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ABSTRACT
The importance of event logs, as a source of information
in systems and network management cannot be overempha-
sized. With the ever increasing size and complexity of to-
day’s event logs, the task of analyzing event logs has become
cumbersome to carry out manually. For this reason recent
research has focused on the automatic analysis of these log
files. In this paper we present IPLoM (Iterative Partitioning
Log Mining), a novel algorithm for the mining of clusters
from event logs. Through a 3-Step hierarchical partition-
ing process IPLoM partitions log data into its respective
clusters. In its 4th and final stage IPLoM produces clus-
ter descriptions or line formats for each of the clusters pro-
duced. Unlike other similar algorithms IPLoM is not based
on the Apriori algorithm and it is able to find clusters in
data whether or not its instances appear frequently. Evalu-
ations show that IPLoM outperforms the other algorithms
statistically significantly, and it is also able to achieve an
average F-Measure performance 78% when the closest other
algorithm achieves an F-Measure performance of 10%.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—algorithms

General Terms
Algorithms, Experimentation

Keywords
Event Log Mining, Fault Management, Telecommunications

1. INTRODUCTION
In today’s ever changing digital world, virtually all com-

puting systems are designed to log information about their
operational status, environment changes, configuration mod-
ifications and errors into an event log of some sort (e.g. sys-
log or an application log). For this reason event logs have
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become an important source of information about the health
or operational status of a computing infrastructure and is re-
lied on by system, network and security analysts as a major
source of information during downtime or security incidents.

However the size of event logs have continued to grow with
the ever-increasing size of today’s computing and communi-
cation infrastructure. This has made the task of reviewing
event logs both cumbersome and error prone to be handled
manually. Therefore automatic analysis of log files has be-
come an important research problem that has received con-
siderable attention [12, 16].

Due to the fundamental nature of event logs, the prob-
lem of finding frequent event type patterns has become an
important topic in the field of automatic log file analysis [4,
8, 18]. Specifically, in system log files, records are usually
expected to contain a timestamp, a source and a message
as defined by the syslog RFC (Request for Comments)[6].
Moreover, a similar pattern is also applicable to different
application log files where this time the message will be de-
fined in the corresponding RFCs. However, in most cases,
the description in the RFC will be without an explicit refer-
ence to an event type. Fortunately events of the same type
are produced using the same line pattern in their message
portion and these line patterns correspond to event types.
So far techniques for automatically mining these line pat-
terns from event logs have mostly been based on the Apriori
algorithm for frequent itemsets from data, e.g. SLCT (Sim-
ple Logfile Clustering Tool) [14] and Loghound [15], while
others have adopted other line pattern discovery techniques
like Teiresias to the domain [12].

In this paper we introduce IPLoM (Iterative Partitioning
Log Mining), a novel algorithm for the mining of event type
patterns from event logs. IPLoM works through a 3-Step hi-
erarchical clustering process, which partitions a log file into
its respective clusters. In a fourth and final stage the algo-
rithm produces a cluster description for each leaf partition
of the log file. These cluster descriptions then become event
type patterns discovered by the algorithm. IPLoM differs
from other event type mining algorithms for the following
reasons: It is not based on the Apriori algorithm, which
is computationally inefficient for mining longer patterns as
shown in previous literature [3]. It is able to discover clus-
ters irrespective of how frequently pattern instances appear
in the data. The use of a pattern support threshold, which
is mandatory for other similar algorithms, is optional for
IPLoM, running IPLoM without a pattern support thresh-
old provides the possibility that all potential clusters will
be found. In our experiments we compared IPLoM, SLCT,
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Loghound and Teiresias on 7 different event log files, which
were manually labeled by our faculty’s tech support group.
Results show that IPLoM consistently outperforms the other
algorithms and achieves an average (across the datasets) F-
Measure of 78% whereas the second best algorithm (SLCT)
achieves an average F-Measure of 10%.

The rest of this paper is organized as follows: section 2
discusses previous work in event type pattern mining and
categorization. Section 3 outlines the proposed algorithm
and the methodology to evaluate its performance. Section 4
describes the results whereas section 5 presents the conclu-
sion and the future work.

