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Abstract: The increasing use of encrypted traffic combined
with non-standard port associations makes the task of traffic
identification increasingly difficult. This work benchmarks
the performance of five unsupervised clustering algorithms:
Basic K-Means, Semi-supervised K-Means, DBSCAN, EM, and
MOGA for encrypted traffic identification, specifically SSH.
Results show that the performance of MOGA, a multi objective
clustering approach using a Genetic Algorithm, is not only
better than the others, but also provides a good trade off in
terms of detection rate, false positive rate, and time to built and
run the model. This is a very desirable property for a potential
implementation of an encrypted traffic identification system.

Keywords: Unsupervised Machine Learning, Clustering Al-
gorithms, Genetic Algorithms, K-Means, DBSCAN, EM,
Encrypted Traffic Identification.

1. Introduction

An important part of network management requires the ac-
curate identification and classification of network traffic [4],
[2]. Network administrators are normally interested in iden-
tifying application types for decisions regarding both band-
width management and quality of service [2]. A particularly
interesting area in network traffic identification pertains to
encrypted traffic, where the fact that the payload is encrypted
represents an additional degree of uncertainty. Specifically,

many traditional approaches to traffic classification rely on
payload inspection, which become unfeasible under packet
encryption [12], [20], [7], [6], [18]. An alternative to pay-
load inspection would be the use of port numbers to iden-
tify application types. However, this practice has become
increasingly inaccurate, as users are now able to arbitrarily
change the port number to deceive security mechanisms [3],
[20], [7], [18], [6]. In short, the traditional approaches are
unable to deal with the identification of encrypted traffic.
In this work we benchmark several unsupervised learning al-
gorithms in the identification of encrypted traffic, where Se-
cure Shell (SSH) is chosen as an example encrypted appli-
cation. While SSH is typically used to remotely access a
computer, it can also be utilized for “tunneling, file transfers
and forwarding arbitrary TCP ports over a secure channel be-
tween a local and a remote computer” [2]. These properties
of SSH make it an interesting encrypted application to fo-
cus on, given that it shows similar behavior like popular en-
crypted applications such as Skype. However, unlike Skype,
SSH is an open source protocol. This ensures that the ground
truth is known regarding the traffic tested. From the traffic
identification perspective we benchmark four unsupervised
clustering techniques: basic K-Means, semi-supervised K-
Means, DBSCAN, and EM; and compare the results with a
Multi-Objective Genetic Algorithm (MOGA) that is used for
the dual identification of appropriate (flow) feature subspace
and clustering of traffic types. We first proposed MOGA in
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[5], and it assumes that the resulting clusters partition traf-
fic into encrypted/not encrypted. Results show that MOGA
provides 93.5% detection rate and 0.7% false positive with
very fast building and run time, outperforming all the other
models presented here.

2. Previous Work

Given the limitations of port number analysis and payload
inspection, several previous attempts to identify encrypted
traffic have worked with statistics based on flows [2], [20],
[7]. A number of these attempts have employed supervised
learning methods. However, these classifiers have uncertain
generalization properties when faced with new data [20], [7].
One alternative to classifiers is the use of clustering mecha-
nisms or unsupervised learning methods. The following is an
analysis of previous work with unsupervised methods.
Recently, Siqueira et al. presented a clustering approach to
identify Peer-to-Peer (P2P) versus non-P2P in TCP traffic
[12]. A total of 249 features from the headers of the pack-
ets were considered, out of which the best 5 were selected
to parameterize clusters. The selection of the features was
based on the variance of their values, such that the higher the
variance, the better the perceived discrimination of a feature.
This methodology enabled the authors to achieve results of
86.12% detection rate for P2P applications with an average
accuracy of 96.79%. Their proposed method utilized the port
number as one of the five selected features.
Erman et al. [8] compared an unsupervised approach using
an Expectation Maximization (EM) based clustering algo-
rithm (AutoClass), against a supervised approach that used
a Naive Bayes Classifier. Both methods were tested on sub-
sets of the traces Auckland IV and Auckland VI. Their results
showed that the unsupervised technique had an accuracy of
up to 91%, outperforming the supervised technique by up
to 9%. Furthermore, they found that the unsupervised tech-
nique was also able to discover traffic from previously un-
known applications. In [7], they presented an evaluation of
three clustering algorithms: K-Means, DBSCAN and Auto-
Class. The authors used two datasets, one of them (Auckland
IV) containing DNS, FTP, HTTP, IRC, LimeWire, NNTP,
POP3, and SOCKS; and the other (Calgary trace), contain-
ing HTTP, P2P, SMTP, and POP3. The authors found that
with K-Means the overall accuracy steadily improved as the
number of clusters was increased. This continued until K
was around 100 with the overall accuracy being 79% and
84% on each data set respectively. Thus, from their results
they observed that K-Means seemed to provide the best mix
of properties. Then in [9], they presented a semi-supervised
classification technique. The proposed model achieved high
flow and byte accuracy (greater than 90%), with only a few
labelled flows and many unlabeled flows. The authors em-
ployed a K-Means algorithm, and the employed traces were
collected from the University of Calgary Internet link.
Bernaille et al. used information from the first five packets of
a TCP connection to identify applications [6]. In particular,
they analyzed the size of the first few packets, which cap-

