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Abstract— The objective of this work is to discover general-
ized signatures for identifying encrypted traffic where SSH is
taken as an example application. What we mean by generalized
signatures is that the signatures learned by training on one
network are still valid when they are applied to traffic coming
from a totally different network. We identified 13 signatures
and 14 flow attributes for SSH traffic classification where IP
addresses, source/destination ports and payload information are
not employed. The signatures are able to identify encrypted
traffic with high detection rate and low false positive rate. We
can achieve up to 97% DR and 0.8% FPR for identifying SSH
traffic.

I. INTRODUCTION

Accurate identification of network traffic according to
the application types is an important task of network man-
agement. For example, managing bandwidth budget and
ensuring quality of service (QoS) objectives for critical
applications rely on accurate identification of network traffic.
Moreover, network engineering problems such as traffic
shaping or workload modeling also require classification of
network traffic.

Traditionally, one approach to classifying network traffic is
to inspect the payload of every packet. Another approach to
classifying applications is using well-known TCP/UDP port
numbers. Inspecting payload, in other words, deep packet
inspection, can be extremely accurate if the payload is not
encrypted. However, encrypted applications such as SSH and
Skype imply that payload is opaque. On the other hand, using
port numbers to identify traffic becomes increasingly inac-
curate when applications use non-standard ports to by-pass
firewalls or circumvent operating systems restrictions such
as Skype sometimes using port 80, which is traditionally the
port that http traffic uses. Moreover, ports can be dynamically
allocated as needed, i.e. the same port number can be used
to transmit multiple applications, such as running different
applications in a SSH channel or Skype channel. Thus, other
techniques are needed specifically to increase the accuracy
of encrypted network traffic classification. To this end, we
started to investigate the identification of Secure Shel (SSH)
traffic as an example of encrypted traffic. What makes SSH
is a good application is the fact that even though it is an
encrypted application, unlike Skype it is not proprietary and
therefore there is an RFC 4251 [27] describing the SSH
protocol application. This fact enables us to know the ground
truth about the existence of the SSH traffic in a given traffic

trace. Moreover, the first part of the SSH payload consists of
a handshake between the client and the server and this part is
not encrypted. This again allows us to know the ground truth
regarding the presence of SSH traffic in a given trace. On the
other hand, none of this is possible with another encrypted
application such as Skype.

SSH is typically used to login to a remote computer
but it also supports tunneling, file transfers and forwarding
arbitrary TCP ports over a secure channel. Indeed, covering
a collection of such different encrypted behavior makes it
difficult to distinguish SSH traffic from non-SSH. Thus,
the goal of this work is to develop a set of signatures
and flow attributes that can generalize from one network
to another in order to identify SSH traffic from non-SSH
traffic without using IP addresses, port numbers or payload
information. We believe that not using IP addresses, port
numbers and payload will not only enable the features and
the extracted signatures to generalize from one network to
another well but also potentially will enable us to employ
such an approach for the identification of different encrypted
applications such as Skype. In order to generate the signa-
tures and select the relevant features to classify/identify SSH
traffic; we will employ different machine learning techniques,
namely C4.5, Naive Bayesian and SVM. The reason why
we choose these algorithms is that existing work in the
literature report that they performed well on different data
sets for traffic classification [2], [14], [26]. However, to the
best of our knowledge none of the aforementioned works
explored the generalization of the signatures/models learned
by the machine learning algorithms. In this context, what
we mean by generalization is learning signatures extracted
from data of one network but testing (deploying) them
on data collected from an entirely different network. We
believe that without this kind of a generalization property
signatures/models learned via a machine learning algorithm
can not be used/deployed in real life, because it is not
practical to train a machine learning algorithm on the fly
each time the network is changed.

The rest of this paper is organized as follows. Related
work is discussed in Section II. Section III details the data
sets, attributes and machine learning algorithms employed.
Section V presents the experimental results. Conclusions are
drawn and future work is discussed in Section VI.



