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Abstract

This paper presents a genetic programming based detec-
tion system for Data Link layer attacks on a WiFi network.
We explore the use of two different fitness functions in order
to achieve both a high detection rate and a low false posi-
tive rate. Results show that the detection system developed
can achieve a detection rate above 90% and a false positive
rate below 1%.

1 Introduction

The wireless network protocol IEEE 802.11, also re-
ferred to as WiFi, is a protocol which has been deployed in
a growing number of locations and environments. This di-
versity has resulted in deployments of varying purposes and
goals, from providing a household with an inexpensive local
area network (LAN), to supporting an entire office building.
Due to this growing popularity and exposure, an increasing
number of exploits are being discovered, undermining the
use of the 802.11 network protocol.

The very nature of a wireless network, no matter the pro-
tocol being used, opens the network up to vulnerabilities not
present in wired networks. These issues are due to data be-
ing transferred over open airwaves, where anyone with the
appropriate device can intercept the signal. To solve this
openness, WiFi networks provide security features, such as
encryption and client verification. These measures, being
important to the overall trust and use of the WiFi protocol,
have received the majority of emphasis in research and de-
velopment. Unfortunately, these solutions do not cover all
the possible weaknesses in the 802.11 protocol. There are
other known exploits with the 802.11 protocol that allow
users of malicious intent to disrupt the use of the network
by attacking the lower layers of the protocol, rendering the
network unusable by its clients.

Traditionally, intrusion detection systems (IDSs) are
used to detect attacks against the integrity, confidentiality
and availability of computer networks [13]. In order to build
effective IDSs and automate the detection process, various
machine learning and data mining techniques have been
proposed. These techniques include neural networks [15],
data mining [20], decision trees [18], genetic algorithms
(GA) [16, 11], and genetic programming (GP) [19, 12, 3].
In general, data mining techniques are introduced to iden-
tify key features and machine learning and AI techniques
are introduced to automate the classification of normal and
attack traffic / behavior on the network. To the best of our
knowledge, works utilizing genetic algorithms and genetic
programming were all based on the TCP/IP protocol stack.
This corresponds to the third and fourth layers of the net-
work stack. On a WiFi network running a TCP/IP protocol
stack, however, there exist attacks based on vulnerabilities
in the physical and data link layers, the first and second lay-
ers respectively.

Moreover, past work applying evolutionary methods to
network intrusion detection has focused on connection-
based attacks. In doing so, much progress has been made in
providing an efficient and effective intrusion detection sys-
tem (IDS) using GP as the tool to create the rules in which
to detect attacks [19]. This does not necessarily make a GP
or GA based IDS effective in detecting network protocol
specific attacks at layer one and two, such as in the case of
WiFi networks.

In this paper we present our work towards developing
a GP based IDS for Layer 2 attacks, using known WiFi
network exploits for training and testing. By using past
research as a starting point, we aim to build on the past
successes (quick training time, transparent solutions) while
adapting to the challenges of intrusion detection on the WiFi
network.

The remainder of this paper is organized as follows: Sec-
tion 2. details the background information on WiFi net-
works. Section 3 describes the GP technique employed.



Section 4 details our approach for developing GP based
IDS. Section 5, presents the results and conclusions are
drawn in Section 6.

2 WiFi Networks

This work is focused on WiFi networks. Such networks
have increased in popularity over the past few years, so
much so that their use as a last mile solution for Internet
connectivity has become common, with homes and busi-
nesses alike. It has become so popular, that in the year 2001,
the market for WiFi networks exceeded $1 Billion Dollars
[1]. This wide spread (and growing) deployment of WiFi
networks makes them a growing area for research, both in
improvement of service, but also in security and reliance
of the service they provide. In this section, we discuss the
basics of WiFi networks, current security features and the
known exploits of the WiFi protocol. This is not an exhaus-
tive description of the WiFi protocol, as that is beyond the
scope of this paper.

2.1 Topology of a WiFi Network

WiFi networks, in a broad sense, consist of clients
communicating via the wireless connection protocol IEEE
Std 802.11b [8]. The clients are anything from laptops with
WiFi enabled network interfaces (wireless cards), WiFi
enabled PDAs, or even access points that connect the WiFi
network to another type of network.

