
Abstract
Mimicry attacks have been the focus of detector

research where the objective of the attacker is to generate
an attack that evades detection while achieving the
attacker’s goals. If such an attack can be found, it implies
that the target detector is vulnerable against mimicry
attacks. In this work, we emphasize that there are two
components of a buffer overflow attack: the preamble and
the exploit. Although the attacker can modify the exploit
component easily, the attacker may not be able to prevent
preamble from generating anomalous behavior since
during preamble stage, the attacker does not have full
control. Previous work on mimicry attacks considered an
attack to completely evade detection, if the exploit raises
no alarms. On the other hand, in this work, we investigate
the source of anomalies in both the preamble and the
exploit components against two anomaly detectors that
monitor four vulnerable UNIX applications. Our
experiment results show that preamble can be a source of
anomalies, particularly if it is lengthy and anomalous.

Keywords
Information hiding, mimicry attacks, anomaly detection,
vulnerability testing

1 Introduction
Over the past years, systematic methods for

vulnerability testing have been proposed to analyze host
based anomaly detection systems against blind spots and
evasion attacks. The purpose of vulnerability testing is to
locate vulnerabilities or holes in a detector before the
attackers can exploit them. Previous research established
that it is possible to evade anomaly detectors, namely
Stide, by altering an attack to make it look like normal. To
this end, mimicry attack notion was introduced [1] against
anomaly detectors where the original exploit was crafted
by producing a legitimate sequence of system calls while
performing malicious actions, typically by making use of a
template denoting a core attack. Consequently, the
resulting mimicry attack remains within the normal
operational limits and deploys undetected by the detector.

In particular, related detector blind spot testing [1, 2,
3] is mainly focused on the Stide detector [4] (or variants
[5] thereof) and employed critical UNIX system
applications. Undetectable exploits are developed by
locating appropriate sequences of system calls that match
the contents of Stide’s normal behavior database whilst

successfully reaching the behavioral objectives of the
original exploit. Typically, a minimalist configuration of
the anomaly detector is utilized, under the general
observation that it is easier to make a strong detector if the
alphabet of permitted instructions is small.

In a typical buffer overflow exploit, the first step is to
corrupt the data types and local variables, which gives the
attacker the control of the application. For example, in
case of an Ftpd attack [9], attacker achieves this by
logging onto the ftp server anonymously and issuing
malformed commands such as CWD ~{. We call the
actions taken by the attackers before they gain full control
of the application as the preamble. During the preamble
phase, the application is still operational and the attacker
does not have the full control yet, hence the attacker may
not be able to prevent the vulnerable application from
generating anomalous behavior.

 After the attacker gains control of the application,
the second step is to execute arbitrary code or command to
carry out a malicious action such as spawning a root shell
or creating a super-user account. Commonly, this is
achieved by injecting a shellcode. Shellcode is a short
segment of an assembly program that aims to execute code
on the vulnerable host. In case of the Ftpd attack, the
shellcode spawns a UNIX shell with super-user privileges
and binds it to a port so that the attacker can login without
supplying a password. Attackers can modify the exploit
components fairly easily, by changing the injected
shellcode, to evade detection. On the other hand,
modifying the preamble requires finding an alternative
way to take advantage of the vulnerability or finding
another vulnerability, therefore cannot easily be modified.

In previous work [1, 2, 3], the attack was said to be
optimal if the exploit component raised no alarms.
However, even the exploit raises no alarms, introducing
the preamble can introduce alarms for both the preamble
itself and the transition between the preamble and exploit.
Therefore, in this work, we expand upon our previous
work [11] and investigate the source of anomalies on both
preamble and exploit components. To this end, we employ
two anomaly detectors to monitor four UNIX applications
with known vulnerabilities. We observe the anomaly rates
for the original attacks that are downloaded from the
SecurityFocus website [7, 8, 9, 10]. Furthermore, we
employed a mimicry attack generation methodology to
observe the change in anomaly rates. The methodology
automates the design of exploits while utilizing only the

Mimicry Attacks Demystified: What Can Attackers Do To Evade Detection?

H. Güneş Kayacık, A. Nur Zincir-Heywood
Dalhousie University, Faculty of Computer Science,

6050 University Avenue, Halifax, Nova Scotia. B3H 1W5
{kayacik, zincir}@cs.dal.ca

anomaly rate without using internal data structures or
algorithms specific to a detector.

Furthermore, since the anomaly rates reported for
mimicry attacks in previous work was zero, locality frame
count feature of anomaly detectors were not investigated
in depth. Locality frame count keeps track of the
anomalies over a given time period based on the
assumption that security violations will tend to produce
clustered anomalies more than legitimate errors [5]. This
implies that, if the preamble produces a sufficiently large
cluster of anomalies, the attack can be detected and
stopped before the exploit deploys. To this end, we also
investigate the effects of anomalies clustered together, in
this work.