II. RELATED WORK

In literature, Zhang and Paxson present one of the earliest
studies of techniques based on matching patterns in the
packet payloads [10]. Dreger et al. [11] and Moore et al.
[4] applied more sophisticated analyses, which still require
payload inspection. Early et al. employed a decision tree
classifier on n-grams of packets for distinguishing flows [12].
Moore et al. used Bayesian analysis to classify flows into
broad categories such as bulk transfer, P2P or interactive
[3], [4]. Haffner et al. employed AdaBoost, Hidden Markov,
Naive Bayesian and Maximum Entropy models to classify
network traffic into different applications [2]. Their results
showed AdaBoost performed the best on their data sets;
with an SSH detection rate of 86% and false positive rate
of 0%, but they employed the first 64 bytes of the payload,
which includes the handshake (not encrypted) between the
SHH client and the server. Karagiannis et al. proposed
an approach that does not use port numbers or payload
information on traffic that is not encrypted [5]. However,
their approach relies on information about the behavior of
the hosts on the network. Thus, they cannot identify distinct
applications and cannot classify individual flows or connec-
tions. More recently, Wright et al. investigate the extent
to which common application protocols can be identified
using only packet size, timing and direction information of
a connection [1], [13]. They employed a k-Nearest Neighbor
(kNN) and Hidden Markov Model (HMM) learning systems
to compare the performance. Even though their approach can
classify distinct encrypted applications, their performance on
SSH classification dropped to 76% detection rate and 8%
false positive rate. Bernaille et al. employed first clustering
and then classification to the first three packets in each
connection to identify SSL connections [19]. Another recent
work by Williams et al. [14] compared five different clas-
sifiers namely, Bayesian Network, C4.5, Naive Bayes (with
discretisation and kernel density estimation) and Naive Bayes
Tree, on the task of traffic flow classification. They found that
C4.5 performed better than the others. However, rather than
giving classification results per application, they give overall
accuracy results per machine learning algorithm. Unfortu-
nately, this may be misleading especially on unbalanced data
sets where, say, only 10% of the data set is in-class (SSH)
and 90% out-class (non-SSH). Thus, by labeling everything
as the major class, a classifier can achieve 90% accuracy.
Moreover, in our previous work [16], we employed RIPPER
and AdaBoost algorithms for classifying SSH traffic. We
used Public traces from MAWI and AMP repositories and
generated traces at our lab. Our results showed that RIPPER
based classifier performed better than AdaBoost. Then in
[26], we compared C4.5 with RIPPER and heuristic rules.
Our result shows that C4.5 learning model based rule set
gives the highest performance. It should be noted that none
of the previous work employing machine learning techniques
to detect different application traffic investigated the gener-
alization of such techniques from one network to another.

TABLE I
SUMMARY OF DALHOUSIE TRACES

Total Packets | Total MBytes
Total 337041778 213,562
As percentage of Total
TCP 86.51% 91.03%
UDP 13.33% 8.95%
OTHER 0.16% 0.02%

III. METHODOLOGY

In this work, three different machine learning algorithms,
namely C4.5, Naive Bayesian and SVM, are employed in
order to identify the most relevant attributes and the most
general signatures to the problem of SSH traffic classifica-
tion. We believe finding general signatures can be very useful
especially for forensic analysis where signatures are naturally
extracted from a different network than the ones they are used
to investigate/deployed.

A. Data Collection

In our experiments, the signatures and the attributes are
first identified on what we call the Dalhousie data set. They
are then tested on totally different network traffic, namely
AMP, MAWI and DARPA99 traffic (see results section), in
order to test whether they are generalized signatures or not.

