
Abstract 
Mimicry attacks have been the focus of detector 

research where the objective of the attacker is to generate 
an attack that evades detection while achieving the 
attacker’s goals. If such an attack can be found, it implies 
that the target detector is vulnerable against mimicry 
attacks. In this work, we emphasize that there are two 
components of a buffer overflow attack: the preamble and 
the exploit. Although the attacker can modify the exploit 
component easily, the attacker may not be able to prevent 
preamble from generating anomalous behavior since 
during preamble stage, the attacker does not have full 
control. Previous work on mimicry attacks considered an 
attack to completely evade detection, if the exploit raises 
no alarms. On the other hand, in this work, we investigate 
the source of anomalies in both the preamble and the 
exploit components against two anomaly detectors that 
monitor four vulnerable UNIX applications. Our 
experiment results show that preamble can be a source of 
anomalies, particularly if it is lengthy and anomalous.  
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1 Introduction 
Over the past years, systematic methods for 

vulnerability testing have been proposed to analyze host 
based anomaly detection systems against blind spots and 
evasion attacks. The purpose of vulnerability testing is to 
locate vulnerabilities or holes in a detector before the 
attackers can exploit them.  Previous research established 
that it is possible to evade anomaly detectors, namely 
Stide, by altering an attack to make it look like normal. To 
this end, mimicry attack notion was introduced [1] against 
anomaly detectors where the original exploit was crafted 
by producing a legitimate sequence of system calls while 
performing malicious actions, typically by making use of a 
template denoting a core attack. Consequently, the 
resulting mimicry attack remains within the normal 
operational limits and deploys undetected by the detector.  

In particular, related detector blind spot testing [1, 2, 
3] is mainly focused on the Stide detector [4] (or variants 
[5] thereof) and employed critical UNIX system 
applications. Undetectable exploits are developed by 
locating appropriate sequences of system calls that match 
the contents of Stide’s normal behavior database whilst 

successfully reaching the behavioral objectives of the 
original exploit. Typically, a minimalist configuration of 
the anomaly detector is utilized, under the general 
observation that it is easier to make a strong detector if the 
alphabet of permitted instructions is small. 

In a typical buffer overflow exploit, the first step is to 
corrupt the data types and local variables, which gives the 
attacker the control of the application. For example, in 
case of an Ftpd attack [9], attacker achieves this by 
logging onto the ftp server anonymously and issuing 
malformed commands such as CWD ~{. We call the 
actions taken by the attackers before they gain full control 
of the application as the preamble. During the preamble 
phase, the application is still operational and the attacker 
does not have the full control yet, hence the attacker may 
not be able to prevent the vulnerable application from 
generating anomalous behavior.  

   After the attacker gains control of the application, 
the second step is to execute arbitrary code or command to 
carry out a malicious action such as spawning a root shell 
or creating a super-user account. Commonly, this is 
achieved by injecting a shellcode. Shellcode is a short 
segment of an assembly program that aims to execute code 
on the vulnerable host. In case of the Ftpd attack, the 
shellcode spawns a UNIX shell with super-user privileges 
and binds it to a port so that the attacker can login without 
supplying a password. Attackers can modify the exploit 
components fairly easily, by changing the injected 
shellcode, to evade detection. On the other hand, 
modifying the preamble requires finding an alternative 
way to take advantage of the vulnerability or finding 
another vulnerability, therefore cannot easily be modified. 

In previous work [1, 2, 3], the attack was said to be 
optimal if the exploit component raised no alarms.  
However, even the exploit raises no alarms, introducing 
the preamble can introduce alarms for both the preamble 
itself and the transition between the preamble and exploit. 
Therefore, in this work, we expand upon our previous 
work [11] and investigate the source of anomalies on both 
preamble and exploit components. To this end, we employ 
two anomaly detectors to monitor four UNIX applications 
with known vulnerabilities. We observe the anomaly rates 
for the original attacks that are downloaded from the 
SecurityFocus website [7, 8, 9, 10]. Furthermore, we 
employed a mimicry attack generation methodology to 
observe the change in anomaly rates. The methodology 
automates the design of exploits while utilizing only the 
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anomaly rate without using internal data structures or 
algorithms specific to a detector.  

Furthermore, since the anomaly rates reported for 
mimicry attacks in previous work was zero, locality frame 
count feature of anomaly detectors were not investigated 
in depth. Locality frame count keeps track of the 
anomalies over a given time period based on the 
assumption that security violations will tend to produce 
clustered anomalies more than legitimate errors [5]. This 
implies that, if the preamble produces a sufficiently large 
cluster of anomalies, the attack can be detected and 
stopped before the exploit deploys.  To this end, we also 
investigate the effects of anomalies clustered together, in 
this work. 