2. BACKGROUND AND PREVIOUS WORK
Data clustering as a technique in data mining or machine

learning is a process whereby entities are sorted into groups
called clusters, where members of each cluster are similar
to each other and dissimilar from members of other groups.
Clustering can be useful in the interpretation and classifi-
cation of large data sets, which may be overwhelming to
analyze manually. Clustering therefore can be a useful first
step in the automatic analysis of event logs.

If each textual line in an event log is considered a data
point and its individual words considered attributes, then
the job of clustering an event log reduces to one in which sim-
ilar log messages are grouped together. For example the log
entry Command has completed successfully can be consid-
ered a 4-dimensional data point with the following attributes
“Command”, “has”, “completed”, “successfully”. However, as
stated in [14], traditional clustering algorithms are not suit-
able for event logs for the following reasons:

1. The event lines, do not have a fixed number of at-
tributes.

2. The data point attributes i.e. the individual words
or tokens on each line, are categorical. Most conven-
tional clustering algorithms are designed for numerical
attributes.

3. Event log lines are high dimensional. Traditional clus-
tering algorithms are not well suited for high dimen-
sional data.

4. Traditional clustering algorithms also tend to ignore
the order of attributes. In event logs the attribute
order is important.

While several algorithms like CLIQUE, CURE and MAFIA
have been designed for clustering high dimensional data[1,
14], these algorithms are still not quite suitable for log files
because an algorithm suitable for clustering event logs needs
to not just be able to deal with high dimensional data, it also
needs to be able to deal with data with different attribute
types, ignore the order of the input records and discover
clusters that exist in subspaces of the high dimensional data
[1, 14].

For these reasons several algorithms and techniques for
automatic clustering and/or categorization of log files have
been developed. Moreover, some researchers have also at-
tempted to use techniques designed for pattern discovery in
other types of textual data to the task of clustering event
logs. In [5] the authors attempt to classify raw event logs
into a set of categories based on the IBM CBE (Common

Base Event) format [2] using Hidden Markov Models (HMM)
and a modified Naive Bayesian Model. They were able to
achieve 85% and 82% classification accuracy respectively.
While similar, the automatic categorization done in [5] is
not the same as discovering event log clusters or formats.
This is because the work done in [5] is a supervised classifi-
cation problem, with predefined categories, while the prob-
lem we tackle is unsupervised, with the final categories not
known apriori. On the other hand SLCT [14] and Loghound
[15] are two algorithms, which were designed specifically for
automatically clustering log files, and discovering event for-
mats. This is similar to our objective in this paper. Because
both SLCT and Loghound are similar to the Apriori algo-
rithm, they require the user to provide a support threshold
value as input. This support threshold is not only used to
control the output of these algorithms but is fundamental
to their internal mechanism.

SLCT works through a three-step process. The steps are
described below

1. It firsts identifies the frequent words (words that occur
more frequently than the support threshold value) or
1-itemsets from the data

2. It then extracts the combinations of these 1-itemsets
that occur in each line in the data set. These 1-itemset
combinations are cluster candidates.

3. Finally, those cluster candidates that occur more fre-
quently than the support value are then selected as the
clusters in the data set.

Loghound on the other hand discovers frequent patterns
from event logs by utilizing a frequent itemset mining al-
gorithm, which mirrors the Apriori algorithm more closely
than SLCT because it works by finding itemsets, which may
contain more than 1 word up to a maximum value provided
by the user. With both SLCT and Loghound, lines that
do not match any of the frequent patterns discovered are
classified as outliers.

SLCT and Loghound have received considerable attention
and have been used in the implementation of the Sisyphus
Log Data Mining toolkit [13], as part of the LogView log
visualization tool [9] and in online failure prediction [11].
Fig. 1 shows four examples of the type of clusters that SLCT
and Loghound are able to find, the asterisks in each line
indicate placeholders that can match any word. We will
adopt this cluster representation in the rest of our work.