Dalhousie traces were captured on the Dalhousie Uni-
versity Campus network by the University Computing and
Information Services Centre (UCIS) in January 2007. Dal-
housie is one of the biggest universities in the Atlantic
region of Canada. There are more than 15000 students and
3300 faculty and staff. The UCIS is responsible for all
the networking on the campus which includes more than
250 servers and 5000 computers. Moreover, the wireless
network is enabled on the campus where thousands of users
(students and staff) are connected daily. Dalhousie network is
connected to the Internet via a full-duplex T1 fiber link. Full-
duplex traffic on this connection was captured for 8 hours.
Given the privacy related issues university may face, data
is filtered to scramble the IP addresses and each packet is
further truncated to the end of the IP header so that all
payload is excluded. Moreover, the checksums are set to
zero since they could conceivably leak information from
short packets. However, any information regarding size of
the packet is left intact. Brief statistics on the traffic data
collected are given in Table I.

Since the traffic traces are very large data sets. We
performed subset sampling to limit the memory and CPU
time required for training and testing the machine learning
algorithms employed. Subset sampling algorithms are a ma-
ture field of machine learning in which it has already been
thoroughly demonstrated that performance of the classifier
is not impacted by restricting the learner to a subset of the
exemplars during training [18].

The training data set, Dal Training Sample, is generated
by sampling randomly selected (uniform probability) flows
from five applications FTP, SSH, DNS, HTTP and MSN.



In total, Dal Sample consists of 12246 flows, 6123 SSH
and 6123 non-SSH. By following this approach, we sampled
10 random (uniform probability) Dal Training Samples to
demonstrate the sensitivity of the learning algorithms to the
data samples. At the same time as verifying the validity
of the sampling approach. However, the fest data set, Dal
Testing Sample, is generated by sampling 2000 randomly se-
lected flows (uniform probability) of five classes (FTP, SSH,
MAIL, DNS, HTTP) and 6500 flows of “Other” applications.
“Other” application flows include RMCP, Oracle SQL*NET,
NPP, POP3, NETBIOS Name Service, IMAP, SNMP, LDAP,
NCP, RTSP, IMAPS, POP3S and MSN. In total, there are
16500 flows (=12% SSH in the Dal Testing Sample).

B. Ground Truth

Dalhousie traces (UCIS) are labeled by a commercial
classification tool called PacketShaper, which is a deep
packet analyzer [20]. PacketShaper uses Layer 7 filters (L7)
to classify the applications [22]. Thus, by deep packet
inspection, the handshake part of the SSH protocol can easily
be identified since that part is not encrypted. In other words,
we can confidently assume that the labeling of the data set
is 100% correct and this provides us the ground truth for the
Dalhousie traces. PacketShaper labeled all the traffic either
as SSH or Non-SSH.

IV. CLASSIFIERS EMPLOYED

In order to identify SSH traffic; three different machine
learning algorithms are deployed. These are Support Vector
Machine (SVM), Naive Bayesian and C4.5.

Support Vector Machines (SVMs) are a set of machine
learning methods used for regression and classification prob-
lems [25]. They belong to a family of generalized linear
classifiers. A special property of this family of classifiers is
to simultaneously minimize the empirical classification error
and maximize the geometric margin. Often, in classification
problems, data points may not necessarily be points in R2,
but may be multidimensional P or " points. In this case,
data is represented by a vector of n attributes or n features.
The overall classification problem then takes the form of
determining whether this data can be separated by a n-/
dimensional hyperplane. Assuming our data is linearly sepa-
rable; we should find a hyperplane that separates our feature
vectors. This is a typical form of linear classifier. There
are many linear classifiers that might satisfy this property.
However, we are additionally interested in establishing the
maximum separation/margin between the two classes. If such
a hyperplane exists, the hyperplane is clearly of interest and
is known as the maximum-margin hyperplane and such a
linear classifier is known as a maximum margin classifier.
The feature vectors from which the distance to the hyperplane
is measured, or the vectors at either side of the margin, are
known as the support vectors