The remainder of the paper is organized as follows. 
Relevant work on mimicry attacks is discussed in Section 
2. The anomaly detectors employed in our analysis are 
introduced in Section 3. The four UNIX applications with 
known, documented vulnerabilities that the anomaly 
detectors monitor are presented in Section 4.  The mimicry 
attack generation methodology that we employed in our 
analysis is briefly discussed in Section 5. The results of 
our analysis detailing the anomaly rates and the source of 
anomalies in mimicry attacks are reported in Section 6 and 
the conclusions are drawn in Section 7. 

2 Related Work 
Wagner et al. [1] introduced the “mimicry attack” 

concept, where original attacks were modified to evade 
detection. They proposed three methods to avoid 
detection: (i) modifying system call parameters; (ii) 
inserting system calls that are irrelevant to the attack being 
deployed while minimizing the anomaly rate; and finally 
(iii) generating equivalent attacks by replacing the system 
calls that can easily be identified by the detector. An 
example for the last method is substituting an attack that 
spawns a UNIX shell with an attack that creates a super-
user account. Both of these give the attacker super-user 
privileges. Mimicry attacks were generated for wuftpd 
service by manually modifying the detectable system call 
sequences. Normal behavior was generated by “running 
wuftpd on hundreds of large file downloads over a period 
of two days”[1]. Although Wagner et al. was aware of the 
preambles, they assumed that the attacker could silently 
take control of the application without being detected. In 
our work, we discuss that such an assumption may not 
always be the case.    

Tan et al. [2] employed four methods to manually 
change the behavior of the attack: (i) hiding an attack in 
the blind spot of the detector; (ii) modifying an attack so 
that it looks like a normal behavior; (iii) hiding an attack 
so it looks like a less dangerous attack; and (iv) modifying 
an attack so that it looks like a different attack. In their 
experiments, attacks against restore, tmpwatch and 
kernel/traceroute applications were employed. Normal 

behavior for Restore is obtained by “monitoring a regular 
user executing the restore system program to retrieve 
backup data from a remote backup server” [2]. Normal 
behavior for tmpwatch is generated by populating a short 
directory tree with files under /tmp and executing 
tmpwatch program to clean files that are more than 5 days 
old. Normal behavior for kernel attack was not obtained 
since the vulnerability in the kernel was used to exploit 
another vulnerability in traceroute. 

Stide detects foreign sequences that are not in the 
normal database. Thus, Tan et al. [3] investigated hiding in 
the detector’s blind spots in more detail by developing 
variants of a core exploit with the objective of increasing 
the minimal foreign sequence length. They reported that if 
the foreign sequence length is greater than the sliding 
window size of Stide, an attack could evade detection. In 
their experiments they employed Stide on traceroute and 
passwd applications.  For traceroute, normal behavior is 
obtained by “executing traceroute to acquire diagnostic 
information regarding the network connectivity between 
the localhost and nis.nsf.net”[3]. For the passwd 
application, normal data was obtained by executing the 
passwd without any arguments, which expires the old 
password and installs the new one provided by the user.  

Using a categorization scheme, Gao et al. [13] 
divided anomaly detectors into three categories: black-box 
detectors [4] only make use of the system calls, whereas 
gray-box detectors [16, 17] use – in addition to system 
calls – runtime observations such as program counter and 
return addresses stored in the stack. White-box detectors, 
however also incorporate information from the source 
code, which makes it difficult to hide the attacks. The 
authors presented a systematic study, which showed the 
benefits and overheads of changing gray-box anomaly 
detector parameters such as (1) the amount of runtime 
information, (2) atomic unit that the detector monitors and 
(3) sliding window size. Experimental results indicated 
that expanding the model by using more information and 
increasing window size results would increase the 
mimicry attack length. In other words, attackers will need 
more code to hide their actions. Although it is more 
difficult to evade white-box detectors, authors discussed 
that they are platform dependent and they are not 
universally applicable [13]. In addition to the systematic 
study, authors present a methodology to forge the program 
counter information on statically linked executables so 
that the detector [4] does not detect an anomaly in the 
return addresses even though system calls are made by the 
attack code [13]. 

Kruegel et al. developed a methodology where the 
detection system is adaptive (i.e. Stide variants [4, 5]). 
This time, the ability to build exploits automatically was 
used to improve the operation of the detector [14].  
However, in [14], automation is performed using a static 
tool at the Intel x86 assembly level to redirect control flow 
using symbolic execution. 