A comparison of SLCT against a bio-informatics pattern
discovery algorithm developed by IBM called Teiresias is
carried out in [12]. Teiresias was designed to discover all
patterns of at least a given specificity and support in cat-
egorical data. Teiresias can be described as an algorithm
that takes a set of strings X and breaks them up into a
set of unique characters C, which are the building blocks of
the strings. It then proceeds to find all motifs (patterns)
having at least a specificity determined by L/W, where L
is the number of non-wildcard characters from C and W is
the width of the motif with wildcards included. A support
value K can also be provided i.e. Teiresias only finds motifs
that occur at least K times in the set of strings X. While
Teiresias was adjudged to work just as effectively as SLCT
by the author it was found not to scale efficiently to large
data sets.
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Figure 1: Sample clusters generated by SLCT and
Loghound

In our work we introduce IPLoM, a novel log-clustering al-
gorithm. IPLoM works differently from the other clustering
algorithms described above as it is not based on the Apriori
algorithm and does not explicitly try to find line formats.
The algorithm works by creating a hierarchical partitioning
of the log data. The leaf nodes of this hierarchical partition-
ing of the data are considered clusters of the log data and
they are used to find the cluster descriptions or line formats
that define each cluster. Our experiments show that IPLoM
outperforms SLCT, Loghound and Teiresias when they are
evaluated on the same data sets.

3. METHODOLOGY
In this section we first give a detailed description of how

our proposed algorithm works after which we describe in
detail our methodology for testing its performance against
those of pre-existing algorithms.

3.1 The IPLoM Algorithm
The IPLoM algorithm is designed as a log data-clustering

algorithm. It works by iteratively partitioning a set of log
messages used as training exemplars. At each step of the
partitioning process the resultant partitions come closer to
containing only log messages, which are produced by the
same line format. At the end of the partitioning process the
algorithm attempts to discover the line formats that pro-
duced the lines in each partition, these discovered partitions
and line formats are the output of the algorithm.

The four steps of which IPLoM goes through are:

1. Partition by token count.

2. Partition by token position.

3. Partition by search for bijection.

4. Discover cluster descriptions/line formats.

The steps are described in more detail below. The algorithm
is designed to discover all possible line formats in the initial
set of log messages. As it may be sometimes required to
find only line formats that have a support that exceeds a
certain threshold, the file prune function is incorporated into
the algorithm. The file prune function works by getting rid
of all partitions that fall below the file support threshold
value at the end of each partitioning step. This way, we
are able to produce only line formats that meet the desired
file support threshold at the end of the algorithm. Running
IPLoM without a file support threshold is its default state.

The following sub-sections describe each step of the algo-
rithm in more detail.

3.2 Step 1: Partition by token count.
The first step of the partitioning process works on the as-

sumption that log messages that have the same line format
are likely to have the same token length. For this reason

Figure 2: IPLoM Step-2: Partition by token posi-
tion.

IPLoM’s first step uses the token count heuristic to parti-
tion the log messages. Additional heuristic criteria are used
in the remaining steps to further partition the initial par-
titions. Consider the cluster description “Connection from
*”, which contains 3 tokens. It can be intuitively concluded
that all the instances of this cluster e.g. “Connection from
255.255.255.255” and “Connection from 0.0.0.0” would also
contain the same number of tokens. By partitioning our data
first by token count we are taking advantage of the property
of most cluster instances of having the same token length,
therefore the resultant partitions of this heuristic are likely
to contain the instances of the different clusters which have
the same token count. A detailed description of this step of
the algorithm can be found in [10].

3.3 Step 2: Partition by token position.
At this point each partition of the log data contains log

messages with the same length and can therefore be viewed
as n-tuples, with n being the token length of the log mes-
sages in the partition. This step of the algorithm works on
the assumption that the column with the least number of
variables (unique words) is likely to contain words that are
constant in that position of the line formats that produced
them. Our heuristic is therefore to find the token position
with the least number of unique values and further split each
partition using the unique values in this token position i.e.
each resultant partition will contain only one of those unique
values in the token position discovered, as can be seen in the
example outlined in Fig. 2. A detailed description of this
step of the partitioning process is outlined in [10].