Naive Bayesian is a statistical classifier based on Bayess
theorem that gives its conditional probability a given class.
Naive Bayesian classifier assumes the values of the input
features are independent and have no effect on a given

TABLE 11
FLOW BASED ATTRIBUTES EMPLOYED

Protocol Duration of the flow

# Packets in forward direction # Bytes in forward direction

# Packets in backward direction # Bytes in backward direction

Min forward inter-arrival time Min backward inter-arrival time

Std deviation of backward inter-
arrival times

Std deviation of forward inter-
arrival times

Mean forward inter-arrival time Mean backward inter-arrival time

Max forward inter-arrival time Max backward inter-arrival time

Min forward packet length Min backward packet length

Max forward packet length Max backward packet length

Std deviation of forward packet
length

Std deviation of backward packet
length

Mean backward packet length Mean forward packet length

class. This assumption, conditional independence, is made to
simplify the computations and consider to be naive. Further
information on the Naive Baysien algorithm can be found in
[24].

C4.5 is a decision tree based classification algorithm. A
decision tree is a hierarchical data structure for implement-
ing a divide-and-conquer strategy. It is an efficient non-
parametric method that can be used both for classification
and regression. In non-parametric models, the input space is
divided into local regions defined by a distance metric. In a
decision tree, the local region is identified in a sequence of
recursive splits in smaller number of steps. A decision tree
is composed of internal decision nodes and terminal leaves.
Each node m implements a test function fin(x) with discrete
outcomes labeling the branches. This process starts at the
root and is repeated until a leaf node is hit. The value of
a leaf constitutes the output. In the case of a decision tree
for classification, the goodness of a split is quantified by an
impurity measure. A split is pure if for all branches, for all
instances choosing a branch belongs to the same class after
the split. A more detailed explanation of the algorithm can
be found in [17].

A. Input to Classifiers

We followed a similar analysis as performed by Karagian-
nis et al. [21] on network traffic in order to understand the
characteristics of the data set employed. To this end, the
Auto-Correlation Factor (ACF) have been calculated for the
inter-arrival time and packet size for four protocols (FTP,
SSH, TELNET, and HTTP) for the Dalhousie data sets at
several lags. As seen in Figures 1 and 5, the ACF for inter-
arrival and packet size in a trace of aggregate traffic was
below 0.05 for almost all lags. Moreover, figures 1 and
5 show that all selected application protocols demonstrate
considerable autocorrelation in their inter-arrival time and
packet size for several lags. Therefore, we conclude that
inter-arrival time and packet size would be good attributes
for modeling encrypted traffic. Hence, the attribute set input
to the C4.5 algorithm is the same as the one used in the
previous works [14], [16], Table II.
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V. EXPERIMENTAL RESULTS

In traffic classification, two metrics are typically used in
order to quantify the performance of the classifier: Detection
Rate (DR) and False Positive Rate (FPR). In this case DR
will reflect the number of SSH flows correctly classified
whereas FPR will reflect the number of non-SSH flows
incorrectly classified as SSH. Naturally, a high DR rate and a
low FPR would be the desired outcomes. They are calculated
as follows:

DR—1— #FNClassifications
N Total NumberSSHClassi fications)
FPR — #F PClassifications

Total Number Non_SSHClassifications

where FN, False Negative, means SSH traffic classified as
non-SSH traffic. Once the aforementioned input vector is
prepared for the data sets, then all the classifiers are trained
on the Dal Training Samples. To this end, we have used
Weka [15], which is an open source tool for data mining
tasks. We employed Weka with its default parameters to run
all algorithms on our data sets.