Giffin et al. generated mimicry attacks against Stide 
by applying automatic model checking to prove that no 
reachable operating system configuration corresponds to 
the effect of an attack [15].  However, in their approach, 
the operating system model, application (program) model 
and system call specifications as well as the attack 
configuration are still generated manually. 

Parampalli et al. [18] proposed a mimicry attack 
methodology against “powerful system call monitors”. 
“Powerful system monitor” is defined as a detector that 
has full knowledge of the system call parameters as well 
as their roles in the execution of the system call. They 
introduced persistent interposition attack concept where 
the objective of the attacker is to modify the read and 
write system calls to deploy the attack. Their methodology 
is similar to man-in-the-middle attacks since the objective 
of the attack code is to intercept and modify the read and 
write system calls that the victim application makes. Their 
results on Apache web server showed that although the 
persistent interposition attacks are not powerful enough to 
obtain a rootshell, they can evade monitors that monitor 
system call arguments while achieving goals such as 
stealing financial information or impersonating web 
servers. 

3 Anomaly Detectors 
Anomaly detection systems attempt to build models of 

normal user behavior and use this as the basis for 
detecting suspicious activities. This way, known and 
unknown (i.e. new) attacks can be detected as long as the 
attack behavior deviates sufficiently from the normal 
behavior. When a buffer overflow attack is deployed, a 
vulnerable privileged program is exploited to do 
something that it is not supposed to do. This implies that 
it is possible to observe a change in the program 
behavior. Anomaly based detectors are based on this 
assumption.  Needless to say, if the attack is sufficiently 
similar to the normal behavior, it may not be detected. In 
this work, we employed Stide and pH anomaly detectors 
in our experiments. 

3.1 Stide 
Forrest et al. [4] employed a methodology motivated 

by immune systems. This characterizes the problem as 
distinguishing ‘self’ from ‘non-self’ (normal and abnormal 
behaviors respectively). An event horizon is built from a 
sliding window applied to the sequence of system calls 
made by an application during normal use. The sequences 
formed by the sliding window are stored in a table that 
establishes the normal behavior model. During the 
deployment (detection) phase, if the pattern from the 
sliding window is not in the normal behavior database it is 
considered a mismatch.  

Input to the Stide detector takes the form of system 
call traces of an application for which the detector is 

trained. Specifically, Stide builds a “normal database” by 
segmenting the training data (of system call traces) into 
fixed length sequences [6]. To do so, a sliding window of 
N is employed over the training dataset and the resulting 
system call patterns are stored in the “normal database”. 
During testing, the same sliding window size is employed 
on the data. Resulting patterns are compared against the 
“normal database” and if there is no match, a mismatch is 
recorded. Given a window size of N and system call trace 
length M, anomaly rate for the trace is calculated by 
dividing the number of mismatches by the number of 
sliding window patterns (i.e. M – N  + 1). In our 
experiments, we employed the default training parameters 
for Stide listed in Table 1. 

Table 1. Stide configuration parameters 
Parameter Setting 
Sliding window length  6 

3.2 Process Homeostasis (pH) 
Process Homeostasis (pH) [5] is an anomaly detector 

based on Stide that employs a detection methodology 
similar to Stide. pH is implemented as an extension to 
Linux 2.2 Kernel. Therefore, pH monitors system calls 
more efficiently by capturing system calls directly at the 
kernel level as opposed to Stide that employs Strace to 
capture system calls. pH monitors the changes in short 
system call sequences by employing look ahead pairs.  
While employing the sliding window approach, pH does 
not store the sliding window patterns but records tuples, 
which consist of the current and the past system calls and 
the sliding window location. Somayaji [5] established that 
look ahead method is more efficient to store, could 
potentially converge to a normal profile quicker than the 
full sequence method. Additionally, tolerization and 
sensitization concepts were introduced. Tolerization 
allows pH to improve false alarm rates by leaving out 
minimal anomalies, which is likely to be slight changes in 
normal behavior. Sensitization prevents abnormal 
behavior from leaking into normal behavior database [5].  

During training, a sliding window is employed over 
the training set and a “normal database” of three 
dimensional matrix is built where the dimensions are as 
follows: (1) current system call; (2) previous system call; 
(3) location of the previous system call on the sliding 
window. During testing, the same sliding window is 
employed on the test data. If a given sliding window 
sequence produced a look ahead pair that is not in the 
normal database, a mismatch is recorded.  Similar to 
Stide, given a window size of N and system call trace 
length M, anomaly rate for the trace is calculated by 
dividing the number of mismatches by the total number 
of look ahead pairs. 