Despite the fact that we use the token position with the
least number of unique tokens, it is still possible that some of
the values in the token position might actually be variables
in the original line formats. While an error of this type may
have little effect on Recall, it could adversely affect Preci-
sion. To mitigate the effects of this error a partition sup-
port threshold could be introduced. We group any partition,
which falls below the provided threshold into one partition
(Algorithm 1). The intuition here is that a partition that
is produced using an actual variable value may not have
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enough lines to exceed a certain percentage (the partition
support threshold) of the log messages in the partition.

3.4 Step 3: Partition by search for bijection
In the third and final partitioning step, we partition by

searching for bijective relationships between the set of unique
tokens in two token positions selected using a criterion de-
scribed in detail in Algorithm 2. A summary of the heuristic
would be to select the first two token positions with the most
frequently occuring token count value greater than 1. A bi-
jective function is a 1-1 relation that is both injective and
surjective. When a bijection exists between two elements in
the sets of tokens, this usually implies that a strong relation-
ship exists between them and log messages that have these
token values in the corresponding token positions are sepa-
rated into a new partition. Sometimes the relations found
are not 1-1 but 1-M, M-1 and M-M. In the example given
in Fig. 3 the tokens Failed and on: have a 1-1 relationship
because all lines that contain the token Failed in position
2 also contain the token on: in position 3 and vice versa.
On the other hand token has has a 1-M relationship with
tokens completed and been as all lines that contain the token
has in position 2 contains either tokens completed or been in
position 3, a M-1 relationship will be the reverse of this sce-
nario. To illustrate a M-M relationship, consider the event
messages given below with positions 3 and 4 chosen using
our heuristic.

Fan speeds 3552 3552 3391 4245 3515 3497
Fan speeds 3552 3534 3375 4787 3515 3479
Fan speeds 3552 3534 3375 6250 3515 3479
Fan speeds 3552 3534 3375 **** 3515 3479
Fan speeds 3311 3534 3375 4017 3515 3479

It is obvious that no discernible relationship can be found
with the tokens in the chosen positions. Token 3552 (in
position 3) maps to tokens 3552 (in position 4) and 3534.
On the other hand token 3311 also maps to token 3534, this
makes it impossible to split these messages using their token
relationships. It is a scenario like this that we refer to as a
M-M relationship.

In the case of 1-M and M-1 relations, the M side of the
relation could represent variable values (so we are dealing
with only one line format) or constant values (so each value
actually represents a different line format). The diagram in
Fig. 4 describes the simple heuristic that we developed to
deal with this problem. Using the ratio between the num-
ber of unique values in the set and the number of lines that
have these values in the corresponding token position in the
partition, and two threshold values, a decision is made on
whether to treat the M side as consisting of constant values
or variable values. M-M relationships are iteratively split
into separate 1-M relationships or ignored depending on if
the partition is coming from Step-1 or Step-2 of the parti-
tioning process respectively.

Figure 3: IPLoM Step-3: Partition by search for
bijection.

Figure 4: Deciding on how to treat 1-M and M-1
relationships.

Before partitions are passed through the partitioning pro-
cess of Step-3 of the algorithm they are evaluated to see if
they already form good clusters. To do this, a cluster good-
ness threshold is introduced into the algorithm. The cluster
goodness threshold is the ratio of the number of token po-
sitions that have only one unique value to the total token
length of the lines in the partition. Partitions that have a
value higher than the cluster goodness threshold are consid-
ered good partitions and are not partitioned any further in
this step.

3.5 Step 4: Discover cluster descriptions (line
formats) from each partition.

In this step of the algorithm, partitioning is complete and
we assume that each partition represents a cluster i.e. every
log message in the partition was produced using the same
line format. A cluster description or line format consists of
a line of text where constant values are represented literally
and variable values are represented using wildcard values.
This is done by counting the number of unique tokens in
each token position of a partition. If a token position has
only one value then it is considered a constant value in the
line format, if it is more than one then it is considered a
variable. This process is illustrated in Fig. 5.
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Figure 5: IPLoM Step-4: Discover cluster descrip-
tions. The unique token counts are beside arrows

3.6 Algorithm Parameters
In this section, we give a brief overview of the parame-

ters/thresholds used by IPLoM. The fact that IPLoM has
several parameters, which can be used to tune its perfor-
mance, it provides flexibility for the system administrators
since this gives them the option of using their expert knowl-
edge when they see it necessary.