tures the application’s negotiation phase. They then used a
K-Means algorithm to cluster these features during the learn-
ing phase. After several experiments they concluded that the
best K number of clusters was 50, achieving results of up to
96.9% accuracy with SSH. The authors mention that a poten-
tial limitation could be the fact that the method is sensitive to
packet order.
Yingqiu et al. also presented a flow based clustering ap-
proach, using K-Means to build the clusters with features
previously identified as the best discriminators [20]. To this
end, several feature selection and search techniques are per-
formed. After clustering, the authors applied a log trans-
formation, which enabled them to reach an overall accuracy
level of up to 90% when utilizing K= 80 clusters. The au-
thors concluded this was a very promising approach for TCP
classification.
To the best of our knowledge, this is the first work that bench-
marks a genetic algorithm for the dual problem of feature
selection and clustering, to the performance of the aforemen-
tioned unsupervised learning techniques for encrypted traffic
identification.

3. Methodology

In this section we first characterize the data utilized for the
training and testing. This is followed by a description of
the process of generating flows from the data source. We
then explain of the four clustering techniques to be evalu-
ated: basic K-Means, semi-supervised K-Means, DBSCAN,
and EM; and we finish with a description of our proposed
model: MOGA for combined feature subspace selection and
clustering.

3.1 Data Set

The data set used was captured by the Dalhousie University
Computing and Information Services Centre (UCIS) in Jan-
uary 2007 on the campus network between the university and
the commercial Internet. Dalhousie University is one of he
biggest universities in the Atlantic region of Canada, with
more than 15,000 students and about 3300 faculty and staff.
Given the privacy related issues the university may face, the
data was filtered to scramble the IP addresses and each packet
was further truncated to the end of the IP header so that all the
payload was excluded. Furthermore, the checksums were set
to zero since they could conceivably leak information from
short packets. However, any length information in the packet
was left intact. Dalhousie traces were labeled by a com-
mercial classification tool called PacketShaper, i.e., a deep
packet analyzer [16]. PacketShaper uses Layer 7 filters (L7)
to classify the applications. Given that the handshake part of
SSH protocol is not encrypted, we can confidently assume
that the labeling of the data set is 100% accurate and pro-
vides the ground truth for our data set. We emphasize that
our work did not consider any information from the hand-
shake phase nor any part of the payload, IP addresses or port
numbers. The handshake phase was used solely to obtain
the ground truth to which we compare our obtained results.



Also, we focus on SSH as a case study, we could have em-
ployed any other encrypted traffic protocol. However, the
fact that the SSH’s handshake is not encrypted, allowed us
to compare our obtained results with those obtained through
payload inspection. In order to build training data we sam-
pled the data set. The training data for all the clustering al-
gorithms and for the MOGA, unless stated otherwise, con-
sisted of 12250 flows, including SSH, MSN, HTTP, FTP, and
DNS. The test data, on the other hand, was the entire data
set (more than 18,500,000 flows) and consisted of flows of
each of those applications, plus flows that belonged to any of
the following applications: RMCP, Oracle SQL*NET, NPP,
POP3, NETBIOS Name Service, IMAP, SNMP, LDAP, NCP,
RTSP, IMAPS and POP3S.