Another important feature of pH is that it responds to 
attacks by slowing down the process. Delay is an 



exponential function of locality frame count. Locality 
frame count aims to identify the clusters of anomalies. To 
this end, pH simply maintains a count of how many of the 
past LF (usually 128) system calls were anomalous. 
Process delays can substantially delay the execution of a 
program when a cluster of anomalies is observed. In our 
experiments, we employed the default pH training 
parameters listed in Table 2. 

Table 2. pH configuration parameters 
Parameter Setting 
Look ahead pair window size 9 
Locality frame window size 128 
Delay Factor  1 
Suspend execve after 10 anomalies 
Suspend execve duration 2 days 
Anomaly limit 30 
Tolerize limit  12 

4 Vulnerable Applications 
In our experiments, we employed four Linux 

applications, which have known and documented 
vulnerabilities, namely Traceroute, Restore, FtpD, and 
Samba. These are also the vulnerable applications used in 
the mimicry attack literature [1, 2, 3]. Traceroute, and 
Restore vulnerabilities can be exploited locally whereas 
FtpD and Samba vulnerabilities can be exploited remotely. 
For each application, we developed normal use cases, 
which represent the scenarios of legitimate use.  

4.1 Traceroute 
Traceroute is a network diagnosis tool, which is used 

to determine the routing path between a source and a 
destination by sending a set of control packets to the 
destination with increasing time-to-live values. A typical 
use of traceroute involves providing the destination IP, 
whereas the application returns information on the route 
taken between source and destination. 

Redhat 6.2 is shipped with Traceroute version 1.4a5, 
where this is susceptible to a local buffer overflow exploit 
that provides a local user with super-user access [7]. The 
attack takes advantage of vulnerability in malloc chunk, 
and then uses a debugger to determine the correct return 
address to take control of the program. In order to analyze 
the traceroute behavior under normal conditions, we 
developed five use cases, Table 3; whereas in the previous 
research [3] only one normal use case was used for 
training, namely use case 1.  

 

 

 

 

Table 3. Traceroute normal use cases 
Use Case System Calls 
1. Target a remote server 736 
2. Target a local server 260 
3. Target a non existent host 153 
4. Target localhost 142 
5. Help screen 24 

4.2 Restore 
Restore is a component of UNIX backup 

functionality, which restores the file system image taken 
by the dump command. Files or directories can be restored 
from full or incremental backups. 

Restore version 0.4b15 is vulnerable to an 
environment variable attack where the attacker modifies 
the path of an executable and runs restore. This results in 
executing an arbitrary command with super-user 
privileges, which leads to a root compromise. In the 
published attack [8], attacker spawns a root shell. Table 4 
summarizes five normal use cases that we developed for 
Restore. As in the previous work [2], we have monitored a 
regular user executing the restore system program to 
retrieve backup data from a remote backup server. 
However, we have also repeated the case for different 
sizes of files and back-up types. 

Table 4. Restore normal use cases  
Use Case System Calls 
1. Restore a small file system dump 
from a full backup. 

2256 

2. Restore a small file system dump 
from an incremental backup. 

1027 

3. Restore a large file system dump 
from a full backup. 

167207 

4. Restore a large file system dump 
from an incremental backup. 

68185 

5. Help screen 53 

4.3 Samba 
Samba suite provides printer and file sharing for 

Windows clients and can run on most UNIX variants. 
Samba sets up printer and network shares that appear as 
Windows disks and printers under a Windows operating 
system. 

Redhat 9.0 is shipped with Samba suite version 
2.2.7a, which has a vulnerability [9] that can be exploited 
over the network to gain super-user privileges. The buffer 
overflow occurs when Samba service tries to copy user 
supplied data into a static buffer without checking.  The 
published attack binds a root shell to a network port. 
Table 5 summarizes the six normal use cases that we 
developed for Samba. 

 



Table 5. Samba normal use cases  
Use Case System Calls 
1. Mount a samba share successfully 1156 
2. Invalid password while mounting 
samba share 

680 

3. Unmount a samba share 
successfully 

186 

4. Find and edit a remote file. (Using 
commands: ls - cd - ls - pico) 

254 

5. Find and copy a 38MB remote file 
to a local directory (Using 
commands: ls - cd - cp)  

65648 

6. Change samba password remotely 1527 

4.4 FtpD 
Redhat 6.2 is shipped with Washington University 

Ftp Server version 2.6.0(1), which provides FTP access to 
remote users. WuFtpd 2.6.0(1) is susceptible to an input 
validation attack where the attacker can corrupt the 
process memory by sending malformed commands and 
overwrite the return address to execute his/her shellcode. 
Although the attack [10] is an input validation attack, the 
deployment is similar to a buffer overflow attack. Table 6 
summarizes the ten normal use cases that we developed 
for FtpD. Use cases 7 through 10 represents the legitimate 
errors that a user can make during a normal FTP session. 
On the other hand, in the previous research [1] wuftpd was 
run on only large file downloads over a period of two 
days. 