• File Support Threshold: Ranges between 0-1. It
reduces the number of clusters produced by IPLoM.
Any cluster whose instances have a support value less
than this threshold is discarded. The higher this value
is set to, the fewer the number of clusters that will be
produced.

• Partition Support Threshold: Ranges between 0-
1. It is essentially a threshold that controls backtrack-
ing. Based on our experiments, the guideline is to set
this parameter to very low values i.e. < 0.05 for opti-
mum performance.

• Upper Bound and Lower Bound: Ranges between
0-1. They control the decision on how to treat M side
of relationships in Step-2. Lower Bound should usu-
ally take values < 0.5 while Upper Bound takes values
> 0.5.

• Cluster Goodness Threshold: Ranges between 0-
1. It is used to avoid further partitioning. Its optimal
should lie in the range of 0.3− 0.6.

Sensitivity analysis performed to evaluate the stability of
IPLoM using different values for the parameters shows little
deviation in performance.

3.7 Experiments
In order to evaluate the performance of IPLoM, we se-

lected open source implementations of algorithms, which
had previously been used in system/application log data
mining. For this reason SLCT, Loghound and Teiresias were
selected. We therefore tested the four algorithms against
seven log data sets, which we compiled from different sources,
Table 1 gives an overview of the datasets used. The HPC log
file is an open source data set collected on high performance
clusters at the Los Alamos National Laboratory NM, USA
[7]. The Access, Error, System and Rewrite datasets were
collected on our faculty network at Dalhousie, while the Sys-
log and Windows files were collected on servers owned by a
large ISP working with our research group. Due to privacy
issues we are not able to make this data available to the
public.

Tech-Support members of the Dalhousie Faculty of Com-
puter Science produced the line format cluster descriptions
of these 7 datasets manually. Table 1 gives the number of
clusters identified in each file manually. Again due to privacy
issues we are unable to provide manually produced cluster
descriptions of the non-opensource log files but the man-
ually produced cluster descriptions for the HPC data are
available for download 1. These cluster descriptions then
became our gold standard, against which to measure the
performance of the other algorithms as an information re-
trieval (IR) task. As in classic IR, our performance metrics
are Recall, Precision and F-Measure, which are described in
[17]. The True Positive(TP), False Positive(FP) and False
Negative(FN) values were derived by comparing the set of
manually produced line formats to the set of retrieved for-
mats produced by each algorithm. In our evaluation a line
format is still considered a FP even if matches a manually
produced line format to some degree, the match has to be
exact for it to be considered a TP. The next section gives
more details about the results of our experiments.

4. RESULTS
We tested SLCT, Loghound, Teiresias and IPLoM on the

data sets outlined in Table 1. The parameter values used in
running the algorithms in all cases are provided in Table 2.
The rationale for choosing the support values used for SLCT,
Loghound and IPLoM is explained later in this section. The
seed value for SLCT and Loghound is a seed for a random
number generator used by the algorithms, all other param-
eter values for SLCT and Loghound are left at their default
values. The parameters for Teiresias were also chosen to
achieve the lowest support value allowed by the algorithm.
The IPLoM parameters were all set intuitively except in case
of the cluster goodness threshold and the partition support
threshold . In setting the cluster goodness threshold we ran
IPLoM on the HPC file while varying this value. The pa-
rameter was then set to the value (0.34) that gave the best
result and was kept constant for the other files used in our
experiments. The partition support threshold was set to 0
to provide a baseline performance. It is pertinent to note
that we were unable to test the Teiresias algorithm against
all our data sets. This was due to its inability to scale to
the size of our data sets. This is a problem that is attested
to in [12]. Thus in this work, it was only tested against the
Syslog data set.