Results presented in Table III are based on the average
of 10 runs. These results show that the C4.5 based clas-
sifier performs very well, when it is trained on Dalhousie
Training Samples but tested on Dalhousie Test Samples. Our
results show that C4.5 achieves 97% DR on Dal Testing
Sample, Table III. Moreover, in the case of C4.5, much
lower variance (Table IV) implies that the corresponding
signatures generalize to the wider case, implicit in the test
results. Again, in these experiments, no payload information,
IP addresses or port numbers are used, whereas Haffner et
al. achieved 86% DR and 0% FPR using the first 64 bytes
of the payload of the SSH traffic [2]. This implies that they
have used the un-encrypted part of the payload, where the
handshake for SSH takes place. On the other hand, Wright et
al. achieved a 76% DR and 8% FPR using packet size, time
and direction information only [13]. Even though, [2] and
[13] are using different approaches and data sets, our results
show that our proposed approach achieves better performance
in terms of DR and FPR for SSH traffic than [2] and [13].
Based on these result and the fact that C4.5 solution can be
understandable by system administrators in terms of rules,
we choose the signatures identified by the C4.5 learning
algorithm (instead of Naive Bayesian or SVM, because even
though their performances were also good, it was impossible
for us to understand what they learned during training) for
classifying SSH encrypted traffic.

A. Identifying Signatures and Feature sets For Encrypted
Traffic

Machine learning algorithms such as C4.5 used informa-
tion gain to select the most appropriate attributes to build
their classifier model. For instance, C4.5 assigns a confidence
value for its brach decisions or rules. We used these informa-
tion to distinguish 14 attributes from 22 attributes that used
in [14], [16], Figure 9. The first 5 attributes (2 attributes from

TABLE III
AVERAGE RESULTS OF THE 10 RUNS ON THE SAMPLED DATA SETS

C4.5 SVM Naive
Bayesian
DR [ FPR| DR [ FPR| DR | FPR
Dal Training Sample x 10
non-SSH | 0.998| 0.003| 0.982| 0.021| 0.992| 0.08
SSH 0.996| 0.001| 0.98 | 0.017| 0.92 | 0.007
Dal Testing Sample
non-SSH | 0.96 | 0.03 | 0.982] 0.02 | 0.992] 0.077
SSH 0.97 | 0.04 | 098 | 0.017| 0.923| 0.007
TABLE IV

STANDARD DEVIATION OF RESULTS ON THE SAMPLED DATA SETS

C4.5 SVM Naive
Bayesian
DR [ FPR [ DR [ FPR | DR [ FPR
Dal Training Sample x 10
non- | 0.0005] 0.0004| 0.001 | 0.0005| 0.001 | 0.0008
SSH
SSH | 0.0004] 0.0005| 0.0005| 0.001 | 0.0008| 0.001
Dal Testing Sample
non- | 0.007 | 0.002 | 0.003 | 0.001 | 0.002 | 0.003
SSH
SSH | 0.002 | 0.007 | 0.001 | 0.002 | 0.003 | 0.002

the client side and 3 attributes from the server side) are the
most common attributes used in the signatures extracted to
classify, SSH traffic, while the other 9 attributes are used to
increase the DR and reduce the FPR. Figure 9 summarizes
the features identified by C4.5 to generate signatures that
classify SSH traffic.

Intuitively, what C4.5 algorithm learned from the data
makes sense, given that the SSH protocol is an interactive
protocol (user-machine). In order to correctly identify SSH
traffic, the classifier naturally needs to explore both direc-
tions. Each direction has its unique signature given that a
client and a server operate differently. Thus, we believe that
the first five attributes listed in Figure 9 are actually what
C4.5 is discovering to represent the behavior of the client
and the server side of an SSH session. They are separated
into two:

« Attributes from client to server (Forward direction).
o Attributes from server to client (Backward direc-
tion).