The remainder of the paper is organized as follows.
Relevant work on mimicry attacks is discussed in Section
2. The anomaly detectors employed in our analysis are
introduced in Section 3. The four UNIX applications with
known, documented vulnerabilities that the anomaly
detectors monitor are presented in Section 4. The mimicry
attack generation methodology that we employed in our
analysis is briefly discussed in Section 5. The results of
our analysis detailing the anomaly rates and the source of
anomalies in mimicry attacks are reported in Section 6 and
the conclusions are drawn in Section 7.

2 Related Work
Wagner et al. [1] introduced the “mimicry attack”

concept, where original attacks were modified to evade
detection. They proposed three methods to avoid
detection: (i) modifying system call parameters; (ii)
inserting system calls that are irrelevant to the attack being
deployed while minimizing the anomaly rate; and finally
(iii) generating equivalent attacks by replacing the system
calls that can easily be identified by the detector. An
example for the last method is substituting an attack that
spawns a UNIX shell with an attack that creates a super-
user account. Both of these give the attacker super-user
privileges. Mimicry attacks were generated for wuftpd
service by manually modifying the detectable system call
sequences. Normal behavior was generated by “running
wuftpd on hundreds of large file downloads over a period
of two days”[1]. Although Wagner et al. was aware of the
preambles, they assumed that the attacker could silently
take control of the application without being detected. In
our work, we discuss that such an assumption may not
always be the case.

Tan et al. [2] employed four methods to manually
change the behavior of the attack: (i) hiding an attack in
the blind spot of the detector; (ii) modifying an attack so
that it looks like a normal behavior; (iii) hiding an attack
so it looks like a less dangerous attack; and (iv) modifying
an attack so that it looks like a different attack. In their
experiments, attacks against restore, tmpwatch and
kernel/traceroute applications were employed. Normal

behavior for Restore is obtained by “monitoring a regular
user executing the restore system program to retrieve
backup data from a remote backup server” [2]. Normal
behavior for tmpwatch is generated by populating a short
directory tree with files under /tmp and executing
tmpwatch program to clean files that are more than 5 days
old. Normal behavior for kernel attack was not obtained
since the vulnerability in the kernel was used to exploit
another vulnerability in traceroute.

Stide detects foreign sequences that are not in the
normal database. Thus, Tan et al. [3] investigated hiding in
the detector’s blind spots in more detail by developing
variants of a core exploit with the objective of increasing
the minimal foreign sequence length. They reported that if
the foreign sequence length is greater than the sliding
window size of Stide, an attack could evade detection. In
their experiments they employed Stide on traceroute and
passwd applications. For traceroute, normal behavior is
obtained by “executing traceroute to acquire diagnostic
information regarding the network connectivity between
the localhost and nis.nsf.net”[3]. For the passwd
application, normal data was obtained by executing the
passwd without any arguments, which expires the old
password and installs the new one provided by the user.

Using a categorization scheme, Gao et al. [13]
divided anomaly detectors into three categories: black-box
detectors [4] only make use of the system calls, whereas
gray-box detectors [16, 17] use – in addition to system
calls – runtime observations such as program counter and
return addresses stored in the stack. White-box detectors,
however also incorporate information from the source
code, which makes it difficult to hide the attacks. The
authors presented a systematic study, which showed the
benefits and overheads of changing gray-box anomaly
detector parameters such as (1) the amount of runtime
information, (2) atomic unit that the detector monitors and
(3) sliding window size. Experimental results indicated
that expanding the model by using more information and
increasing window size results would increase the
mimicry attack length. In other words, attackers will need
more code to hide their actions. Although it is more
difficult to evade white-box detectors, authors discussed
that they are platform dependent and they are not
universally applicable [13]. In addition to the systematic
study, authors present a methodology to forge the program
counter information on statically linked executables so
that the detector [4] does not detect an anomaly in the
return addresses even though system calls are made by the
attack code [13].

Kruegel et al. developed a methodology where the
detection system is adaptive (i.e. Stide variants [4, 5]).
This time, the ability to build exploits automatically was
used to improve the operation of the detector [14].
However, in [14], automation is performed using a static
tool at the Intel x86 assembly level to redirect control flow
using symbolic execution.

Giffin et al. generated mimicry attacks against Stide
by applying automatic model checking to prove that no
reachable operating system configuration corresponds to
the effect of an attack [15]. However, in their approach,
the operating system model, application (program) model
and system call specifications as well as the attack
configuration are still generated manually.