Table 2: Algorithm Parameters
SLCT and Loghound Parameters Value

Support Threshold (-s) 0.01 - 0.1
Seed (-i) 5

Teiresias Parameters Value
Sequence Version On
L (min. no. of non wild card literals in pattern) 1
W (max. extent spanned by L consecutive 15
non wild card literals)
K ( Min. no. of lines for pattern to appear in) 2

IPLoM Parameters Value
File Support Threshold 0 - 0.1
Partition Support Threshold 0
Lower Bound 0.1
Upper Bound 0.9
Cluster Goodness Threshold 0.34

1http://torch.cs.dal.ca/˜makanju/iplom
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Table 1: Log Data Statistics
S/No Name Description No. of Messages No. of Formats (Manual)

1 HPC High Performance Cluster Log (Los Alamos) 433490 106
2 Syslog OpenBSD Syslog 3261 60
3 Windows Windows Oracle Application Log 9664 161
4 Access Apache Access Log 69902 14
5 Error Apache Error Log 626411 166
6 System OS X Syslog 24524 9
7 Rewrite Apache mod rewrite Log 22176 10

Table 3: Anova Results for F-Measure Performance
HPC F P-value F crit

8.06 1.8E-02 3.35

SYSLOG F P-value F crit

2.00 0.15 3.35

WINDOWS F P-value F crit

23.39 1.28E-06 3.35

ACCESS F P-value F crit

455.90 1.56E-21 3.35

ERROR F P-value F crit

50.57 7.41E-10 3.35

SYSTEM F P-value F crit

1.96E+34 0 3.35

REWRITE F P-value F crit

51076.72 4.98E-49 3.35

SLCT, Loghound and Teiresias cannot produce clusters
if a line support threshold is not provided. This makes it
difficult to compare with IPLoM’s default output. Also, the
concept of support threshold as used in Teiresias was not
implementable in IPLoM due to its use of a specificity value
i.e. L/W. For this reason we compare IPLoM against the
other algorithms using 2 different scenarios.

In the first scenario we use a range of low support val-
ues (intuitively the algorithms should produce more clus-
ters with lower support values) against IPLoM, SLCT and
Loghound. The F-Measure results of this scenario are shown
in Fig 6, the results clearly show IPLoM performing better
than the other algorithms in all the tasks. A single factor
ANOVA test done at 5% significance on the results show a
statistically significant difference in all the results except in
the case of the Syslog file, Table 3 provides a summary of
these results. Similar results for Recall and Precision can be
found in [10].

In the second scenario we compare the default perfor-
mance of IPLoM against the best performance of SLCT,
Loghound and Teiresias (we used the lowest support value
possible for Teiresias). Apart from the cluster descriptions
produced by all the algorithms as output, IPLoM has the
added advantage of producing the partitions of the log data,
which represent the actual clusters. This gives us two sets
of results we can evaluate for IPLoM. In our evaluation of
the partition results of IPLoM, we discovered that in cer-
tain cases that it was impossible for IPLoM to produce the
right cluster descriptions for a partition due the fact that the
partition contained only one event line or all the event lines
were identical. This situation would not pose a problem for
a human subject as they are able to use semantic and do-
main knowledge to determine the right cluster description.
This problem is illustrated in Fig. 7.

So in scenario 2 we provide the comparison of the results of
IPLoM’s cluster description output and its partition output,
as shown in Fig. 8. The partition comparison differs from
the cluster description by including as correct cases where

Table 4: Log Data Token Length Statistics
Name Min Max Avg.

HPC 1 95 30.7
Syslog 1 25 4.57
Windows 2 82 22.38
Access 3 13 5.0
Error 1 41 9.12
System 1 11 2.97
Rewrite 3 14 10.1

IPLoM came up with the right partition but was unable
to come up with the right cluster description. The results
show an average F-Measure of 0.48 and 0.78 for IPLoM when
evaluating the results of IPLoM’s cluster description output
and partition output respectively. Similar results are also
noticed for Precision and Recall.

However, as stated in [3], in cases where data sets have
relatively long patterns or low minimum support thresholds
are used, apriori based algorithms suffer non-trivial costs
during candidate generation. The token length statistics for
our datasets are outlined in Table 4, this shows the HPC file
as having the largest maximum and average token length.
Loghound was unable to produce results on this dataset with
a line count support value of 2, the algorithm crashed due
to the large number of item-sets that had to be generated.
This was however not a problem for SLCT (as it generates
only 1-item-sets). This results show that Loghound is still
vulnerable to problems outlined in [3], this is however not a
problem for IPLoM as it is computational complexity is not
adversely affected by long patterns or low minimum support
thresholds. In terms of performance based on cluster token
length, Table 5 shows consistent performance from IPLoM
irrespective of token length, while SLCT and Loghound seem
to suffer for mid-length clusters.