WiFi networks can be classified in two categories:

Ad-Hoc Networks composed solely of stations within mu-
tual communication range of each other via the wire-
less medium (WM). An ad-hoc network is typically
created in a spontaneous manner [8].

Managed (or infra-structured) Networks composed of a
distribution system medium (DSM, such as an Ether-
net LAN), an access point (AP), and clients [8]. An
example could be an access point connected to a LAN,
that has zero or more clients connected to it via WiFi.
The access point is the central “manager” of the net-
work.

We only mention Ad-Hoc WiFi networks here for com-
pleteness, as our work focuses on Managed WiFi networks.
It is important to note that the most basic components of
a managed network are an access point and its clients. If
you are to remove the access point from the network, the
clients lose their connection and do not regain the connec-
tion through connecting directly to each other (which would
make it an Ad-Hoc network). This distinction is important

for our work. From this point on, we are discussing man-
aged networks only, even though some statements would
hold true for ad hoc networks as well.

2.2 Management Frames

WiFi networks have a series of MAC frame types, as de-
scribed in the IEEE 802.11 Standard (see [8]). Of concern
for our work are the management frames which manage the
OSI Layer 2 of the 802.11 protocol. The management frame
type allows clients to associate with (or conversely disasso-
ciate from) the network via an access point (AP), as well
as maintaining a channel for communications to proceed.
We focus on a subset of the management frame subtypes;
Association request , Deauthentication and Disassociation.
These subtypes allow clients to join, leave, and be told to
leave WiFi networks.

In order for a client to establish a connection with an
existing WiFi network, it first needs to associate with an
AP. This association is established through searching for an
access point on a specific BSSID (basic service set identifi-
cation, an identifier of a specific WiFi network) on a given
channel (usually on a range of channels). Once the client
has found an access point on the desired BSSID and chan-
nel, the following procedure is used to establish a connec-
tion with the AP (simplified from [8]) :

1. The client can transmit an association request to an AP
with which that client is authenticated.

2. If an Association Response frame is received with a
status value of successful, the client is now associated
with the AP.

3. If an Association Response frame is received with a
status value other than successful or a timeout value
passes, the client is not associated with the AP.

This procedure relies on a one-way trust, the client trust-
ing the validity of the AP, not visa versa. This distinction
is important. At no time does the client require that the AP
prove that it is a valid AP.

A procedure exists for a client to disassociate itself from
a network. As described in the IEEE 802.11 Standard ([8]),
in order to disassociate, the client must send a disassociation
subtype management frame. This frame type can be sent in
either direction, from the client to the AP or from the AP to
the client. The frame contains the hardware address of the
client that is being disassociated (the broadcast address in
the case of an AP disassociating with all associated clients).
It also contains the hardware address of the AP with which
the client is currently associated. [8]

Similarly, a client or AP can invalidate an active authen-
ticated connection through the use of de-authentication sub-
type of the management frame type. This frame can again



be sent from a client to an AP, an AP to a client, AP to AP, or
even client to client. This frame subtype contains the same
information as the disassociation subtype.

2.3 Known Exploits

The 802.11 Data Link layer (OSI Layer 2) includes func-
tionality that addresses issues specific to a wireless net-
work [1]. For example, the ability to search for networks,
broadcast networks, join and leave networks are all taken
care of by Data Link layer frames, specifically management
frames. As mentioned earlier (and in other works [1]), there
is an implicit trust in the Ethernet address of the sender of
a management frame. This implicit trust opens up the door
to a group of Denial of Service (DoS) attacks on the 802.11
network. If a malicious client, or hacker, fakes its Ethernet
address (a trivial task with most operating systems and a
small Internet search) it can then send management frames
onto an WiFi network with the network assuming the hard-
ware address is valid. This can cause problems if the hard-
ware address has been set to that of another valid client, or
to that of a valid access point.

With the increase in deployment of WiFi networks, the
number of tools to exploit them has also seen a rise. Au-
thors are aware of several tools that allow a client to create
DoS attacks, specifically Airjack [14], void11 [10] and an
entire boot-able CD, Auditor Security Collection [4]. It is
important to note that the tools mentioned here are readily
available on the Internet, and in all cases have been pro-
vided for the use of research, not for malicious use. For ex-
ample the Auditor Security Collection includes many tools
that are for general network monitoring. With the availabil-
ity of such tools and the relative simplicity of implementing
them, however, one can deduce that these types of DoS at-
tacks pose a real threat to the usability of WiFi networks.