Parampalli et al. [18] proposed a mimicry attack
methodology against “powerful system call monitors”.
“Powerful system monitor” is defined as a detector that
has full knowledge of the system call parameters as well
as their roles in the execution of the system call. They
introduced persistent interposition attack concept where
the objective of the attacker is to modify the read and
write system calls to deploy the attack. Their methodology
is similar to man-in-the-middle attacks since the objective
of the attack code is to intercept and modify the read and
write system calls that the victim application makes. Their
results on Apache web server showed that although the
persistent interposition attacks are not powerful enough to
obtain a rootshell, they can evade monitors that monitor
system call arguments while achieving goals such as
stealing financial information or impersonating web
servers.

3 Anomaly Detectors
Anomaly detection systems attempt to build models of

normal user behavior and use this as the basis for
detecting suspicious activities. This way, known and
unknown (i.e. new) attacks can be detected as long as the
attack behavior deviates sufficiently from the normal
behavior. When a buffer overflow attack is deployed, a
vulnerable privileged program is exploited to do
something that it is not supposed to do. This implies that
it is possible to observe a change in the program
behavior. Anomaly based detectors are based on this
assumption. Needless to say, if the attack is sufficiently
similar to the normal behavior, it may not be detected. In
this work, we employed Stide and pH anomaly detectors
in our experiments.

3.1 Stide
Forrest et al. [4] employed a methodology motivated

by immune systems. This characterizes the problem as
distinguishing ‘self’ from ‘non-self’ (normal and abnormal
behaviors respectively). An event horizon is built from a
sliding window applied to the sequence of system calls
made by an application during normal use. The sequences
formed by the sliding window are stored in a table that
establishes the normal behavior model. During the
deployment (detection) phase, if the pattern from the
sliding window is not in the normal behavior database it is
considered a mismatch.

Input to the Stide detector takes the form of system
call traces of an application for which the detector is

trained. Specifically, Stide builds a “normal database” by
segmenting the training data (of system call traces) into
fixed length sequences [6]. To do so, a sliding window of
N is employed over the training dataset and the resulting
system call patterns are stored in the “normal database”.
During testing, the same sliding window size is employed
on the data. Resulting patterns are compared against the
“normal database” and if there is no match, a mismatch is
recorded. Given a window size of N and system call trace
length M, anomaly rate for the trace is calculated by
dividing the number of mismatches by the number of
sliding window patterns (i.e. M – N + 1). In our
experiments, we employed the default training parameters
for Stide listed in Table 1.

Table 1. Stide configuration parameters
Parameter Setting
Sliding window length 6

3.2 Process Homeostasis (pH)
Process Homeostasis (pH) [5] is an anomaly detector

based on Stide that employs a detection methodology
similar to Stide. pH is implemented as an extension to
Linux 2.2 Kernel. Therefore, pH monitors system calls
more efficiently by capturing system calls directly at the
kernel level as opposed to Stide that employs Strace to
capture system calls. pH monitors the changes in short
system call sequences by employing look ahead pairs.
While employing the sliding window approach, pH does
not store the sliding window patterns but records tuples,
which consist of the current and the past system calls and
the sliding window location. Somayaji [5] established that
look ahead method is more efficient to store, could
potentially converge to a normal profile quicker than the
full sequence method. Additionally, tolerization and
sensitization concepts were introduced. Tolerization
allows pH to improve false alarm rates by leaving out
minimal anomalies, which is likely to be slight changes in
normal behavior. Sensitization prevents abnormal
behavior from leaking into normal behavior database [5].

During training, a sliding window is employed over
the training set and a “normal database” of three
dimensional matrix is built where the dimensions are as
follows: (1) current system call; (2) previous system call;
(3) location of the previous system call on the sliding
window. During testing, the same sliding window is
employed on the test data. If a given sliding window
sequence produced a look ahead pair that is not in the
normal database, a mismatch is recorded. Similar to
Stide, given a window size of N and system call trace
length M, anomaly rate for the trace is calculated by
dividing the number of mismatches by the total number
of look ahead pairs.

Another important feature of pH is that it responds to
attacks by slowing down the process. Delay is an

exponential function of locality frame count. Locality
frame count aims to identify the clusters of anomalies. To
this end, pH simply maintains a count of how many of the
past LF (usually 128) system calls were anomalous.
Process delays can substantially delay the execution of a
program when a cluster of anomalies is observed. In our
experiments, we employed the default pH training
parameters listed in Table 2.

Table 2. pH configuration parameters
Parameter Setting
Look ahead pair window size 9
Locality frame window size 128
Delay Factor 1
Suspend execve after 10 anomalies
Suspend execve duration 2 days
Anomaly limit 30
Tolerize limit 12

4 Vulnerable Applications
In our experiments, we employed four Linux

applications, which have known and documented
vulnerabilities, namely Traceroute, Restore, FtpD, and
Samba. These are also the vulnerable applications used in
the mimicry attack literature [1, 2, 3]. Traceroute, and
Restore vulnerabilities can be exploited locally whereas
FtpD and Samba vulnerabilities can be exploited remotely.
For each application, we developed normal use cases,
which represent the scenarios of legitimate use.

