the TKM provides a simple mech-
anism for memory, but accepts multiple input features per
neuron. In this work, we propose to decouple the combined
properties of the TKM by (1) introducing a growing version
of the RSOM and (2) using the standard SOM to provide
the spatial correlation process over multiple layers, Fig. 1.



III. METHODOLOGY

In this work, a growing behavior is added to the RSOM.
Fig. 3, summarizes the adaptive model for the proposed
GRSOM algorithm. Training of this model starts with only
one neuron and new neurons are added until the desired
accuracy is reached. For every unit that is newly added, the
weight and the leaked difference vectors are initialized to
zero. Then, an input from the training data is presented to the
new neuron and weight and leaked difference vector values
are adapted (Fig. 3 Step 3). The next input is presented to
the neuron until the leaked difference value of the neuron
is under a threshold, which is decided at the beginning of
training. If the number of neurons is less than the desired
maximum number of neurons, then a new neuron is added
to the network until the end of the training data is reached
(Fig. 3 Step 5). If the number of neurons is more than the
desired maximum number of neurons, training is stopped and
pruning algorithm starts (Fig. 3 Step 6). During the pruning
phase, the neurons responding to the same or very similar
data are deleted from the network and only one of them is
kept to respond to the corresponding data. After pruning,
training continues as long as there is more data for training
or less neurons than desired.

1) i = 1; n = 0; MaxNeurons = 100;
2) neuron(i) ← (wi(n) = 0, yi(n, α) = 0);
3) Update wi(n) and yi(n, α) using (3) and (1) respec-

tively, n++;
4) IF (||yb(n, α) ≥ β1||)

a) THEN Step 3
b) ELSE i++;

5) IF i < MaxNeurons

a) THEN Step 2;
6) ∀j, k < MaxNeurons

a) IF distj 6=k(wj , wk) < β2

i) THEN delete neuron j, i- -;

Fig. 3. GRSOM algorithm

In short, the proposed system GRSOM begins with a
single neuron and adds neurons until the desired accuracy
is achieved. This in return, avoids the algorithm to begin by
specifying a priori number of neurons and a tapped delay line
approach, both of which are problem specific and therefore
requires trial and error.

In addition to the growing behavior, a single pass algo-
rithm is used for this work, which is also different than the
original RSOM model. In [9], at each learning cycle a time
t, t ≥ s is randomly selected for sampling a subsequence
{x(t−s+1), x(t−s), ..., x(t)} of s samples to be presented to
the RSOM starting at sample x(t−s+1). However, GRSOM
is a single pass algorithm, which starts the learning process
from the first sample in dataset and terminates at the end of
the sequence. This is a very important property as it means
that the algorithm scales well and is applicable to online
training.

IV. RESULTS

In this section, we describe the dataset used for training
and testing phases of the network structure, training proce-
dure and evaluation of the proposed architecture.

A. KDD-99 Dataset

The KDD-99 dataset is based on the 1998 DARPA ini-
tiative to provide designers of intrusion detection systems
(IDS) with a benchmark on which to evaluate different
methodologies [10]. To do so, a simulation is made of a fac-
titious military network consisting of three target machines.
Additionally, there are three machines to spoof different IP
addresses to generate traffic between different hosts. Finally,
a sniffer is used to record all network traffic using the
tcpdump format. Normal connections are designed to reflect
traffic seen on military bases and attacks fall into one of
five categories: (i) Denial of Service; (ii) User to Root; (iii)
Remote to Local; (iv) Data and (v) Probe. It should be
noted here that Remote to Local and User to Root represent
content-based attacks, and may only be detected indirectly
by the type of system developed in this work, since we only
use 6 network based features.

In 1999, the original tcpdump files were preprocessed
for utilization in the Intrusion Detection System benchmark
of the International Knowledge Discovery and Data Mining
Tools Competition [7]. To do so, packet information in the
tcpdump files are summarized into connections by using the
Bro IDS [7]. As a result of this process, nine basic features
of an individual TCP connection are formed:
• Duration of a connection;
• Protocol type (such as TCP, UDP or ICMP)
• Service type (such as FTP, HTTP, Telnet);
• A status flag (summarizing the connection);
• Total bytes sent to the destination host;
• Total bytes sent to the source host;
• Whether source and destination addresses are the same

or not;
• Number of wrong fragments;
• Number of urgent packets;
In addition to these nine features, each connection is also

described in terms of an additional 32 derived features,
falling into three categories,
• Content Features;
• Time-based Traffic Features;
• Host-based Traffic Features;

Protocol and Service types in the basic features are not de-
rived i.e. they are estimated immediately as opposed to after
a connection has completed. Moreover, last three features of
the basic features are specific to certain attack types, hence
these terms are ignored in this work. Thus, only the first
six features of the basic features are used to establish our
structure as we expect the GRSOM to capture the temporal
characteristics of the data.