3.2 Flow Generation

Flows are defined by sequences of packets that present the
same values for source IP address, destination IP address,
source port, destination port and type of protocol [12]. Each
flow is described by a set of statistical features and associated
feature values. A feature is a descriptive statistic that can
be calculated from one or more packets. We used the Net-
Mate [15] tool set to process data sets, generate flows, and
compute feature values. In total, 38 features were obtained
from NetMate (table 1). Flows are bidirectional with the first
packet determining the forward direction. Since flows are of
limited duration, in this work UDP flows are terminated by
a flow timeout, and TCP flows are terminated upon proper
connection teardown or by a flow timeout, whichever oc-
curs first. A 600 second flow timeout value was employed
here; where this corresponds to the IETF Realtime Traf-
fic Flow Measurement working groups architecture [11]. It
is important to mention that only UDP and TCP flows are
considered. Specifically, flows that have no less than one
packet in each direction, and transport no less than one byte
of payload. Payload data and features like IP addresses and
source/destination port numbers were excluded from the fea-
ture set to ensure that the results were not dependent on such
biases.
In this work, we employed the same features used in [9] for
the basic K-Means, semi-supervised K-Means, DBSCAN,
and EM algorithms, table 2. For the MOGA, on the other
hand, we employed all the 38 original features for it to se-
lect the most appropriate ones during the training phase, ta-
ble 1. In order to reproduce the features employed in [9] we
modified the netai flowstats.c module of NetMate, originally
used to obtained the aforementioned 38 features employed
by MOGA. The reason we employed the exact same features
as in [9] was to accurately reproduce the methodology there
described.

3.3 Unsupervised Learning Algorithms

The use of clustering algorithms for traffic classification is
normally done in two phases. The first phase consists of
training the model with a relatively small set of data (training
data), and the second phase consists of using the trained

Table 1: Features obtained from Netmate
ind. Feature Name Abreviation

1 protocol (tcp, udp) proto
2 total forward packets total fpackets
3 total forward volume total fvolume
4 total backward packets total bpackets
5 total backward volume total bvolume
6 min forward packet length min fpktl
7 mean forward packet length mean fpktl
8 max forward packet length max fpktl
9 std dev forward packet length std fpktl

10 min backward packet length min bpktl
11 mean backward packet length mean bpktl
12 max backward packet length max bpktl
13 std dev backward packet length std bpktl
14 min forward inter arrival time min fiat
15 mean forward inter arrival time mean fiat
16 max forward inter arrival time max fiat
17 std dev forward inter arrival time std fiat
18 min backward inter arrival time min biat
19 mean backward inter arrival time mean biat
20 max backward inter arrival time max biat
21 std dev backward inter arrival time std biat
22 duration of the flow duration
23 min active min active
24 mean active mean active
25 max active max active
26 std dev active std active
27 min idle min idle
28 mean idle mean idle
29 max idle max idle
30 std dev idle std idle
31 sub flow forward packets sflow fpackets
32 sub flow forward bytes sflow fbytes
33 sub flow backward packets sflow bpackets
34 sub flow backward bytes sflow bbytes
35 forward push counter fpsh cnt
36 backward push counter bpsh cnt
37 forward urg counter furg cnt
38 backward urg counter burg cnt

model to classify unknown traffic. During the training phase,
the training data is used to build clusters based on some
criteria of similarity, which will ideally separate the data
into similar clusters (groups). The resulting clusters need
then to be labelled, which is normally based on the class of
the majority of the flows in each cluster, if these clusters
will be used for identifying traffic. The second phase consist
of assigning a class to the flows to be identified, depending
on the label of the cluster that each flow is more similar to.
For the experiments presented here, this criteria of similarity
will be the Euclidean distance, defined by:

d(p, q) =

√√√√
n∑

i=0

(pi− qi)2

The three clustering algorithms selected for this work are
K-Means, DBSCAN, and EM. The selection of these algo-
rithms is based in part on the work of Erman et. al in [7],
in which the authors made a similar comparison. Further-
more, we also compared these systems to a semi-supervised



method proposed in [9]. Then, we compare the performance
of all these algorithms to the performance of the MOGA we
first proposed in [5]. The following subsections give a brief
explanation of these algorithms, more details can be found
in [7] and [9]. For the implementations of these algorithms
we used the K-Mean, DBSCAN, and EM provided by Weka
[17].

3.3.1 K-Means

K-Means clustering is a method of unsupervised learning,
which aims to partition n observations into K clusters in
where each observation belongs to the cluster with the near-
est mean. Erman et al. observed in their experiments that one
of the main advantages of the K-Means algorithm over other
clustering algorithms was the resulting clusters tended to be
mainly of a single application type [7]. In our experiment
we tested several values of K (20, 40, 60, 80, 100, 200, 300,
400), and selected the best result to be compared with the
other models. A more detailed explanation of the algorithm
can be found in [1].