DoS attacks are not the only exploits or security weak-
nesses that exist on WiFi networks. Much work has been
done in addressing other security concerns. Papers such
as [5] and [2] point out security weaknesses of the encryp-
tion algorithms implemented on WiFi networks, and that
is assuming the network administrators have enabled en-
cryption. This is not always a fair assumption given the
wide spread adoption of WiFi network for home network-
ing, where the network administrator could be assumed to
have no networking knowledge at all. This has resulted in a
slew of acronyms, protocols and protocol extensions (WEP,
WPA, RADIUS, 802.11g, 802.11i, 802.1X) that have all
tackled issues from speed to security concerns; however, to
the best of our knowledge none of these deal with ensuring
that the network remains usable. By this we mean that it is
still possible to perform simple forms of DoS attacks even
on the newest and latest protocol version of 802.11. For
this purpose, we have chosen to focus on a specific subset

of DoS attacks, described below.

2.4 DoS Attacks

The DoS attack we focus on in this work is that caused by
the attacker sending de-authentication frames onto the wire-
less network (as shown in Figure 1) . An attacker chooses
a target on the network (which has been gathered by ac-
tively monitoring the WiFi network traffic using a tool such
as kismet [9]) and then spoofs their Ethernet address. At
this point, the attacker then sends a de-authentication attack
to the accesspoint in which the target is associated. This
causes the accesspoint to send a de-authentication frame
back at the target, removing the target from the network,
preventing it from sending or receiving any further com-
munications. The duration of which the target remains re-
moved from the network depends on the frequency in which
it attempts to regain network access.

The vulnerabilities discussed in this section result
directly from this additional functionality and can
be broadly placed into two categories: identity and
media-access control.

3.1 Identity Vulnerabilities

Identity vulnerabilities arise from the implicit
trust 802.11 networks place in a speaker’s source
address. As is the case with wired Ethernet hosts,
802.11 nodes are identified at the MAC layer with
globally unique 12 byte addresses. A field in the
MAC frame holds both the senders and the receivers
addresses, as reported by the sender of the frame.
For “class one” frames, including most management
and control messages, standard 802.11 networks do
not include any mechanism for verifying the correct-
ness of the self-reported identity. Consequently, an
attacker may “spoof” other nodes and request var-
ious MAC-layer services on their behalf. This leads
to several distinct vulnerabilities.

3.1.1 Deauthentication

Exemplifying this problem is the deauthentication
attack. After an 802.11 client has selected an access
point to use for communication, it must first authen-
ticate itself to the AP before further communication
may commence. Moreover, part of the authentica-
tion framework is a message that allows clients and
access points to explicitly request deauthentication
from one another. Unfortunately, this message it-
self is not authenticated using any keying material.
Consequently the attacker may spoof this message,
either pretending to be the access point or the client,
and direct it to the other party (see Figure 1). In
response, the access point or client will exit the au-
thenticated state and will refuse all further pack-
ets until authentication is reestablished. How long
reestablishment takes is a function of how aggres-
sively the client will attempt to reauthenticate and
any higher-level timeouts or backoffs that may sup-
press the demand for communication. By repeating
the attack persistently a client may be kept from
transmitting or receiving data indefinitely.

One of the strengths of this attack is its great
flexibility: an attacker may elect to deny access to
individual clients, or even rate limit their access, in
addition to simply denying service to the entire chan-
nel. However, accomplishing these goals efficiently
requires the attacker to promiscuously monitor the
channel and send deauthentication messages only
when a new authentication has successfully taken
place (indicated by the client’s attempt to associate
with the access point). As well, to prevent a client
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Figure 1: Graphical depiction of the deauthentica-
tion attack. Note that the attacker needs only gen-
erate one packet for every six exchanged between the
client and access point.

from “escaping” to a neighboring access point, the
attacker must periodically scan all channels to en-
sure that the client has not switched to another over-
lapping access point.