The KDD-99 data is composed of several components
as seen in Table I. Only the 10% KDD data is used for
the purpose of training as in the case of the International



TABLE I
BASIC CHARACTERISTICS OF THE KDD DATASET

Dataset Label Total Normal Total Attack
10% KDD 97,277 396,744

Corrected (Test) 60,593 250,436
Category Composition

Category 10% Corrected
Normal 97,277 60,593

DoS 391,458 229,853
Probe 4,107 4,166
R2L 1,126 16,347
U2R 52 70

Knowledge Discovery and Data Mining Tools Competition
[2]. One side effect of this data can be seen as that it
actually contains more examples of attacks than normal
connections. Moreover, the attack types are not represented
equally, Denial of Service attacks form the majority of the
attack instances. However, Corrected (Test) dataset has a
significantly different statistical distribution than 10% KDD
and additional unseen attacks. Even though KDD has its
drawbacks [15], it is still the only publicly available IDS
benchmarking dataset.

B. Hierarchical Model

A hierarchical GRSOM-SOM structure similar to the one
used in an earlier work [2] is employed. Our motivation
is to build a first layer consisting of GRSOMs instead of
SOMs with tapped delay lines. Specifically, three layers are
employed, Fig. 1. In the first level, individual GRSOMs are
associated with each of the six basic TCP features. This
provides a concise summary of the representative patterns of
each feature. The second layer integrates the feature specific
views provided by the first level GRSOMs into a single view.
In this layer, the training set labels are associated with each
pattern to label the best matching unit. The third layer is built
for the second layer neurons, which win for multiple classes.
Therefore, third layer SOMs are associated with specific
neurons in the second layer. This also results in the third
layer SOMs being trained over a small fraction of the data
set.

C. Preprocessing

Preprocessing of the original data set has two basic func-
tions, to provide a suitable numerical representation for the
initial data and normalization of the data. Specifically, three
of the basic features, Protocol type, Service type and Status
Flag, are alphanumeric. Therefore, each instance of these
features are mapped to sequential integer values. Numerical
features, duration of Connection, total bytes sent to destina-
tion and total bytes sent to source host, are used unchanged.
After representing all instances of features numerically, data
normalization applied to the data using;

1/(1 + xt)

where x is the input data at the time t. On the second
level, each connection is characterized by its distance to the

TABLE II
GRSOM TRAINING PARAMETERS

Parameter Value
Initial Learning Rate 0.2

Epoch Limit 3000
α 0.6
β1 10−17

β2 0.0005
Maximum Number of Neurons 100

TABLE III
SOM TRAINING PARAMETERS

Parameter Rough Training Fine Tuning
Initial Learning Rate 0.5 0.05

Epoch Limit 4000
Neighborhood Parameters

Initial Size 2 1
Function Gaussian
Relation Hexagonal

first level neurons. Therefore, the input data for the second
layer is prepared by using (1), thus defining the distance of
inputs to the first level neurons without losing the temporal
behavior.

D. Training

Learning parameters for the GRSOMs and their respective
values are listed in Table II, whereas the parameters for the
SOMs are listed in Table III. These parameters are repeated
for every GRSOM and SOM comprising the hierarchy. In
each case of SOM training, it is completed in two phases,
rough training providing the general organization of the
SOM and fine tuning of the neurons. The resulting hierarchy
consists of 6 GRSOMs in the first layer, one for each of the
first 6 basic features (Section III.A). The GRSOM algorithm
returns RSOM networks consisting of 8, 4, 8, 8, 6 and 6
neurons respectively. This results in 40 inputs for the second
layer 6 × 6 SOM, which specially correlates the feature
specific GRSOM maps. After training the second level SOM,
labeling takes place. For each connection in the training
set, the corresponding label is given to the best matching
unit in the second layer. The number of normal and attack
connections that each best matching unit receives is kept for
the purpose of building third layer SOMs. These 6×6 SOMs
on the third layer are built for the second layer SOM neurons
that wins for significant counts of more than one exemplar
class, like Denial of Service and Probe or U2R and Denial of
Service. This results in 3 SOMs being built on top of specific
neurons of second layer. Fig. 3 and Fig. 4 summarize the
counts of Denial of Service and Probe attacks respectively,
where proportionally larger counts result in a greater area
of hexagon being colored. It is clearly seen that neurons 5
and 17 are getting excited for both of these classes. However,
when the third layer maps are built for these neurons, a better
separation between these two classes is achieved as seen in
Fig. 5 and Fig. 6.