4.1 Traceroute
Traceroute is a network diagnosis tool, which is used

to determine the routing path between a source and a
destination by sending a set of control packets to the
destination with increasing time-to-live values. A typical
use of traceroute involves providing the destination IP,
whereas the application returns information on the route
taken between source and destination.

Redhat 6.2 is shipped with Traceroute version 1.4a5,
where this is susceptible to a local buffer overflow exploit
that provides a local user with super-user access [7]. The
attack takes advantage of vulnerability in malloc chunk,
and then uses a debugger to determine the correct return
address to take control of the program. In order to analyze
the traceroute behavior under normal conditions, we
developed five use cases, Table 3; whereas in the previous
research [3] only one normal use case was used for
training, namely use case 1.

Table 3. Traceroute normal use cases
Use Case System Calls
1. Target a remote server 736
2. Target a local server 260
3. Target a non existent host 153
4. Target localhost 142
5. Help screen 24

4.2 Restore
Restore is a component of UNIX backup

functionality, which restores the file system image taken
by the dump command. Files or directories can be restored
from full or incremental backups.

Restore version 0.4b15 is vulnerable to an
environment variable attack where the attacker modifies
the path of an executable and runs restore. This results in
executing an arbitrary command with super-user
privileges, which leads to a root compromise. In the
published attack [8], attacker spawns a root shell. Table 4
summarizes five normal use cases that we developed for
Restore. As in the previous work [2], we have monitored a
regular user executing the restore system program to
retrieve backup data from a remote backup server.
However, we have also repeated the case for different
sizes of files and back-up types.

Table 4. Restore normal use cases
Use Case System Calls
1. Restore a small file system dump
from a full backup.

2256

2. Restore a small file system dump
from an incremental backup.

1027

3. Restore a large file system dump
from a full backup.

167207

4. Restore a large file system dump
from an incremental backup.

68185

5. Help screen 53

4.3 Samba
Samba suite provides printer and file sharing for

Windows clients and can run on most UNIX variants.
Samba sets up printer and network shares that appear as
Windows disks and printers under a Windows operating
system.

Redhat 9.0 is shipped with Samba suite version
2.2.7a, which has a vulnerability [9] that can be exploited
over the network to gain super-user privileges. The buffer
overflow occurs when Samba service tries to copy user
supplied data into a static buffer without checking. The
published attack binds a root shell to a network port.
Table 5 summarizes the six normal use cases that we
developed for Samba.

Table 5. Samba normal use cases
Use Case System Calls
1. Mount a samba share successfully 1156
2. Invalid password while mounting
samba share

680

3. Unmount a samba share
successfully

186

4. Find and edit a remote file. (Using
commands: ls - cd - ls - pico)

254

5. Find and copy a 38MB remote file
to a local directory (Using
commands: ls - cd - cp)

65648

6. Change samba password remotely 1527

4.4 FtpD
Redhat 6.2 is shipped with Washington University

Ftp Server version 2.6.0(1), which provides FTP access to
remote users. WuFtpd 2.6.0(1) is susceptible to an input
validation attack where the attacker can corrupt the
process memory by sending malformed commands and
overwrite the return address to execute his/her shellcode.
Although the attack [10] is an input validation attack, the
deployment is similar to a buffer overflow attack. Table 6
summarizes the ten normal use cases that we developed
for FtpD. Use cases 7 through 10 represents the legitimate
errors that a user can make during a normal FTP session.
On the other hand, in the previous research [1] wuftpd was
run on only large file downloads over a period of two
days.

Table 6. FtpD normal use cases
Use Case System Calls
1. Upload 10K data 2249
2. Upload 60M data 32912
3. Upload 650M data 334252
4. Download 10K data 2252
5. Download 60M data 32908
6. Download 650M data 334244
7. Three failed login attempts 2236
8. Help screen 2017
9. Attempt to access non-existent files
and directories

2213

10. Type non-existent commands. 2017

5 Generating Mimicry Attacks
In previous mimicry attack generation research,

typically a “white box” access to detector behavior is
assumed. This has resulted in very efficient algorithms
for designing mimicry exploits. In particular, such
research has for the most part concentrated on the Stide
open source host based anomaly detector [4] or its
improved versions [5]. The design of exploits then boils

down to locating sequences of system calls that both
match the contents of an anomaly detector’s normal
behavior database whilst successfully reaching the
behavioral objectives of the original ‘core’ exploit. A
minimalist configuration of the anomaly detector is
utilized, under the general observation that it is easier to
make a strong detector if the alphabet of permitted
instructions is small. Thus, any weakness detected under
these conditions will be exasperated when more realistic
configurations of the detector’s normal behavioral
database are employed (a larger alphabet of normal
behavior will result in even more opportunities for
defeating the detector). Such a problem was shown to be
of a sufficiently focused form for exhaustive search
algorithms to solve the problem in seconds with solutions
returning the equivalent of a zero anomaly rate.