3.1.2 Disassociation

A very similar vulnerability may be found in the as-
sociation protocol that follows authentication. Since
a client may be authenticated with multiple access
points at once, the 802.11 standard provides a spe-
cial association message to allow the client and ac-
cess point to agree which access point shall have
responsibility for forwarding packets to and from
the wired network on the client’s behalf. As with
authentication, association frames are unauthenti-
cated, and 802.11 provides a disassociation message
similar to the deauthentication message described
earlier. Exploiting this vulnerability is functionally
identical to the deauthentication attack. However,
it is worth noting that the disassociation attack is
slightly less efficient than the deauthentication at-
tack. This is because deauthentication forces the
victim node to do more work to return to the as-

Figure 1. Graphical depiction of a de-
authentication attack. [1]

This attack, simple in its implementation, is effective for
several reasons. The first reason is that the attacker can
choose the scope of the attack, be it a single network client,
several, or an entire network (by choosing the access point
itself as the spoofed address). The result is that an attacker
can completely disrupt all communications on a single net-
work, no matter how many clients the network may have.
Secondly, if the attacker has targeted a single client, once
the client is removed from the network the attacker can then
continue with several other attacks, such as a man in the
middle attack [17].

With WiFi networks, a client does not require a fixed,



physical link to the network, only to be in range of the
networks signal in order to gain a connection is enough to
launch an attack. This freedom allows client machines to
attempt malicious behavior from locations that are harder
to pinpoint (i.e they could be outside the building, etc), ren-
dering the network even more vulnerable to attacks. Due
to this added vulnerability, combined with the simplicity of
the de-authentication attack, we consider this to be a real se-
curity threat, one that requires a system to detect and notify
the network administrators in a quick and reliable manor.

3 GP Based Intrusion Detection Systems

Due to previous success in application of GP based IDSs
to higher level attacks [19], we have chosen to take the same
approach in creating an IDS for layer two attacks. In pre-
vious work, a page based linearly structured GP was em-
ployed [7] as well as the utilization of a RSS-DSS algorithm
which scales GP to data sets consisting of hundred of thou-
sands of exemplars [19]. For the work we present here, we
have used a similar approach, but concentrated on the de-
vopment of an appropriate fitness function and feature set
using common DoS attacks on WiFi networks for training
and testing of the system.

For this work, our goal is to not only to develop a ma-
chine learning technique to detect attacks exploiting known
layer 2 faults with the WiFi protocol with a high accuracy
and low false positive rate, but also be able to develop these
solutions in a quick, transparent matter. By doing so, the
solution in which the GP develops can easily be justified
through domain knowledge and be deployed for use as sig-
natures even in standard IDSs such as Snort-wireless.

3.1 Linear Page Based Genetic Programming

Linear Page Based GPs consist of a sequence of integers
that once decoded, form the basis of a program in which the
output is taken from the best performing register, as defined
by the fitness function. In order to decode this linear set of
instructions, each integer is mapped to a valid instruction
from the defined instruction set. The instruction set consists
of operands and either a source or destination register. The
operands in our work are a set of register arithmetic func-
tions, while the source and destinations are a set of valid
general-purpose registers. The decoding of a sequence then
creates a program that consists of simple register level trans-
formation [19]. Upon completion of execution of the pro-
gram, the output is taken from the best performing register.

The sequence of integers are grouped in pages, each
page consisting of the same number of integers (therefore
the same number of instructions). The crossover operation
performs a crossover on an entire page, preserving the total

number of pages in an individual. The mutation operator se-
lects one instruction with uniform probability and performs
an Ex-OR operation between this and a bit sequence created
with uniform probability. A second crossover operator per-
forms a swap of two instructions within the same individual
(selected again with uniform probability) [7]. The page size
itself, which controls the number of instructions per individ-
ual, is dynamically modified depending on the fitness level
of the population. If the fitness level has not changed for
a specified window, the page size is increased. This pat-
tern will continue until a maximum page size is reached,
at which point the page size is dropped back down to the
initial starting page size. This entire process is continued
until the GP has reached either optimal fitness, or some sort
of previously set stopping criteria. Results show that the
dynamic page size algorithm is significantly more efficient
then a fixed page size [7].