Fig. 4. Denial of Service hit histogram of the 2nd layer SOM

Fig. 5. Probe hit histogram of the 2nd layer SOM

Fig. 6. Denial of Service hit histogram of the 2nd layer map’s neuron 5

Fig. 7. Probe hit histogram of the 2nd layer map’s neuron 5

E. Performance

Previous work with the standard SOM structure on
the KDD data set has demonstrated that 33 hours are
required for the training phase for the six first layer maps
and a second layer map [2]. Given such an overhead, the
DSS SOM algorithm was proposed for faster training [3].
However, to be able to give the ability of temporal behavior
to SOMs, shift register was still in use for the first level.
In this work, the built-in temporal behavior of GRSOM
gives solutions to shift register parameterization problems in
[2], whilst continuing to avoid any dependency on a priori
provision of temporal features [3]. Needless to say it would
be appropriate to employ DSS SOM in place of the second
and third layer SOMs, Fig. 1. Moreover, performance of
the classifier is evaluated in terms of false positive and
detection rates, estimated as:

DetectionRate = 1− NumberofFalseNegatives
TotalNumberofAttackConnections

FalsePositiveRate = NumberofFalsePositives
TotalNumberofNormalConnections

where False Positive (Negative) is the number of normal
(attack) connections labeled as attack (normal).

Tables IV and V detail the performance on the training
and test data sets respectively for two and three layer
maps. Finally, performance of the two-layer and three-layer
hierarchies on Corrected Test set is summarized in Table VI.
It is clear that the larger classes of Normal and DoS are
easily recognized by the system. Performance of Probe is
also reasonable over 50% detection on test set, whereas, the
content based nature of the U2R and R2L classes penalized
the generalization of these classes on the test set. That is to
say, the approach is only utilizing the first six basic features
(non-content based features), performance on network-based
attack categories will naturally be better than the content-
based categories. Table VII provides a summary of previous
results from alternative approaches using this data set. In
comparison with these results, the GRSOM-SOM hierarchy
appears to produce competitive results. Computationally,



TABLE IV
PERFORMANCE OF 2 LAYER AND 3 LAYER HIERARCHIES ON TRAINING

DATA (10% KDD)

Layer 2
Normal DoS Probe U2R R2L

Detection Rate 98.5% 99.2% 36.67% 0% 11%
False Positive Rate 1.08% 4.43% 0.0002% 0% 0.006%

Layer 3
Normal DoS Probe U2R R2L

Detection Rate 98.5% 99.1% 85.78% 23.08% 15.36%
False Positive Rate 1.09% 1.86% 0.006% 0.002% 0.007%

TABLE V
PERFORMANCE OF 2 LAYER AND 3 LAYER HIERARCHIES ON KDD TEST

Layer 2
Normal DoS Probe U2R R2L

Detection Rate 94.63% 96.59% 8.64% 0% 3.33%
False Positive Rate 9.38% 8.86% 0.034% 0% 0.008%

Layer 3
Normal DoS Probe U2R R2L

Detection Rate 94.52% 96.37% 53.89% 10% 3.42%
False Positive Rate 9.38% 6.26% 0.26% 0.03% 0.008%

our hierarchy is faster than standard SOM hierarchy (15
hours versus 33 hours) with a slightly better detection rate.
Moreover, while training of the second layer SOM takes 7
hours of total training time, training of 6 different GRSOMs
of the first layer takes 8 hours, which is slightly more than
an hour for each GRSOM. Naturally, all the data mining
approaches utilize all 41 features of the data set (rows 1 to
4 of Table VII), while our hierarchy uses only 6.

V. CONCLUSIONS AND FUTURE WORKS

A hierarchical GRSOM and standard SOM approach to
mining data sequences is proposed and demonstrated on
International Knowledge Discovery and Data Mining Tools
Competition intrusion detection benchmark [7]. The built-
in sequence processing and the self-growing abilities of this
model are pointed out specifically. In comparison to the data
mining approaches previously proposed, this system provides
competitive results whilst utilizing only a small subset of
the feature set. Moreover, this approach is twice as fast as
an approach based on the standard SOM model throughout.
Also, the training of an SOM takes hours, while it only takes
an hour for a GRSOM in our model. Furthermore, the single
pass algorithm used in this work is a very important property
as it means that the algorithm scales well and is applicable
to online training.

Future work will naturally consider the application of this
hierarchical model to additional datasets of similar attributes
with document and DNA sequencing.

TABLE VI
PERFORMANCE OF 2 AND 3 LAYER HIERARCHY ON KDD TEST

Detection Rate False Positive Rate Training Time(sec)
Level 2 89% 5.37% 54,550
Level 3 89.6% 5.66% 59,735

TABLE VII
PREVIOUS RESULTS ON KDD TEST USING UNSUPERVISED LEARNING

Technique Detection Rate False Positive Rate
Data-Mining [8] 70-90% 2%
Clustering [14] 93% 10%

SVM [14] 98% 10%
K-NN [14] 91% 8%

Standard SOM hierarchy [2] 89% 4.6%
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