On the other hand Kayacik et al. [12] assumes a
“black box” approach to mimicry attack generation. As
such the feedback from the detector is limited to the
anomaly rate alone, where this is provided as a part of
normal operation. Hence the approach does not make use
of the internal data structures or algorithms specific to a
particular detector. The selected methodology [12] has
the advantage of requiring only the anomaly rate from the
detector, hence working with a black-box assumption
whereas other related methods [1, 2, 3] require the
internal knowledge of the target detector. The process of
generating mimicry attacks was automated using Genetic
Programming (GP). Throughout the search process, GP
maintains a population of candidate solutions. Each
candidate solution, or individual takes the form of a
program. Programs were represented as a sequence of
system calls where the set of permitted system calls was
predefined by the user. The search process progresses
through the iterative application of GP search operators.
Performance (fitness) of an attack is evaluated using a
fitness function, which ranks the population according to
attack success and anomaly rate. In our analysis, we
selected the mimicry attack that produces the least
anomaly rate at the end of the search process and
employed them in our experiments. We note that the
method used for mimicry attack generation can be
substituted with other methods without the loss of
generalization as long as the resulting mimicry attacks
produces fewer anomalies.

6 Analysis
Stide and pH are trained on the normal system call

traces collected from executing the normal use cases
detailed in Section 4. Therefore there exist two detector
configurations (namely Stide and pH) for each vulnerable
application. We employed the attacks that were made
available for Traceroute, FtpD, Samba and Restore, which
are called original attacks hereafter. We deployed the
original attacks while detectors were monitoring the

vulnerable processes and recorded the anomaly rates. We
then employed our mimicry attack generation
methodology to generate attacks with minimized anomaly
rates.

Tables 7 and 8 detail the anomaly rates reported by
Stide and pH respectively. Although the mimicry attacks
succeed in minimizing the anomaly rates, they are above
zero in case of all four applications. Mimicry attack
against Samba application succeeds in minimizing the
anomaly rate down to ~3% whereas the mimicry attack
against Restore minimized the anomaly rate to ~46%.

Anomaly rates reported in Tables 7 and 8 include the
anomaly rates from preamble and the exploit whereas
Tables 9 and 10 detail the length and the anomaly rates of
the exploit component of mimicry attacks. Results show
that although the exploit produces anomaly rates close to
the optimal 0%, anomaly rate for an attack can be
substantially greater. For example, in Tables 9 and 10,
although the exploits for Restore produces 0.1% and 0.4%
anomaly rates, anomaly rate of the attacks are 46.14% and
48.52%, for Stide and pH respectively. The reasons behind
this phenomenon are discussed in the next section

Table 7. Anomaly rates of original and
mimicry attacks reported by Stide

Original
Attack

Mimicry
Attack

Traceroute 60.67 20.59%
Restore 84.65% 46.14%
Samba 10.00% 2.94%
FtpD 22.69% 19.14%

Table 8. Anomaly rates of original and
mimicry attacks reported by pH

Original
Attack

Mimicry
Attack

Traceroute 65.44% 21.62%
Restore 87.47% 48.52%
Samba 15.84% 7.96%
FtpD 25.34% 15.92%

Table 9. Exploit characteristics of the
mimicry attacks against Stide
 Anomaly Rate # System Calls
Traceroute 16.66% 30
Restore 0.40% 996
Samba 0.50% 996
FtpD 57.14% 7

Table 10. Exploit characteristics of the
mimicry attacks against pH
 Anomaly Rate # System Calls
Traceroute 11.71% 111
Restore 0.10% 993
Samba 0.10% 993
FtpD 0.10% 993

6.1 A Closer Look at Preamble
The buffer overflow attacks generally aim to inject a

shellcode in a vulnerable buffer and have the vulnerable
application to execute the injected assembly program.
The size of the vulnerable buffer is generally too short to
inject an entire program therefore the injected shellcode
executes system calls on the target host to spawn a UNIX
shell or write to the password file of the host with super-
user privileges.

In this work, we make the observation that there are
two parts to each attack, the preamble and the exploit.
The preamble is composed of the system calls executed
during the phase where the attacker tries to gain control
of the vulnerable application. On the other hand, exploit
includes the system calls executed after attacker has the
full control. We believe that differentiation is necessary
since the attackers can alter the system calls executed
after they have full control whereas during the preamble
phase, where the attacker prepares the vulnerable
application for the buffer overflow, the interaction
between the attacker and the application may inevitably
cause anomalous system calls. In other words, attackers
can modify the exploit components fairly easily to evade
detection. Modifying the preamble requires finding an
alternative way to take advantage of the vulnerability or
finding another vulnerability, therefore cannot easily be
modified.