3.2 RSS-DSS Algorithm

The Random Subset Selection - Dynamic Subset Selec-
tion (RSS-DSS) algorithm mentioned above is a technique
implemented in order to reduce the computational overhead
(therefore time to train the GP) involved with applying GPs
to large data sets. To do so, the RSS-DSS algorithm uti-
lizes a hierarchical sampling of training exemplars, dividing
the problem into two levels [19]. We present here a brief
overview of how the algorithm functions for completeness,
as we have implemented it in our GP, but it is not the focus
of our work.

The first level of RSS-DSS divides the training set into
blocks of equal size, the second level chooses (stochasti-
cally) a block and places it in memory (RSS). Level 2 per-
forms the DSS step, as it dynamically selects a subset of the
set in memory (the tournament selection). The dynamic se-
lection is based on two metrics the GP maintains, the age of
the exemplar and the apparent difficulty of the exemplar [6].
The tournament individuals are then trained on the current
subset, genetic operators are applied, and then placed back
in the subset. This DSS is continued until a maximum num-
ber of DSS iterations or a stopping criteria is met, then the
algorithm returns to the RSS step, selecting another block
to place in memory and repeats DSS. This entire process
continues until a maximum number of RSS iterations or the
stop criteria has been met.

The RSS-DSS algorithm removes the requirement to
train on the entire data set, instead using only a small subset
of the data set that represents the more difficult or least re-
cently encountered exemplars. This allows the GP to train
more efficiently then standard techniques, with results be-
ing comparable or better than more common GP training
techniques [19].



4 Approach

Our L-GP based IDS requires training and testing on la-
beled data sets. That is to say, we require data files that have
a fixed number of input fields per line, with a corresponding
output field indicating wether the line represents an attack
(binary 1) or normal (binary 0) exemplar. Each exemplar
represents a management packet on a WiFi network. To the
best of authors’ knowledge, no known public database ex-
ists of wireless network traffic to use in training IDSs based
on learning algorithms. To this end, we first set upon creat-
ing such a data set in order to train and test our L-GP based
IDS.

In order to create data sets, we attacked a test network
consisting of 7 clients, one access point, a hacker laptop and
a monitoring machine. The AP was the latest Apple Airport
Base Station, the clients were a Macintosh Mini, Macin-
tosh iBook (both running the Mac OS X 10.4.1 operating
system) and 5 Palm Tungsten C PDAs (running Palm OS
5.2.1). The clients connected to the AP via an 802.11b net-
work on channel 6. The attack machine was an HP Tablet
PC using a Prism 2 based WiFi card running the Auditor
Security Collection (a Knoppix variant) operating system.
The monitoring machine was an Intel based Desktop com-
puter running Debian and using Kismet for monitoring the
wireless network of the AP.

Using this network we implemented a DoS attack di-
rected at the AP. The packet stream gathered via the moni-
toring machine indicated that the attack required a stream
of management frames of subtype 12 (indicating a de-
authentication frame) with the source and BSSID Ethernet
addresses to be that of the target, and the destination address
to be that of the broadcast address (ff:ff:ff:ff:ff:ff). The fre-
quency and duration of the transmission of the attack frames
depended upon the desired persistence of the attacker, in our
experiments we applied a number of attacks, varying in du-
ration (in both time and number of attack frames sent).

Upon completion of the attacks on the test network,
the packet dump file was replayed through Snort (with the
snort-wireless patches applied) in order to validate (and
for later comparison) our attack procedures. Snort was
chosen as it is both a common IDS as well as open source.
This allows us to easily implement the system as well as
analyze how it detects the de-authentication attack. Snort
uses a signature based on certain user defined metrics to
detect de-authentication attacks. The two most crucial
metrics are the number of de-authentication frames that
are to be considered an attack, and the time window in
which this number must be met. By defining these numbers
appropriately, we can configure Snort to detect all of the
attacks we implemented on the network (or conversely if
we cannot choose appropriate metrics, Snort can detect
none of them). The output of Snort on our testing data set

is shown below:

11/30-17:02:26.730859 Deauth flood
reported
Assoc. Req. 0:3:93:EC:64:55 − >
FF:FF:FF:FF:FF:FF
bssid: 0:3:93:EC:64:55 Flags: Wep Ord

11/30-17:03:10.655207 End Deauth flood
: − > Addr dst: ff:ff:ff:ff:ff:ff,
3971 deauth frame reported.