The attributes in the forward direction are based only on
the packet length since the forward direction depends on
the client (user) requesting information (commands). These
attributes are: Minimum forward packet length and Standard
deviation of forward packet length. On the other hand,
the attributes in the backward direction are based on the
packet length and the interarrival time since the backward
direction is based on the server side responding to the client
requests (commands). Moreover, the attributes in the forward
direction (client side) are based on two statistical metrics
of the packet length. These are the minimum length and
the standard deviation. The minimum length for a packet
is in part effected by the length of the request made by the
client. On the other hand, the standard deviation for a packet
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Fig. 9. The selected attributes

length is a measurement of variation of requests, different
commands used by the client. In other words, the standard
deviation measures the spread of packet length which can
indicate different commands users run. Consequently, the
minimum and standard deviation of packet length measure-
ments can shed some light on the behavior of the user in
choosing commands to do the work and can provide more
information to predict what the payload might be. Such
an indication for network administrators can be very useful
since encrypted content can hide the detection of anomalous
activities that can harm the system or steal sensitive data.

The flows as defined by the attributes of Figure 9 form
the input vector from which the machine learning model
provides a label {SSH, non-SSH} for each flow. The C4.5
classifier model generates 13 signatures for SSH traffic on
the Dalhousie training data set, Figure 10.

B. Testing the discovered signatures on the complete traces

Given the above results were achieved on the data sampled
from the complete traces, we also tested the signatures
extracted from C4.5 learning algorithm on the complete
Dalhousie traces. By doing so, we want to know the behavior
of the extracted signatures on the complete traces where each
one contains millions of flows.

Furthermore, we test the generalization of the identified
signatures and features on some public traces and DARPA99
traces. Public traces naturally have no reference to payload
or network configuration. To this end, several public data
sets from NLANR (National Laboratory for Applied Network
Research) [8] and MAWI (Measurement and Analysis on
the WIDE Internet) [9] web sites are used. NLANR data
sets consist of Time Sequenced Header (TSH) files, whereas
MAWI data sets consist of PCAP files. A TSH file represents
each packet with 44 bytes that include a timestamp, interface
number, [Pv4 header without options, and the first 16 bytes of
the transport header. On the other hand, a PCAP file uses the
tcpdump format but it does not include the payload. On the
other hand, DARPA99 traces consists of five weeks of traces
generated at the MIT Lincoln Labs for Intrusion Detection

Evaluation [23]. The data represent a simulated network at an
imaginary Air Force base. Data in week one through week
three are for training while data in weeks four to five are
for testing. For each week, there are five network traces files
in libpcap format that represents a network usage from 8:00
AM to 5:00 PM. We used data from week one and week
three since these two weeks are attack-free and our purpose
is to evaluate whether we can classify SSH traffic not if we
can detect intrusions. Moreover, since there are no attacks in
these two weeks, we can label the data according to IANA
port assignments as done by the previous work [2], [4], [6],
[71, [13], [14]. We used only the inside sniffing data. Brief
statistics on the public traffic are given in Tables V and VI.

Furthermore, Tables I, V and VI show that the percentages
of the TCP and UDP traffics are different for each trace.
What this demonstrates is that these traces indeed belong
to substantially different networks. Further analysis using
ACEF function, figures 1 to 8, on four protocols (FTP, SSH,
TELNET and HTTP) shows the applications in the traces
have different behavior. Therefore, we believe that only
well generalized signatures are able to classify SSH traffic
correctly on these networks.

We use these signatures, Figure 10, on all of the complete
traces employed. Table VII lists the number of flows in
each data set. Table VIII shows the performance of the
identified signatures on on all of the traces listed in Table
VII. According to these results, it is clear that the discovered
signatures continued to perform well regardless of the size or
the distribution of the totally different network traffic files.
We achieved 96% DR and 2.8% FPR on Dalhousie traces
whereas achieved 97% DR and 0.8% FPR on the AMP trace.
This not only shows that the signatures, which the C4.5
classifier learned during training, are generalized enough to
be tested on real world network traces, but also verifies that
accurate differentiation between SSH and non-SSH traffic is
possible without employing port numbers, IP addresses and
payload information.
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Fig. 10. The Best C45 Model (Discovered Signatures )