The boundary between the preamble and the exploit
can be determined by locating the first action of the
shellcode. All four attacks execute execve(‘/bin/sh’)
system call to spawn a UNIX shell with super-user
privileges. Any system call including and after
execve(‘/bin/sh’) is a result of the spawned UNIX shell
whereas the system calls before execve(‘/bin/sh’) are
executed while the attacker was corrupting the data types
and variables to deploy the exploit. Table 11 details the
ratio of mismatches reported by Stide and pH for preamble
and exploit components separately for the four attacks. As
discussed in Section 3.1, a mismatch is recorded, if the
current observed behavior does not match any behavior in
the “normal database”. Anomaly rate is then calculated by
dividing the number of mismatches by the total number of
observations.

Table 11. Ratio of mismatches (%) for
attacks reported by Stide for the preamble
and exploit components separately

Traceroute
 Preamble Exploit Total
System Calls 24% 76% 344
Mismatches (Stide) 8.04% 91.96% 199
Mismatches (pH) 12.62% 87.38% 214

Restore
System Calls 32% 68% 4454
Mismatches (Stide) 30.83% 69.17% 3613
Mismatches (pH) 30.89% 69.11% 3881

Samba
System Calls 88% 12% 4396
Mismatches (Stide) 31.64% 68.36% 433
Mismatches (pH) 55.62% 44.38% 694

FtpD
System Calls 86% 14% 3024
Mismatches (Stide) 73.20% 26.80% 679
Mismatches (pH) 75.20% 24.80% 762

In total, Traceroute attack executed 344 system calls

of which 24% belongs to the preamble component and
76% to the exploit. The attack as a whole (i.e. preamble
and exploit combined) produced 199 mismatches 91.96%
of which was generated by the exploit. Therefore, in the
case of the Traceroute attack, an attacker can alter his
exploit and substantially reduce the anomaly rate. Similar
observations can be made for Restore attack. On the other
hand, FtpD attack executed 3024 system calls, of which
86% belongs to the preamble component and 14% to the
exploit. The attack as a whole produced 679 mismatches,
73.20% of which was generated by the preamble.
Consequently, modifying the exploit would have less
impact on the anomaly rate for FtpD. Samba attack
exhibits similar properties however the preamble produced
a smaller portion of the overall anomaly rate compared
with the FtpD attack.

Moreover, we analyze the progression of anomaly
rates for the original and the mimicry attacks against Stide
and pH in Figures 1 and 2, respectively. This is achieved
by recording the anomaly rate as the detectors monitor
new system calls. The boundary between the preamble and
the exploit is marked with a vertical line. From Figure 1
and 2 and Table 11, it is apparent that the preamble
produces anomalies. A spike in the anomaly rate indicates
a cluster of anomalies whereas a decreasing trend indicates
that the anomaly rate for the current region is lower or
zero, hence reducing the overall anomaly rate. Preamble
component of the original attacks produce anomalies
hence continuing to raise the anomaly rate, whereas the

exploit component of the mimicry attacks produce zero or
very few anomalies hence reducing the anomaly rate.

Figure 1. Anomaly rates of the original and
mimicry attacks reported by Stide

The length of the preamble gains importance when
determining the operational limits of Stide and pH.
Specifically, if the preamble is short and if the attacker
manages to modify his exploit accordingly (e.g. instead of
spawning a root shell, create a super-user account), the
anomaly rate of the attack as a whole can be substantially
reduced. However if the preamble is long, there will be a
higher likelihood of raising alarms no matter what type of
exploit is being used. Figures 3 and 4 details the ideal
anomaly rates of attacks on different exploit length
conditions with the optimal (zero percent) exploit anomaly
rates. Figures 3 and 4 indicate that the attacker needs
longer exploits for Restore, Samba and FtpD.

Figure 2. Anomaly rates of the original and
mimicry attacks reported by pH

Figure 3. If the exploit anomaly rate is zero,
the optimal anomaly rate of an attack on
different exploit length conditions against
Stide

Figure 4. If the exploit anomaly rate is zero,
the optimal anomaly rate of an attack on
different exploit length conditions against
pH

Our analysis indicate that anomaly rate returned for
the exploit alone does not represent the anomaly rate
returned for the entire attack since the activities
associated with gaining the control of the application
(preamble) raises alarms. Furthermore, the ratio of the
preamble to the exploit and the anomaly rate from the
preamble plays an important role in the overall anomaly
rate of an attack. It is evident that anomaly rate of an
attack can be better reduced where the exploit is
relatively longer than the preamble, even though the
exploit itself raises some alarms, Figures 3 and 4.