3.3.2 Semi-supervised K-Means

We followed the semi-supervised approach proposed in [9],
in which high detection rates are achieved by labeling the re-
sulting clusters with only a small fraction of the training data
labeled. For this semi-supervised approach, we first trained
the model with only 5% of the original training data using K-
Means clustering. Then we labeled the clusters post training
where only 613 out of 12250 flows were labeled. We also
trained with larger data sets consisting of 32000 flows, with
80, 800, and 8000 of them labeled. Following the work in
[9], the K number of clusters was set to 400. In all of these
experiments the total number of SSH flows was 6000, so that
we had a base point of comparison with the other methods
presented. In addition, we also evaluated the effectiveness of
the weighted sampling approach proposed in [9]. We gener-
ated a 3602 flows training data, out of which only 180 flows
were labeled. For this approach we selected 50% of the flows
from below, and 50% of the flows above the 95th percentile
of the flow transfer size of our original training data (12250
flows).

Table 2: Features for Clustering Algorithms
Total Number of Packets= fpackets+bpackets
Total Caller to Calle Payload Bytes= fvolume-fhlen
Total Bytes= fvolume+bvolume
Total Caller to Callee Header Bytes= fhlen
Total Header(Transport + Network Layer)= fhlen+bhlen
Number of Callee to Caller Packets= bpacket
Average Packet Size= (fpktl + bpktl)/(fpackets + bpackets)
Total Callee to Caller Payload Bytes= bvolume-bhlen
Number of Caller to Callee Packets= fpacket
Total Callee to Caller Header Bytes= bhlen
Total Caller to Callee Bytes= fvolume

3.3.3 DBSCAN

DBSCAN [10] is a density based algorithm, so it regards
“clusters as dense areas of objects that are separated by
less dense areas” [7]. The main advantage of this algo-
rithms is that unlike K-Means, it is not limited to “spherical
shaped clusters but can find clusters of arbitrary shapes” [7].
The DBSCAN algorithm takes two input parameters, epsilon
(eps) and the number of minimum points (minPts). minPts is
the minimum required points to form a core object, and eps
is the distance between two objects to be considered “eps-
neighbors”. DBSCAN does not take as an input the number
of clusters to generate, it finds the optimum number of clus-
ters based on the minPts and eps. Also, unlike K-means and
EM, if an object is not part of an existing cluster it is consid-
ered noise [7]. Yang et al. provide a complete description of
DBSCAN in [19].

3.3.4 EM

The Expectation Maximization algorithm works with the
probabilities that each instance belong to each cluster [17].
The algorithm has two phases, an expectation phase and a
maximization phase. The parameters used by the algorithm
that “govern the distinct probability distribution of each clus-
ter” [7] are estimated during the expectation phase, and are
continually re-estimated during the maximization phase [7].
A more detailed explanation of the algorithm can be found in
[1].

3.4 Proposed Algorithm

In this section we provide a detailed explanation of the
MOGA for combined feature subspace selection and cluster-
ing. We also describe the post-training phase, used to deter-
mine which of a Pareto front of non-dominated solutions is
selected as the best individual and final solution. The entire
process is outlined in figures 1 and 2.

3.4.1 Feature Selection

Feature selection is “the process of choosing a subset of the
original predictive variables by eliminating redundant and
uninformative ones” [13]. By using a smaller number of fea-
tures we save significant computing time, and “often build
models that generalize better to unseen points” [13]. In
this work we took the feature selection model proposed by
YeongSeog et al. [13], and modified its evolutionary compo-
nent to follow the model proposed by Kumar et al. [14].
The latter ensures a convergence towards the Pareto-front
(set of non-dominated solutions) without any complex shar-
ing/niching mechanism. One specific property of this Ge-
netic Algorithm (GA) is the utility of a steady-state GA, thus
only one or two members of the population are replaced at a
time, figure 2.