Table 6. FtpD normal use cases 
Use Case System Calls 
1. Upload 10K data 2249 
2. Upload 60M data 32912 
3. Upload 650M data 334252 
4. Download 10K data 2252 
5. Download 60M data 32908 
6. Download 650M data 334244 
7. Three failed login attempts 2236 
8. Help screen 2017 
9. Attempt to access non-existent files 
and directories 

2213 

10. Type non-existent commands. 2017 

5 Generating Mimicry Attacks 
In previous mimicry attack generation research, 

typically a “white box” access to detector behavior is 
assumed. This has resulted in very efficient algorithms 
for designing mimicry exploits. In particular, such 
research has for the most part concentrated on the Stide 
open source host based anomaly detector [4] or its 
improved versions [5]. The design of exploits then boils 

down to locating sequences of system calls that both 
match the contents of an anomaly detector’s normal 
behavior database whilst successfully reaching the 
behavioral objectives of the original ‘core’ exploit. A 
minimalist configuration of the anomaly detector is 
utilized, under the general observation that it is easier to 
make a strong detector if the alphabet of permitted 
instructions is small. Thus, any weakness detected under 
these conditions will be exasperated when more realistic 
configurations of the detector’s normal behavioral 
database are employed (a larger alphabet of normal 
behavior will result in even more opportunities for 
defeating the detector). Such a problem was shown to be 
of a sufficiently focused form for exhaustive search 
algorithms to solve the problem in seconds with solutions 
returning the equivalent of a zero anomaly rate. 

On the other hand Kayacik et al. [12] assumes a 
“black box” approach to mimicry attack generation. As 
such the feedback from the detector is limited to the 
anomaly rate alone, where this is provided as a part of 
normal operation. Hence the approach does not make use 
of the internal data structures or algorithms specific to a 
particular detector. The selected methodology [12] has 
the advantage of requiring only the anomaly rate from the 
detector, hence working with a black-box assumption 
whereas other related methods [1, 2, 3] require the 
internal knowledge of the target detector.  The process of 
generating mimicry attacks was automated using Genetic 
Programming (GP). Throughout the search process, GP 
maintains a population of candidate solutions. Each 
candidate solution, or individual takes the form of a 
program. Programs were represented as a sequence of 
system calls where the set of permitted system calls was 
predefined by the user. The search process progresses 
through the iterative application of GP search operators. 
Performance (fitness) of an attack is evaluated using a 
fitness function, which ranks the population according to 
attack success and anomaly rate. In our analysis, we 
selected the mimicry attack that produces the least 
anomaly rate at the end of the search process and 
employed them in our experiments. We note that the 
method used for mimicry attack generation can be 
substituted with other methods without the loss of 
generalization as long as the resulting mimicry attacks 
produces fewer anomalies. 

6 Analysis 
Stide and pH are trained on the normal system call 

traces collected from executing the normal use cases 
detailed in Section 4. Therefore there exist two detector 
configurations (namely Stide and pH) for each vulnerable 
application. We employed the attacks that were made 
available for Traceroute, FtpD, Samba and Restore, which 
are called original attacks hereafter.  We deployed the 
original attacks while detectors were monitoring the 



vulnerable processes and recorded the anomaly rates. We 
then employed our mimicry attack generation 
methodology to generate attacks with minimized anomaly 
rates.   

Tables 7 and 8 detail the anomaly rates reported by 
Stide and pH respectively. Although the mimicry attacks 
succeed in minimizing the anomaly rates, they are above 
zero in case of all four applications.  Mimicry attack 
against Samba application succeeds in minimizing the 
anomaly rate down to ~3% whereas the mimicry attack 
against Restore minimized the anomaly rate to ~46%. 