In previous work [1, 2 3], authors successfully
developed mimicry attacks against Stide with 0% anomaly
rates. However, the previous work did not take the
preamble into consideration. In Table 12, we present the
actual anomaly rate that Stide would report if the original
exploits were replaced by equivalent exploits of the same
size that raised no alarms. It is crucial to note that mimicry
attacks can reduce the anomalies below the values in
Table 12 by employing longer exploits hence changing the
preamble to exploit ratio.

It is evident that even the exploit raises no alarms,
the preamble will still cause anomaly rates between ~2%
and ~25%. Furthermore, in previous work, an attack was
considered optimal, if the exploit never generated any
mismatches against the Stide database. Stide counts
mismatches between the candidate trace and sequences of
normal behavior in the detector database. That is to say, a
sliding window comparison is made between the database
and the candidate trace, in case of an attack preamble plus
exploit. Therefore, even though exploit raises no alarms,
introducing the preamble will return mismatches (alarms)
for both the preamble itself, and at the transition between
the preamble and the exploit. Thus, for a predefined

preamble, the best that a mimicry attack can do is to
minimize the contribution from the exploit and the
transition from the preamble to the exploit.

Table 12. If Exploit Anomaly rate = 0%, the
anomaly rate associated with the Preamble
component of the original attacks
 Anomaly Rate (from preamble only)
Traceroute 4.72%
Restore 25.04%
Samba 3.16%
Ftpd 16.46%

6.2 Locality Frame Count and Process Delays
in pH

Although Stide keeps track of locality frame count,
pH employs the locality frame count to delay the
processes. Locality frame count keeps track of the
mismatches over a given time period (by default 128
system calls). Therefore, a cluster of mismatches produces
high locality frame counts whereas the same number of
mismatches distributed over the attack produces smaller
locality frame count values.

pH responds to attacks by slowing down the process
based on the observed locality frame count. The delay
associated with the current system call can be expressed as
[5]:

!

delay _ factor " 0.01" 2
LFC

where higher delay_factor values produce longer

process delays and the LFC signifies how many of the
past 128 system calls were anomalous.

Figure 5 details the locality frame counts observed for
the original and mimicry attacks as they progress. In case
of the original attacks, locality frame counts are either
increasing or remaining the same, whereas mimicry
attacks manage to reduce the observed locality frame
counts. This is particularly apparent for traceroute where
the exploit of the mimicry attack is sufficiently long to
reduce the locality frame count below 20, whereas the
original traceroute exploit increases it above 100.

Figure 6 shows the total delay observed for each
attack as the attack progresses. For both original and
mimicry attacks, it is apparent that the delays are
expressed in days therefore locality frame count is an
effective way to stop the attacks. Even a quick increase in
locality frame count is sufficient to stop an attack since its
effects are exponential and the value remains high until
the locality frame moves to a segment with few
anomalies. As an example, the sharp increase in locality
frame count for the original ftp attack (Figure 5) causes a
0.01 x 2100 second delay which is roughly 1.47 x 1023
days. Therefore, once the locality frame count passes a
certain limit, pH effectively “freezes” the attack hence

preventing the successful execution of the exploit. This
implies that even an attack with 0% anomaly rate exploit
can be detected and stopped by focusing on the preamble
alone. Thus, this shows the importance of the preamble
and the results we obtained through the analysis discussed
above.

Figure 5. Locality Frame Count of the
original and mimicry attacks for pH

Figure 6. Delay associated with the original
and mimicry attacks for pH

7 Conclusion
In this paper, we discussed that there are two

components to every attack, namely the preamble and the
exploit. Previous work in mimicry attack generation
reported 0% anomaly rates, however they focused on the
exploit alone. Anomaly rates for preamble and exploit
components should be analyzed together, since it is not
possible to execute an exploit without a break in to the
system. To this end, we deployed Stide and pH anomaly
detectors to monitor four UNIX applications that have
known vulnerabilities. We then deployed the original
attack to establish a baseline anomaly rate and deployed
the mimicry attack while observing the anomaly rate and
locality frame count changes as the attacks progress.

Our analysis results show that it is highly difficult to
evade an anomaly detector with 0% anomaly rate. In the
past, where such results were achieved, the anomaly rate
was only calculated by counting the mismatches over the
length of the exploit part, ignoring the contribution from
the preamble. However, in practice buffer overflow
attacks have two stages: (i) the break in, which we call as

the preamble in this work; and (ii) the exploit itself. Even
though it may be possible to achieve a 0% anomaly rate on
an exploit alone, overall it will still have a non-zero
anomaly rate associated with the preamble and the
transition from the preamble to the exploit. The effect of
the preamble and the transition from the preamble to the
exploit is emphasized more when the size of the preamble
part of an attack is greater than the size of the exploit part,
as in the case of FtpD. Indeed, one can try to change this
ratio by artificially increasing the length of the exploit but
even then it is highly difficult to make it 0% (Figures 3
and 4) due to the effect and limitations on the total attack
length i.e. as in finite buffer sizes. Thus, for a predefined
preamble, the best that a mimicry attack can do is to
minimize the contribution from the exploit and the
transition from the preamble to the exploit.