3.4.2 GA for Feature Selection and Clustering

A GA starts with a population of individuals (potential
solutions to a problem), and incrementally evolves that
population into better individuals, as established by the
fitness criteria. Fitness is naturally relative to the population.
Then, for several iterations, individuals are selected to be
combined (crossover) to create new individuals (offspring)
under a fitness proportional selection operator. In order
to model the problem of feature selection to the GA, each
individual in the population represents a subset of features
f and a number of clusters K. Specifically, an individual is
a 60 bit binary string (100 bit string for our second set of
experiments), where bits between the first bit and the 38th
bit represent the features to include, and the remaining 21
bits represent the K number of clusters (remaining 61 for the
second set of experiments). The zeroth bit is related to the
port number so it is always ignored. Bits of the individuals
in the initial population are initialized with a uniform
probability distribution. For feature selection, a one implies
to include the feature at that index (from table1), and a zero
means to discard it. The K number of clusters, on the other
hand, is represented by the number of “ones” (as opposed
to “zeros”) contained between the 39th bit and the 59th bit,
plus two (between the 39th bit and the 99th bit for second set
of experiments). The reason for adding two is that zero or
one cluster would never be a solution. Clusters are identified
using the standard K-means algorithm, using that subset of
features f, and the number of clusters K, as the input for
the K-means algorithm. Like on the previously discussed
algorithms, we used the K-means algorithm provided by
Weka [17]. The fitness of the individual will then depend
on how well the resulting clusters perform in relation to the
following four predefined clustering objectives:

-Fwithin (measures cluster cohesiveness, the more co-
hesive the better). We calculate the average standard
deviation per cluster. That is, per each i’th cluster, the sum
of the standard deviations per feature over the total number
of employed features. Then Fwithin will be K over the sum
of all the clusters’ average standards.

-Fbetween (measures how separate the clusters are from
each other, the more separated the better). For each pair of
cluster i and j, we calculate its average standard deviations
and we also calculate the euclidean distance between its
centroids. Then, Fbetween for clusters i and j is:

Fbetween(i, j) =
EuclideanDistanceFrom i to j√
(AveStdDevi)2 + (AveStdDevj)2

Thus, Fbetween will be the sum of all pairs of clus-
ter’s Fbetween(i,j) , over K.

-Fclusters (measures the number of clusters K, “Other
things being equal, fewer clusters make the model more

understandable and avoid possible over fitting”[13]).

Fclusters = 1− K −Kmin

Kmax−Kmin

Kmax and Kmin are the maximum and minimum num-
ber of clusters.

-Fcomplexity (measures the amount of features used to
cluster the data, this objective aims at minimizing the
number of selected features)

Fcomplexity = 1− d− 1
D − 1

D is the dimensionality of the whole dataset and d is
the number of employed features.

Instead of combining these objectives into a single ob-
jective, this model followed a multi-objective approach,
which has the goal to approximate to the Pareto front,
or set of non-dominated solutions. Informally, a solution
is said to dominate another if it has higher values in at
least one of the objective functions (Fwithin, Fbetween,
Fclusters, Fcomplexity), and is at least as good in all the
others. After the objective values for each individual have
been assessed, individuals are assigned with ranks, which
indicate how many individuals dominate that particular
individual. Finally, the fitness of the individuals is inversely
proportional to their ranks, which is used to build a roulette
wheel that is ultimately used for parental selection under the
aforementioned steady state model. The initial population
is evolved for 5000 epochs, after which we consider the set
of non-dominated individuals from it (individuals whose
ranks equal to 1). These individuals correspond to the
set of potential solutions. The evolutionary component of
the algorithm is then terminated and the best individual
in the set of non-dominated solutions (the one that better
identifies SSH traffic) is identified in the post-training phase.
We take each individual from the set of non-dominated
solutions, apply K-Means with its proposed set of features
f and number of clusters K, and label its clusters as SSH
or NON-SSH. If the majority of the flows in a cluster have
SSH labels, then that cluster is labeled as SSH, otherwise
it is labeled as non-SSH. Then, the post-training phase
consists of testing each of the non-dominated individual in
our training data (used to build the clusters on), to identify
the solution with best classification rate, which will be the
final solution.

4. Experiments and Results

In traffic classification, two metrics are typically used to
quantify performance: Detection Rate (DR) and False



Figure. 1: System Diagram

Figure. 2: Evolutionary Component Diagram

Positive Rate (FPR). In this case, DR will reflect the number
of SSH flows correctly classified, and FPR will reflect the
number of Non-SSH flows incorrectly classified as SSH.
Given that the encrypted traffic only forms a few percent of
the traffic in real life, false positive rates are very important
on such heavily unbalanced data sets as a performance
indicator. As we can observe, a high DR and a low FPR
would be the desired outcomes.