One of the cardinal goals in the design of IPLoM is the
ability to discover clusters in event logs irrespective of how
frequently its instances appear in the data. The performance
of the algorithms using this evaluation criteria is outlined in
Table 6. The results show a reduction in performance for
all the algorithms for clusters with a few instances, however

Figure 7: Example: Right Partition, Wrong Cluster
Description.
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Figure 6: Comparing F-Measure performance of IPLoM, Loghound and SLCT using support values.
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Figure 8: Comparing performance of default IPLoM output with best case performances of Teiresias,
Loghound and SLCT.

1261



Table 5: Algorithm performance based on cluster
token length

Token Length No. of Percentage Retrieved(%)
Range Clusters

SLCT Loghound IPLoM

1 - 10 316 12.97 13.29 53.80
11 - 20 142 7.04 9.15 49.30

>21 68 15.15 16.67 51.52

Table 6: Algorithm performance based on cluster
instance frequency

Instance Frequency No. of Percentage Retrieved(%)
Range Clusters

SLCT Loghound IPLoM

1 - 10 263 2.66 1.90 44.87
11 - 100 144 16.67 18.75 47.92

101 - 1000 68 20.59 23.53 72.06
>1000 51 34.00 38.00 82.00

IPLoM’s performance was more resilient. The results used in
our token length and cluster instance frequency evaluations
are based on cluster description formats only.

5. CONCLUSION AND FUTURE WORK
In this paper we introduce IPLoM, a novel algorithm for

the mining of event log clusters. Through a 3-Step hierar-
chical partitioning process IPLoM partitions log data into
its respective clusters. In its 4th and final stage IPLoM
produces cluster descriptions or line formats for each of the
clusters produced.

We implemented IPLoM and tested its performance against
the performance of algorithms previously used in the same
task i.e. SLCT, Loghound and Teiresias. In our experi-
ments we compared the results of the algorithms against
results produced manually by human subjects on seven dif-
ferent data sets. The results show that IPLoM has an av-
erage (across the data sets) Recall of 0.81, Precision of 0.73
and F-Measure of 0.76. It is also shown that IPLoM demon-
strated statistically significantly better performance than ei-
ther SLCT or Loghound on six of the seven different data
sets. Future work will focus on using the results of IPLoM
i.e. the extracted cluster formats, in other automatic log
analysis tasks.
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Algorithm 1 Partition Prune Function
Input: Collection C[] of log ↓le partitions.

Real number P S as partition support threshold.
Output: Collection C[] of log ↓le partitions with all partitions with support less

than P S grouped into one partition.

1: Create temporary partition T emp P

2: for every partition in C do

3: Supp = #LinesInP artition
#LinesInCollection

4: if Supp < P S then

5: Add lines from partition to T emp P

6: Delete partition from C[]

7: end if
8: end for
9: Add partition T emp P to collection C[]

10: Return(C)

Algorithm 2 IPLoM Step 3
Input: Collection C In of partitions from Step 1 or Step 2.
Output: Collection C Out of partitions derived from C In.

1: for every partition in C InasP In do

2: Create temporary collection T emp C

3: DetermineP1andP2(P In){See Algorithm 3}
4: Create sets S1 and S2 of unique tokens from P1 and P2 respectively.

5: for each element in S1 do
6: Determine mapping type of element in relation to S2.

7: if mapping is 1 − 1 then

8: split pos = P1

9: else if mapping is 1 −M then

10: Create set S T emp with token values on the many side of the rela-
tionship.

11: split rank : = Get Rank P osition(S T emp). {See Algorithm 4.}
12: if split rank = 1 then

13: split pos = P1

14: else
15: split pos = P2

16: end if
17: else if mapping is M − 1 then

18: Create set S T emp with token values on the many side of the rela-
tionship.