Anomaly rates reported in Tables 7 and 8 include the 
anomaly rates from preamble and the exploit whereas 
Tables 9 and 10 detail the length and the anomaly rates of 
the exploit component of mimicry attacks. Results show 
that although the exploit produces anomaly rates close to 
the optimal 0%, anomaly rate for an attack can be 
substantially greater. For example, in Tables 9 and 10, 
although the exploits for Restore produces 0.1% and 0.4% 
anomaly rates, anomaly rate of the attacks are 46.14% and 
48.52%, for Stide and pH respectively. The reasons behind 
this phenomenon are discussed in the next section 

Table 7. Anomaly rates of original and 
mimicry attacks reported by Stide  

 
Original 
Attack 

Mimicry 
Attack 

Traceroute 60.67 20.59% 
Restore 84.65% 46.14% 
Samba 10.00% 2.94% 
FtpD 22.69% 19.14% 

Table 8. Anomaly rates of original and 
mimicry attacks reported by pH  

 
Original 
Attack 

Mimicry 
Attack 

Traceroute 65.44% 21.62% 
Restore 87.47% 48.52% 
Samba 15.84% 7.96% 
FtpD 25.34% 15.92% 

Table 9. Exploit characteristics of the 
mimicry attacks against Stide 
 Anomaly Rate # System Calls 
Traceroute 16.66% 30 
Restore 0.40% 996 
Samba 0.50% 996 
FtpD 57.14% 7 

 

 

Table 10. Exploit characteristics of the 
mimicry attacks against pH 
 Anomaly Rate # System Calls 
Traceroute 11.71% 111 
Restore 0.10% 993 
Samba 0.10% 993 
FtpD 0.10% 993 

6.1 A Closer Look at Preamble 
The buffer overflow attacks generally aim to inject a 

shellcode in a vulnerable buffer and have the vulnerable 
application to execute the injected assembly program. 
The size of the vulnerable buffer is generally too short to 
inject an entire program therefore the injected shellcode 
executes system calls on the target host to spawn a UNIX 
shell or write to the password file of the host with super-
user privileges. 

In this work, we make the observation that there are 
two parts to each attack, the preamble and the exploit. 
The preamble is composed of the system calls executed 
during the phase where the attacker tries to gain control 
of the vulnerable application. On the other hand, exploit 
includes the system calls executed after attacker has the 
full control. We believe that differentiation is necessary 
since the attackers can alter the system calls executed 
after they have full control whereas during the preamble 
phase, where the attacker prepares the vulnerable 
application for the buffer overflow, the interaction 
between the attacker and the application may inevitably 
cause anomalous system calls. In other words, attackers 
can modify the exploit components fairly easily to evade 
detection. Modifying the preamble requires finding an 
alternative way to take advantage of the vulnerability or 
finding another vulnerability, therefore cannot easily be 
modified. 

The boundary between the preamble and the exploit 
can be determined by locating the first action of the 
shellcode. All four attacks execute execve(‘/bin/sh’) 
system call to spawn a UNIX shell with super-user 
privileges. Any system call including and after 
execve(‘/bin/sh’) is a result of the spawned UNIX shell 
whereas the system calls before execve(‘/bin/sh’) are 
executed while the attacker was corrupting the data types 
and variables to deploy the exploit. Table 11 details the 
ratio of mismatches reported by Stide and pH for preamble 
and exploit components separately for the four attacks. As 
discussed in Section 3.1, a mismatch is recorded, if the 
current observed behavior does not match any behavior in 
the “normal database”. Anomaly rate is then calculated by 
dividing the number of mismatches by the total number of 
observations.  

 



Table 11. Ratio of mismatches (%) for 
attacks reported by Stide for the preamble 
and exploit components separately  

Traceroute 
 Preamble Exploit Total 
System Calls 24% 76% 344 
Mismatches (Stide) 8.04% 91.96% 199 
Mismatches (pH) 12.62% 87.38% 214 

Restore 
System Calls 32% 68% 4454 
Mismatches (Stide) 30.83% 69.17% 3613 
Mismatches (pH) 30.89% 69.11% 3881 

Samba 
System Calls 88% 12% 4396 
Mismatches (Stide) 31.64% 68.36% 433 
Mismatches (pH) 55.62% 44.38% 694 

FtpD 
System Calls 86% 14% 3024 
Mismatches (Stide) 73.20% 26.80% 679 
Mismatches (pH) 75.20% 24.80% 762 

 
In total, Traceroute attack executed 344 system calls 

of which 24% belongs to the preamble component and 
76% to the exploit. The attack as a whole (i.e. preamble 
and exploit combined) produced 199 mismatches 91.96% 
of which was generated by the exploit. Therefore, in the 
case of the Traceroute attack, an attacker can alter his 
exploit and substantially reduce the anomaly rate. Similar 
observations can be made for Restore attack. On the other 
hand, FtpD attack executed 3024 system calls, of which 
86% belongs to the preamble component and 14% to the 
exploit. The attack as a whole produced 679 mismatches, 
73.20% of which was generated by the preamble. 
Consequently, modifying the exploit would have less 
impact on the anomaly rate for FtpD. Samba attack 
exhibits similar properties however the preamble produced 
a smaller portion of the overall anomaly rate compared 
with the FtpD attack. 