DR = 1− #false negatives

total number of SSH flows

FPR =
#false positives

total number of non SSH flows

false negatives means SSH traffic incorrectly classified
as non-SSH traffic.

4.1 K-Means Results

For the basic K-Means algorithm we tried values of K from
20 to 400 (table 3). The best combination of DR and FPR
was obtained with K = 100, which achieved a DR of 98%
and a FPR of 11%.

Table 3: K-Means Results
Number of clusters DR FPR

20 90% 13%
40 94% 11%
60 97% 11%
80 97% 11%

100 98% 11%
200 98% 15%
300 98% 15%
400 98% 15%

4.2 Semi-supervised K-Means Results

For the semi-supervised model proposed in [9], we first test
with the same training data (12250 flows), with K= 400 (as
done in [9]), but only considering the labels of 5% (613) of
the flows when labeling the clusters. The DR for that exper-
iment was 90.1% and the FPR was 0%. Then we expanded
the training data to 32,000 flows, considering the labels of 80,
800, and 8000 of the flows when labeling the clusters (table
4). The highest DR, 98.9%, was achieved with 8000 labelled
flows. However, the FPR was 19%, which is much higher
than the other results. Thus, the best combination of DR and
FPR was achieved with only 800 of the flows labelled, which
gives a DR of 92.0% with a 0% FPR. Also, in evaluating
the effectiveness of the weighted sampling approach, we ob-
tained a DR of 90% and FPR of 0%, which is the same we
obtained without the weighted sampling method. However,
with the weighted sample approach the training data con-
sisted of only 3602 flows, with 180 of them labeled. Thus,
from these results we can observe that the weighted sam-
ple approach achieves good results with a very small training
data.

Table 4: Semi-Supervised Results
K # labelled flows DR FPR

400 80 90.8% 0%
400 800 92.0% 0%
400 8000 98.9% 19%

4.3 DBSCAN Results

The results obtained with DBSCAN are displayed in figure
3. The y axis represent the detection rate and the x axis repre-
sent the eps. We experimented with several values for minPts
(3, 6, 9, 12) and with several values for eps (0.01, 0.02, 0.04,
0.06, 0.08). The best results were achieved with minPts= 3
and eps= 0.02, with a DR of 47.4% and FPR of 47%.



Figure. 3: DBSCAN Results

Figure. 4: Non-dominated individuals length 60.

4.4 EM Results

For the EM algorithm we tried with the number of clusters
between 100 and 400 (table 5). The best results are achieved
with the number of clusters being 400, which gives a high
DR, 96.4%, while at the same time keeping the FPR rela-
tively low, 5%.

Table 5: EM Results
Number of clusters DR FPR

100 0.938 0.079
200 0.958 0.076
300 0.975 0.106
400 0.964 0.05

4.5 MOGA Results

The MOGA was run in two sets of experiments, of 25 runs
each. In the first set of experiments the length of the indi-
viduals in the population was 60, which allowed the indi-
viduals to cluster with a minimum K of 2, and a maximum
K of 23. In the second set of experiments the length of the
individuals was 100, allowing the K number of clusters to
be up to 63. The first set of experiments generated a total
of 1173 non-dominated individuals (figure 4). The second

Figure. 5: Non-dominated individuals length 100.

set of experiments generated a total of 869 non-dominated
individuals (figure 5). Out of those individuals, we identi-
fied in the post-training phase the ones that had the lowest
FPR (under 1%) and the highest DR. We considered those
individuals to be our final solutions. Figures 4 and 5 dis-
play the plot of the candidate solutions in the post-training
phase for both sets of experiments. The x-axis represents
the FPR and the y-axis represents the DR. The best indi-
vidual in the first set of experiments, which is represented
by a larger black square instead of a gray diamond in fig-
ure 4, achieved a DR of 94.9% and a FPR of 0.9% in the
post training phase. That same individual achieved a DR of
90.9% and a FPR of 1.5% in the test data. This final solution
employed 22 out of the 38 available features, and clustered
the data into 10 clusters. The best individual in the second
set of experiments, which is represented by a larger black
square instead of a gray diamond in figure 5, achieved a DR
of 95.8% and a FPR of 0.8% in the post training phase. That
same individual achieved a DR of 93.5% and a FPR rate of
0.7% in the test data. This final solution employed 18 out of
the 38 available features, and clustered the data into 36 clus-
ters. Thus, these solutions not only achieved very promising
results in terms of DR and FPR, but also considerably de-
creased the number of employed features, and clustered the
data with a relatively low value of K clusters, both very de-
sirable outcomes. Out of the 38 features described in table 1,
the 100 bit individual solution (second set of experiments),
employed the following 18 features: proto, total bvolume,
mean fpktl, max fpktl, std fpktl, std bpktl, min fiat, min biat,
mean biat, min active, min idle, sflow fpackets, sflow fbytes,
sflow bpackets, sflow bbytes, fpsh cnt, bpsh cnt, and
burg cnt.