This indicates that Snort successfully detected our attack
(and created no false positive, i.e did not indicate an attack
where one did not exist). It is important to note, that had
we defined the Snort configuration file with different met-
rics for the attack, it would have missed the attack. In this
work, our objective is to eliminate this reliance on a priori
knowledge so that a solution developed by a GP based IDS
would not require it.

As mentioned earlier, the data we use is made up of man-
agement frame packets. A management frame on a WiFi
network consists of several fields. For our L-GP based IDS,
we choose to train and test on the following features ex-
tracted from the management frames:

1. Frame Control - indicates the subtype of the frame

2. DA - destination address of the packet

3. SA - sender address of the packet

4. BSSID - Ethernet address of the access point

5. Fragment Number - from the sequence control field

6. Sequence Number - from the sequence control field

7. Channel - the channel the transmission is occurring
over

In total, this gives us seven inputs, and one output (attack
label). This feature set from each packet was chosen based
on our knowledge of the attack type. Our work here is to
see if the GP can use this information to then learn to detect
the attack.

4.1 Fitness Function selection

In intrusion detection, two metrics are typically used in
order to quantify the performance of the IDS:

(i) Detection rate (DR)

(ii) False Positive rate (FP rate).



A high DR and low FP rate would be the desired out-
comes. In the instance of an unbalanced data set (more of
one type of exemplar then the other, in our case more nor-
mal than attack) an evolved solution can survive by simply
learning to label all of the exemplars as the larger type in the
data set. This survival technique will provide a high DR, but
also high FP rate, an undesirable result.

DR = 1− (
#FNClassifications

TotalNumberofAttackConnections
) (1)

FPRate = (
#FPClassifications

TotalNumberofNormalConnections
)

(2)
To this end, we implemented two different fitness func-

tions based on techniques given in [19]. The first is defined
as a switching fitness function that will punish the GP de-
pending on whether the GP has had a false positive or a false
negative result. Two different costs will be associated with
the switch depending on the makeup of the data set itself.
If the individual has resulted in a false positive, the individ-
ual is awarded a cost equal to the error over the number of
normal packets in the data set (Equation 3). Similarly, if
the individual has resulted in a false negative, it is awarded
the cost of the error over the number of attack packets in
the data set (Equation 4). A higher cost is deemed a poorer
performance then a lower cost.

Fitness1+ =
1

TotalNumberofNormalConnections
(3)

OR:

Fitness1+ =
1

TotalNumberofAttackConnections
(4)

Given the success in [19], we also chose to implement an
equally weighted fitness function, as describe in Equation 5.

Fitness2+ =
(1−DR) + FPRate

2
(5)

5 Results

Using the data generated as described above, we con-
ducted 40 runs of the IDS, each run differing only in the
random seeds that are used for the initial population cre-
ation. Each run consisted of 1000 evolutionary cycles (max
RSS iterations). The control parameters used during the
running of the GP are shown in Table 1 and were chosen
due to work in [19]. This process was performed both with
the switching (fitness #1) and equally weighted (fitness #2)
fitness functions. We present the results here.

5.1 Fitness #1

Using the switching fitness function (equations 3 and 4)
resulted in 32 outlier solutions out of 40. We define out-
lier results as individual solutions that labeled all the exem-
plars as either attack or normal. That is to say the outlying
solutions evolved to either labeling everything as attack or
everything as normal, not the desired result. As these in-
dividuals represent degenerate solutions, they are removed
before statistical analysis.

After removing the outliers, our IDS produced the re-
sults shown in Table 2 which lists the first, second (median)
and third quartiles for the time taken to train the solution,
detection rate (DR) and FP rate, time being in minutes, the
remaining in percentages.

In Figure 2 we have plotted the solutions, the y axis be-
ing the detection rate, the x axis being the false positive rate.
This allows us to see the low variance in solutions with re-
spect to DR and FP rate, while also allowing us to identify
the best performing solutions (highlighted in Table 3).