Moreover, we analyze the progression of anomaly 
rates for the original and the mimicry attacks against Stide 
and pH in Figures 1 and 2, respectively. This is achieved 
by recording the anomaly rate as the detectors monitor 
new system calls. The boundary between the preamble and 
the exploit is marked with a vertical line. From Figure 1 
and 2 and Table 11, it is apparent that the preamble 
produces anomalies. A spike in the anomaly rate indicates 
a cluster of anomalies whereas a decreasing trend indicates 
that the anomaly rate for the current region is lower or 
zero, hence reducing the overall anomaly rate. Preamble 
component of the original attacks produce anomalies 
hence continuing to raise the anomaly rate, whereas the 

exploit component of the mimicry attacks produce zero or 
very few anomalies hence reducing the anomaly rate. 

 

 

Figure 1. Anomaly rates of the original and 
mimicry attacks reported by Stide 

The length of the preamble gains importance when 
determining the operational limits of Stide and pH. 
Specifically, if the preamble is short and if the attacker 
manages to modify his exploit accordingly (e.g. instead of 
spawning a root shell, create a super-user account), the 
anomaly rate of the attack as a whole can be substantially 
reduced. However if the preamble is long, there will be a 
higher likelihood of raising alarms no matter what type of 
exploit is being used. Figures 3 and 4 details the ideal 
anomaly rates of attacks on different exploit length 
conditions with the optimal (zero percent) exploit anomaly 
rates. Figures 3 and 4 indicate that the attacker needs 
longer exploits for Restore, Samba and FtpD. 

 



 

Figure 2. Anomaly rates of the original and 
mimicry attacks reported by pH 

 

Figure 3. If the exploit anomaly rate is zero, 
the optimal anomaly rate of an attack on 
different exploit length conditions against 
Stide 
 

 

Figure 4. If the exploit anomaly rate is zero, 
the optimal anomaly rate of an attack on 
different exploit length conditions against 
pH 

Our analysis indicate that anomaly rate returned for 
the exploit alone does not represent the anomaly rate 
returned for the entire attack since the activities 
associated with gaining the control of the application 
(preamble) raises alarms. Furthermore, the ratio of the 
preamble to the exploit and the anomaly rate from the 
preamble plays an important role in the overall anomaly 
rate of an attack. It is evident that anomaly rate of an 
attack can be better reduced where the exploit is 
relatively longer than the preamble, even though the 
exploit itself raises some alarms, Figures 3 and 4. 

In previous work [1, 2 3], authors successfully 
developed mimicry attacks against Stide with 0% anomaly 
rates. However, the previous work did not take the 
preamble into consideration. In Table 12, we present the 
actual anomaly rate that Stide would report if the original 
exploits were replaced by equivalent exploits of the same 
size that raised no alarms. It is crucial to note that mimicry 
attacks can reduce the anomalies below the values in 
Table 12 by employing longer exploits hence changing the 
preamble to exploit ratio.  

It is evident that even the exploit raises no alarms, 
the preamble will still cause anomaly rates between ~2% 
and ~25%. Furthermore, in previous work, an attack was 
considered optimal, if the exploit never generated any 
mismatches against the Stide database. Stide counts 
mismatches between the candidate trace and sequences of 
normal behavior in the detector database. That is to say, a 
sliding window comparison is made between the database 
and the candidate trace, in case of an attack preamble plus 
exploit. Therefore, even though exploit raises no alarms, 
introducing the preamble will return mismatches (alarms) 
for both the preamble itself, and at the transition between 
the preamble and the exploit. Thus, for a predefined 



preamble, the best that a mimicry attack can do is to 
minimize the contribution from the exploit and the 
transition from the preamble to the exploit. 