TABLE V
SUMMARY OF PUBLIC TRACES

Trace Name | Total Packets | Total MBytes
AMP 332064652 188,435
MAWI 76543335 28,719
DARPA99 16869729 3,638
TABLE VI

SUMMARY OF PUBLIC TRACES AS PERCENTAGE OF TOTAL

Trace TCP UDP Other Traffic
AMP 55.4% | 33.6% 11.0%
MAWI 85.4% | 11.6% 3.0%
DARPA99 | 87.8% | 11.2% 1.0%

C. FPR

Table IX lists the application flows, which the identified
signatures misclassify as SSH flows for the traces given in
Table VII. Given the fact that there are many applications
run over SSH such as SCP (secure copy) and SFTP (secure
FTP) this is to be expected. The classifier generally confuses
FTP, MAIL and HTTP flows as SSH flows since SCP,
SFTP, FTP, MAIL and HTTP applications can all be used
to transfer data between two hosts. Moreover, looking at the
AFC Figures 1 to 8 show that these applications have higher
autocorrelation in their inter-arrival time and packet size with
SSH application.

VI. CONCLUSION AND FUTURE WORK

In this work, we identified 13 signatures and 14 attributes
that were used to classify SSH encrypted traffic. We inves-
tigate the generalization of signatures generated by using
machine learning algorithm, C4.5, for distinguishing SSH
traffic from non-SSH traffic in a given traffic trace. What
we mean by generalization is learning signatures extracted
from data on one network but testing them on data collected
from an entirely different network. To do so, we employ
traffic traces captured on our Dalhousie Campus network.
We evaluated the aforementioned signatures using traffic flow

TABLE VII
NUMBER OF FLOWS IN THE COMPLETE TRACES EMPLOYED

Dalhousie AMP MAWI DARPA9Y9
FTP 8504 14346 3395 8867
SSH 19384 427448 19016 72094
TELNET 510 4500 353 463643
MAIL 359212 174179 31410 173530
DNS 5325576 8021575 9601134 25735411
HTTP 5672886 450868 155511 474282
OTHERS | 32843626 | 12004509 | 10163022 1633475
Total 44229698 | 21097425 | 19973841 28561302
TABLE VIII

RESULTS OF THE DISCOVERED SIGNATURES ON THE COMPLETE TRACES

Evaluation | Dalhousie AMP MAWI DARPA99

DR | FPR| DR | FPR| DR | FPR| DR | FPR

non-SSH 0.97 | 0.04 | 0.99 | 0.027| 0.99 | 0.17 | 0.98 | 0.16

SSH 0.96 | 0.028| 0.97 | 0.008| 0.83 | 0.005 0.837| 0.015




TABLE IX
NUMBER OF FLOWS WRONGLY CLASSIFIED AS SSH

Services Dalhousie | DARPA99
FTP 1462 4309
TELNET 87 427198
MAIL 67337 434
DNS 4995 0
HTTP 23762 5223
Other 1159314 8967

based attributes. Results show that the 13 signatures, in the
worst case scenario, can achieve a 83.7% DR and 1.5% FPR
at its test performance (when trained on one network but
tested on another) to detect SSH traffic. On the other hand,
in the best case test scenario, the signatures can achieve up
to 97% DR and 0.8% FPR.

These results show that the 13 signatures extracted from
small training data size can be employed to run on complete
network traces which are totally different than the training
data set. Thus it can generalize well from one network
data to another. It should be noted again that in this work,
automatically identifying SSH traffic from a given network
trace is performed without using any payload, IP addresses
or biased feature such as port numbers. Thus, the signatures
are generic solutions as well as being easy to understand.

Future work will follow similar lines to perform more
experiments on different data sets in order to continue to test
the generality and adaptability of the signatures. Furthermore,
we aim to investigate the formal definitions of the generated
signatures. Finally, we are also interested in investigating
our approach for other encrypted applications such as Skype
traffic.
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