4.6 Time Analysis

One clear advantage of being able to obtain a high DR and
a low FPR with a low number of clusters is the time in-



volved in both, building the models, and testing the data.
We measured both the building time, and the test time for
all the models here described (table 6). Specifically, we mea-
sured the algorithms with the parameters that produced the
best results in our previously described experiments. Thus,
for the K-Means algorithm we employed K= 100, and for the
semi-supervised K-Means we employed K= 400. It should
be noted that in the case of the semi-supervised K-Means
the training data was about three times larger than with the
other algorithms (32,000 flows). For the DBSCAN algorithm
we employed eps= 0.02 and minPts 3, and for the EM algo-
rithm we employed K= 400. For the MOGA, we tested the
two individuals that were selected as the best individuals in
each of the two conducted sets of experiments. These re-
sults show a considerable advantage of the MOGA over all
the other algorithms, except DBSCAN. However, the DR ob-
tained with DBSCAN was much lower. We conducted these
experiments on a standard PC with an Intel(R) Core(TM) 2
Duo CPU T6400@ 2.00 GHz, with 4 GB of memory.

Table 6: Time Results
Algorithm # cl Build time Test time
K-Means 100 00:02:19 00:49:29
K-Means (semi-sup.) 400 00:22:32 03:07:55
DBSCAN (mP.=3) 36 00:04:30 00:05:43
EM 400 00:37:01 03:54:15
MOGA (ind 60) 10 00:00:11 00:18:09
MOGA (ind 100) 36 00:01:55 00:35:10

5. Conclusions

In this work we compared the performance of basic K-
Means, semi-supervised K-Means, DBSCAN, EM, and
MOGA, to identify encrypted traffic, specifically SSH on our
data sets. Our results show that the MOGA obtained better
performance in terms of combined DR, FPR, and computati-
noal cost (measured in CPU time). MOGA also clustered
the data with a very small value of K, which is very de-
sirable for a potential implementation of an encrypted traf-
fic detection system. In this case, MOGA’s best individual
achieved a detection rate of 93.5% and a false positive rate
of 0.7%, whereas it employed only 18 out of the 38 available
features and clustered the data in only 36 clusters. The fact
that MOGA was able to cluster the data with a much smaller
number of clusters, provided a noticeable advantage over the
other presented algorithms in terms of the amount of time
needed to both building the models and testing/running them
on real life data sets. With regards to the semi-supervised
model proposed by Erman et. al in [9], we observed that the
weighting sampling method could achieve good results with
a very small training data. Thus, for future work, we are in-
terested in employing MOGA under a semi-supervised con-
text with a weighted sampling method. Moreover, we also
aim to apply this methodology to other types of encrypted
traffic such as Skype.

Acknowledgments

This work is supported by ISSNet - NSERC Strategic
Network and the CFI new opportunities program. Our
thanks to John Sherwood, David Green and Dalhosuie
UCIS team for providing us the anonymozied Dalhousie
traffic traces. All research was conducted at the Dal-
housie Faculty of Computer Science NIMS Laboratory,
http://www.cs.dal.ca/projectx.

References

[1] E. Alpaydin. Introduction to Machine Learning. MIT
Press, 2005.

[2] R. Alshammari and A. Zincir-Heywood. A flow based
approach for ssh traffic detection. In Systems, Man and
Cybernetics, 2007. ISIC. IEEE International Confer-
ence on, pages 296–301, Oct. 2007.

[3] R. Alshammari and A. Zincir-Heywood. Investigating
two different approaches for encrypted traffic classifi-
cation. In Privacy, Security and Trust, 2008. PST ’08.
Sixth Annual Conference on, pages 156–166, Oct. 2008.

[4] R. Alshammari and A. Zincir-Heywood. Generalization
of signatures for ssh traffic identification. In IEEE Sym-
posium Series on Computational Intelligence, 2009.