Table 12. If Exploit Anomaly rate = 0%, the 
anomaly rate associated with the Preamble 
component of the original attacks 
 Anomaly Rate (from preamble only) 
Traceroute 4.72% 
Restore 25.04% 
Samba 3.16% 
Ftpd 16.46% 

6.2 Locality Frame Count and Process Delays 
in pH  

Although Stide keeps track of locality frame count, 
pH employs the locality frame count to delay the 
processes. Locality frame count keeps track of the 
mismatches over a given time period (by default 128 
system calls). Therefore, a cluster of mismatches produces 
high locality frame counts whereas the same number of 
mismatches distributed over the attack produces smaller 
locality frame count values. 

pH responds to attacks by slowing down the process 
based on the observed locality frame count. The delay 
associated with the current system call can be expressed as 
[5]: 

 

! 

delay _ factor " 0.01" 2
LFC  

 
where higher delay_factor values produce longer 

process delays and the LFC signifies how many of the 
past 128 system calls were anomalous.  

Figure 5 details the locality frame counts observed for 
the original and mimicry attacks as they progress. In case 
of the original attacks, locality frame counts are either 
increasing or remaining the same, whereas mimicry 
attacks manage to reduce the observed locality frame 
counts. This is particularly apparent for traceroute where 
the exploit of the mimicry attack is sufficiently long to 
reduce the locality frame count below 20, whereas the 
original traceroute exploit increases it above 100.  

Figure 6 shows the total delay observed for each 
attack as the attack progresses. For both original and 
mimicry attacks, it is apparent that the delays are 
expressed in days therefore locality frame count is an 
effective way to stop the attacks. Even a quick increase in 
locality frame count is sufficient to stop an attack since its 
effects are exponential and the value remains high until 
the locality frame moves to a segment with few 
anomalies. As an example, the sharp increase in locality 
frame count for the original ftp attack (Figure 5) causes a 
0.01 x 2100 second delay which is roughly 1.47 x 1023 
days. Therefore, once the locality frame count passes a 
certain limit, pH effectively “freezes” the attack hence 

preventing the successful execution of the exploit. This 
implies that even an attack with 0% anomaly rate exploit 
can be detected and stopped by focusing on the preamble 
alone. Thus, this shows the importance of the preamble 
and the results we obtained through the analysis discussed 
above. 

  

 

Figure 5. Locality Frame Count of the 
original and mimicry attacks for pH  
 



 

Figure 6. Delay associated with the original 
and mimicry attacks for pH 

7 Conclusion 
In this paper, we discussed that there are two 

components to every attack, namely the preamble and the 
exploit. Previous work in mimicry attack generation 
reported 0% anomaly rates, however they focused on the 
exploit alone. Anomaly rates for preamble and exploit 
components should be analyzed together, since it is not 
possible to execute an exploit without a break in to the 
system. To this end, we deployed Stide and pH anomaly 
detectors to monitor four UNIX applications that have 
known vulnerabilities. We then deployed the original 
attack to establish a baseline anomaly rate and deployed 
the mimicry attack while observing the anomaly rate and 
locality frame count changes as the attacks progress.  

Our analysis results show that it is highly difficult to 
evade an anomaly detector with 0% anomaly rate. In the 
past, where such results were achieved, the anomaly rate 
was only calculated by counting the mismatches over the 
length of the exploit part, ignoring the contribution from 
the preamble. However, in practice buffer overflow 
attacks have two stages: (i) the break in, which we call as 

the preamble in this work; and (ii) the exploit itself. Even 
though it may be possible to achieve a 0% anomaly rate on 
an exploit alone, overall it will still have a non-zero 
anomaly rate associated with the preamble and the 
transition from the preamble to the exploit. The effect of 
the preamble and the transition from the preamble to the 
exploit is emphasized more when the size of the preamble 
part of an attack is greater than the size of the exploit part, 
as in the case of FtpD. Indeed, one can try to change this 
ratio by artificially increasing the length of the exploit but 
even then it is highly difficult to make it 0% (Figures 3 
and 4) due to the effect and limitations on the total attack 
length i.e. as in finite buffer sizes. Thus, for a predefined 
preamble, the best that a mimicry attack can do is to 
minimize the contribution from the exploit and the 
transition from the preamble to the exploit. 

Furthermore, experiment results showed that a delay 
associated with locality frame count is effective in 
preventing an attack to be deployed successfully. 
Specifically, an attack that achieves a low anomaly rate 
may be delayed for weeks if the anomalies are clustered 
together hence increasing the locality frame count. We 
believe that future mimicry attack research should move 
from focusing on the anomaly rate of the exploit alone to 
investigating multiple characteristics of an attack such as 
the anomaly rate of the preamble and the locality frame 
count.         

Finally, future work will consider the analysis of 
different anomaly detectors to understand the effect of 
preamble in more detail. Moreover, a framework, which 
includes the effect of the preamble in the 
vulnerability/penetration testing, will be investigated. 
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