Furthermore, experiment results showed that a delay
associated with locality frame count is effective in
preventing an attack to be deployed successfully.
Specifically, an attack that achieves a low anomaly rate
may be delayed for weeks if the anomalies are clustered
together hence increasing the locality frame count. We
believe that future mimicry attack research should move
from focusing on the anomaly rate of the exploit alone to
investigating multiple characteristics of an attack such as
the anomaly rate of the preamble and the locality frame
count.

Finally, future work will consider the analysis of
different anomaly detectors to understand the effect of
preamble in more detail. Moreover, a framework, which
includes the effect of the preamble in the
vulnerability/penetration testing, will be investigated.

Acknowledgments
The authors gratefully acknowledge the support of CFI
New Opportunities, NSERC Discovery, MITACS and
SwissCom Innovations Inc. The first author is a recipient
of a Killam pre-doctoral scholarship. All research was
conducted at Dalhousie NIMS Laboratory,
http://www.cs.dal.ca/projectx/.

References
[1] D. Wagner, P. Soto: Mimicry attacks on host based intrusion

detection systems, ACM Conference on Computer and
Communications Security, pp. 255-264, 2002.

[2] Kymie M. C. Tan, John McHugh, Kevin S. Killourhy: Hiding
Intrusions: From the Abnormal to the Normal and Beyond,
Information Hiding, pp. 1-17, 2002.

[3] Kymie M. C. Tan, Kevin S. Killourhy, Roy A. Maxion:
Undermining an Anomaly-Based Intrusion Detection System Using
Common Exploits, RAID, pp. 54-73, 2002.

[4] Forrest S., Hofmeyr S. A., Somayaji A., Longstaff T. A.: A
sense of self for Unix processes, IEEE Symposium on Security and
Privacy, pp. 120--128, 1996.

[5] Somayaji, A. B.: Operating System Stability and Security
Through Process Homeostasis. Doctoral Thesis. UMI Order
Number: AAI3058952., The University of New Mexico. 2002.

[6] Kymie M.C. Tan, Roy A. Maxion: “Why 6?" Defining the
Operational Limits of stide, an Anomaly-Based Intrusion Detector,
IEEE Security and Privacy, pp. 188-201, 2002.

[7] SecurityFocus Vulnerability archives: LBNL Traceroute Heap
Corruption Vulnerability, http://www.securityfocus.com/bid/1739

[8] SecurityFocus Vulnerability archives: RedHat Linux restore
Insecure Environment Variables Vulnerability,
http://www.securityfocus.com/bid/1914/

[9] SecurityFocus Vulnerability archives: Samba 'call_trans2open'
Remote Buffer Overflow Vulnerability,
http://www.securityfocus.com/bid/7294

[10] SecurityFocus Vulnerability archives: Wu-Ftpd Remote Format
String Stack Overwrite Vulnerability,
http://www.securityfocus.com/bid/1387/

[11] Kayacik H. G., Zincir-Heywood A. N.: On the Contribution of
Preamble to Information Hiding in Mimicry Attacks, Proceedings
of the 3rd IEEE International Symposium on Security in Networks
and Distributed Systems, 2007.

[12] Kayacik H. G., Zincir-Heywood A. N., Heywood M. I.:
Automatically Evading IDS Using GP Authored Attacks,
Proceedings of the IEEE Computational Intelligence for Security
and Defense Applications, 2007.

[13] Gao, D., Reiter, M. K., and Song, D.: Gray-box extraction of
execution graphs for anomaly detection. In Proceedings of the 11th
ACM Conference on Computer and Communications Security
CCS '04.

[14] Kruegel C., Kirda E., Mutz D., Robertson W., Vigna G.:
Automating mimicry attacks using static binary analysis, USENIX
Security Symposium, pp. 717-738, 2005.

[15] Giffin J. T., Jha S., Miller B.P.: Automated Discovery of
Mimicry Attacks, RAID, 2006.

[16] Sekar R., Bendre M., Dhurjati D., Bollineni P.: A Fast
Automation-based Method for Detecting Anomalous Program
Behavior, IEEE Security & Privacy Symp., 2001.

[17] Feng H., Kolesnikov O., Fogla P., Lee W., Gong W: Anomaly
detection using call stack information. In IEEE Symposium on
Security and Privacy, Oakland, California, May 2003.

[18] Parampalli, C., Sekar, R., and Johnson, R.: A practical mimicry
attack against powerful system-call monitors. In Proceedings of the
2008 ACM Symposium on information, Computer and
Communications Security. ASIACCS '08.