[5] C. Bacquet, A. Zincir-Heywood, and M. Heywood. An
investigation of multi-objective genetic algorithms for
encrypted traffic identification. In International Work-
shop on Computational Intelligence in Security for In-
formation Systems, CISIS’2009, 2009.

[6] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and
K. Salamatian. Traffic classification on the fly. SIG-
COMM Comput. Commun. Rev., 36(2):23–26, 2006.

[7] J. Erman, M. Arlitt, and A. Mahanti. Traffic classi-
fication using clustering algorithms. In MineNet ’06:
Proceedings of the 2006 SIGCOMM workshop on Min-
ing network data, pages 281–286, New York, NY, USA,
2006. ACM.

[8] J. Erman, A. Mahanti, and M. Arlitt. Qrp05-4: Internet
traffic identification using machine learning. In Global
Telecommunications Conference, 2006. GLOBECOM
’06. IEEE, pages 1–6, 27 2006-Dec. 1 2006.

[9] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and
C. Williamson. Offline/realtime traffic classification
using semi-supervised learning. Perform. Eval., 64(9-
12):1194–1213, 2007.

[10] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spa-
tial databases with noise. In E. Simoudis, J. Han, and
U. M. Fayyad, editors, Second International Conference
on Knowledge Discovery and Data Mining, pages 226–
231. AAAI Press, 1996.

[11] IETF. http://www.ietf.org/.



[12] G. Junior, J. Maia, R. Holanda, and J. de Sousa. P2p
traffic identification using cluster analysis. In Global
Information Infrastructure Symposium, 2007. GIIS
2007. First International, pages 128–133, July 2007.

[13] Y. Kim, W. N. Street, and F. Menczer. Feature selection
in unsupervised learning via evolutionary search. In
KDD ’00: Proceedings of the sixth ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, pages 365–369, New York, NY, USA, 2000.
ACM.

[14] R. Kumar and P. Rockett. Improved sampling of the
pareto-front in multiobjective genetic optimizations by
steady-state evolution: a pareto converging genetic al-
gorithm. Evol. Comput., 10(3):283–314, 2002.

[15] NetMate.
http://www.ip-measurement.org/tools/netmate.

[16] PacketShaper.
http://www.packeteer.com/products/packetshaper.

[17] WEKA. http://www.cs.waikato.ac.nz/ml/weka/.

[18] C. V. Wright, F. Monrose, and G. M. Masson. On in-
ferring application protocol behaviors in encrypted net-
work traffic. J. Mach. Learn. Res., 7:2745–2769, 2006.

[19] C. Yang, F. Wang, and B. Huang. Internet traffic clas-
sification using dbscan. In Information Engineering,
2009. ICIE ’09. WASE International Conference on,
volume 2, pages 163–166, July 2009.

[20] L. Yingqiu, L. Wei, and L. Yunchun. Network traffic
classification using k-means clustering. In Computer
and Computational Sciences, 2007. IMSCCS 2007.
Second International Multi-Symposiums on, pages 360–
365, Aug. 2007.

Author Biographies

Carlos Bacquet obtained a Bachelor of Computer Science
from Dalhousie University, in Halifax, NS, Canada, in 2008
and is currently a MCS student at Dalhousie University. He
also works part time as an R&D consultant for companies
based in the Maritime Provinces of Canada. His research
interests include but are not limited to the areas of Encrypted
Traffic Identification, Genetic Programming and Machine
Learning.

A. Nur Zincir-Heywood recieved the Ph.D degree in
network information retrieval from the Department of Com-
puter Engineering, Ege University, Izmir, Turkey, in 1998.
She is an Associate Professor with the Computer Science
Department, Dalhousie University, Halifax, NS, Canada.
From 1996 to 1997, she was a Visiting Researcher at the
IIMS Research Center, School of Engineering, University of
Sussex, Brighton, U.K. Previous to her current position, she
was an Assistant Professor with the Department of Computer
Engineering, Ege University (1998 - 2000). She has also
been involved with Network Technology Workshops of

Internet Society as an Instructor from 1997 to 2000. Her re-
search interests include intrusion detection, network security,
network management, and network information retrieval.
She has published journal and conference papers in these
areas, and has been involved in projects concerning network
security and information systems. Dr. Zincir-Heywood is a
member of the Association of Computing Machinery (ACM)
and the Institute of Electrical and Electronic Engineers
(IEEE).