19: split rank : = Get Rank P osition(S T emp).

20: if split rank = 2 then

21: split pos = P2

22: else
23: split pos = P1

24: end if
25: else {mapping is M −M}
26: if partition has gone through step 2 then

27: Move to next token.
28: else {partition is from step 1}
29: Create sets S T emp1 and S T emp2 with token values on both

sides of the relationship.

30: if S T emp1 has lower cardinality then

31: split pos = P1

32: else {S T emp2 has lower cardinality}
33: split pos = P2

34: end if
35: end if
36: end if
37: Split partition into new partitions based on token values in split pos.

38: if partition is empty then

39: Move to next partition.

40: end if
41: end for
42: if partition is not empty then

43: Create new partition with remainder lines.

44: end if
45: Add new partitions to T emp C

46: T emp C = P artition P rune(T emp C) {See Algorithm 1}
47: Add all partitions from T emp C to C Out

48: end for
49: C Out = F ile P rune(C Out) {See Algorithm ??}

50: Return(C Out)

Algorithm 3 Procedure DetermineP1andP2
Input: Partition P .

Real number CT as cluster goodness threshold.

1: Determine token count of P as token count.
2: if token count > 2 then

3: Determine the number of token positions with only one unique value as
count 1.

4: GC = count 1
token count

5: if GC < CT then

6: (P1, P2) = Get Mapping P ositions(P ) {See Algorithm 5}
7: else
8: Return to calling procedure, add P to C Out and move to next parti-

tion.
9: end if

10: else if token count = 2 then
11: (P1, P2) = Get Mapping P ositions(P )

12: else
13: Return to calling procedure, add P to C Out and move to next partition.

14: end if

15: Return()

Algorithm 4 Get Rank Position Function
Input: Set S of token values from the M side of a 1−M or M − 1 mapping of

a log ↓le partition.
Real number lower bound.
Real number upper bound.

Output: Integer split rank. split rank can have values of either 1 or 2.

1: Distance = Cardinality of S
#Lines that match S

2: if Distance ≤ lower bound then

3: if Mapping is 1-M then

4: split rank = 2

5: else
6: split rank = 1 {Mapping is M-1}
7: end if

8: else if Distance ≥ upper bound then

9: if Mapping is 1-M then

10: split rank = 1

11: else
12: split rank = 2 {Mapping is M-1}
13: end if

14: else
15: if Mapping is 1-M then

16: split rank = 1

17: else

18: split rank = 2 {Mapping is M-1}
19: end if

20: end if

21: Return(split rank)

Algorithm 5 Get Mapping Positions Function
Input: Log ↓le partition P .
Output: Integer token positions P1 and P2 as (P1,P2).

1: Determine token count of P as count token
2: if count token = 2 then
3: Set P1 to ↓rst token position.

4: Set P2 to second token position.

5: else {count token is > 2}
6: if P went through step 2 then

7: Determine cardinality of each token position.

8: Determine the token count value with the highest frequency other than value 1 as
freq card.

9: if there is a tie for highest frequency value then

10: Select lower token value as freq card

11: end if
12: if the frequency of freq card > 1 then

13: Set P1 to ↓rst token position with cardinality freq card.

14: Set P2 to second token position with cardinality freq card.

15: else {the frequency of freq card = 1}
16: Set P1 to ↓rst token position with cardinality freq card.

17: Set P2 to ↓rst token position with the next most frequent cardinality
other than value 1.

18: end if
19: else {P is from Step 1}
20: Set P1 to first token position with lowest cardinality.

21: Set P2 to second token position with lowest cardinality or first token position with
the second lowest cardinality.

22: end if

23: end if
24: {Cardinality of P1 can be equal to cardinality of P2}

25: Return((P1,P2))

1263


	Introduction
	Background and Previous Work
	Methodology
	The IPLoM Algorithm
	Step 1: Partition by token count.
	Step 2: Partition by token position.
	Step 3: Partition by search for bijection
	Step 4: Discover cluster descriptions (line formats) from each partition.
	Algorithm Parameters
	Experiments

	Results
	Conclusion and Future Work
	References