Table 1. Parameter Settings for Dynamic Page
Based Linear GP

Parameter Setting
Population size 125
Maximim number of pages 32
Page size 8 instructions
Maximum working page size 8 instructions
Crossover probability 0.9
Mutation probability 0.5
Swap probability 0.9
Tournament size 4
Number of registers 8
Function set {+,-,*,/}
Terminal set {0, ..., 255}

⋃
{r0, ...,r7}

RSS subset size 5000
DSS subset size 50
RSS iteration 1000
DSS iteration 100

Table 2. Fitness #1 Results

Performance of De-Authentication Attacks
Time Detection Rate FP

1st Quartile 40.003 87.500% 0.865%
Median 44.810 90.769% 1.250%
3rd Quartile 50.152 96.154% 1.446%



Figure 2. Detection Rate and FP for 40 runs
using Fitness #1

Table 3. Fitness #1 Best Results

Best Performer with respect to DR
Time Detection Rate FP

44.098 100% 0.529%
Best Performer with respect to FP Rate
Time Detection Rate FP

40.838 86.154% 0.000%

5.2 Fitness #2

After implementing the equally weighted fitness func-
tion (equation 5), and removing the two outlier solutions
(as defined above), the results are shown in Table 4 and Fig-
ure 3. As with Fitness #1, Table 4 describes the first, sec-
ond and third quartiles for time of training (in minutes), DR
(percentage) and FP rate (percentage). The increased times
for training compared to Fitness #1 are not significant, due
to variance in background system load during the two differ-
ent experiments. The times are significant, however, when
compared to other runs within this fitness function experi-
ment. Figure 3, similarly to Figure 2, plots DR versus FP
rate.

In Table 5 we have highlighted the two best individual
solutions found using Fitness #2. These best solutions are
given with respect to detection rate, then the false positive
rate.

Table 4. Fitness #2 Results

Performance of De-Authentication Attacks
Time Detection Rate FP

1st Quartile 56.854 80.769 % 0.465%
Median 68.475 82.308% 0.513%
3rd Quartile 73.130 82.308% 0.513%

Figure 3. Detection Rate and FP for 40 runs
using Fitness #2

6 Conclusion / Future Work

In this work we designed, developed and tested a Linear-
GP based IDS on Data Link Layer attacks on Wifi networks.
To this end, we developed a feature set and 2 fitness func-
tions for our IDS as well as generated a data set to train and
test it. To the best of our knowledge this is the first time such
a L-GP based IDS system and training/testing data set has
been developed. The first fitness function led to an IDS that
achieved a 100% detection rate and a 0.529% false positive
rate. The second fitness function resulted in a best solution
with a 84% detection rate and a 0.689% false positive rate.

Our results show that the first fitness function results in a
large number of outlier results, indicating that it may not be
effective when applied to other unbalanced data sets. How-
ever, the small number of solutions that were capable of de-
tecting both normal and attack exemplars had a high detec-
tion rate while still providing a low false positive rate. The
second fitness function resulted in more consistent results,
with very few outlier solutions. The solutions found with
the second fitness function provided very low false positive
rates, but at the cost of lower detection rates. The more con-
sistent results of the second fitness function does indicate



Table 5. Fitness #2 Best Results

Best Performer with respect to DR
Time Detection Rate FP

85.581 84.615% 0.689%
Best Performer with respect to FP Rate
Time Detection Rate FP

74.150 78.461 % 0.401 %

that it encourages the evolving of solutions that can handle
the unbalanced nature of our data set.

Compared to implementing Snort for detecting this DoS
attack, the resulting IDS from our work does not require
a user to set a threshold count of de-authentication frames
nor a maximum time window size for this count to be met.
The use of a threshold limit to trigger an alarm is also used
in other work, such as [17]. Our system eliminates this re-
quirement, providing a more generic tool for detecting the
DoS attack.

Our future work will be to explore the use of larger data
sets for training and testing our L-GP based IDS. This will
allow us to verify the effectiveness of our work over larger
networks as well as a varied number and length of DoS at-
tacks. Also, we plan on applying the same approach de-
scribed here on other WiFi attacks, with the goal of devel-
oping an IDS that can be used to detect a variety of attacks.
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