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Abstract— The classification of Encrypted Traffic, namely
Skype, from network traffic represents a particularly chal-
lenging problem. Solutions should ideally be both simple –
therefore efficient to deploy – and accurate. Recent advances
to team-based Genetic Programming provide the opportunity
to decompose the original problem into a subset of classifiers
with non-overlapping behaviors. Thus, in this work we have
investigated the identification of Skype encrypted traffic using
Symbiotic Bid-Based (SBB) paradigm of team based Genetic
Programming (GP) found on flow features without using IP
addresses, port numbers and payload data. Evaluation of SBB-
GP against C4.5 and AdaBoost – representing current best
practice – indicates that SBB-GP solutions are capable of
providing simpler solutions in terms number of features used
and the complexity of the solution/model without sacrificing
accuracy.

I. INTRODUCTION

The accurate identification of network traffic in relation
to application type represents a challenging decision making
activity. This activity is very important for network manage-
ment tasks such as managing bandwidth and ensuring quality
of service objectives for critical applications. One method to
classifying network traffic is to inspect the payload of every
packet, i.e. deep packet inspection. However, deep packet
inspection becomes irrelevant when the payload is encrypted.
Another method to classifying applications is using well-
known Transmission Control Protocol (TCP)/User Datagram
Protocol (UDP) port numbers. But, this approach becomes
increasingly inaccurate when applications use dynamically
allocated port numbers. Thus, different research groups have
employed many machine learning techniques such as Hidden
Markov models, Naı̈ve Bayesian models, AdaBoost, RIP-
PER, or Decision Trees to this problem [1], [2], [3], [4], [5],
[6], [7], [8], [9]. However, in general all these efforts show
that even though it is easier to apply such techniques to well
known public domain applications, more work is necessary
to identify encrypted applications accurately.

In this work, we focus on Skype traffic as a case study of
encrypted traffic classification. Skype is a proprietary Peer to
Peer (P2P) Voice over IP (VoIP) application. Skype covers
a collection of different encrypted behavior, which makes it
difficult to distinguish from non-Skype traffic. Thus, in this
work, we aim to develop a model that distinguishes Skype
from non-Skype traffic without using IP addresses, port
numbers or payload information. We believe that this will not
only enable our model to generalize well from one network
to another but will potentially enable us to apply such an
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approach to the classification of other encrypted applications,
too. To achieve this, we are going to examine the utility of
SBB-GP against the two most frequently preferred machine
learning approaches for network traffic classification, specif-
ically C4.5 and AdaBoost. The specific form of team-based
GP employed to this real life application takes the form of the
SBB paradigm1 where this is known to be computationally
efficient (care of a competitive coevolutionary formulation of
active learning) and does not require the a priori specification
of the number of team members (care of a bid-based model
of cooperation) [10], [11].

The rest of this paper is organized as follows. Related
work is discussed in Section II and an overview of Skype
is given in Section III. Section IV presents the machine
learning algorithms employed whereas Section V details the
data sets and features. The experimental results are presented
in Section VI. Finally, conclusions are drawn and future work
is discussed in Section VII.

II. RELATED WORK

Skype analysis has become popular in the last few years,
in part due to the combination of the encrypted operation
and dynamic nature of the port assignment making tradi-
tional methods of traffic identification redundant. Baset et
al. present an analysis of the Skype behavior such as login,
Network Address Translation (NAT) and firewall avoidance,
and call setting up under three different network arrange-
ments [12]. Suh et al. concentrate on the classification of
relayed traffic and monitored Skype traffic as an application
using relay nodes [13]. Relay node is part of the decentralized
Skype network that can ease the routing of Skype traffic
to bypass NATs and firewalls. They used several features
such as inter-arrival time, bytes size ratio and maximum
cross correlation between two relayed bursts of packets to
detect Skype relay traffic. Their results show the technique
is reliable in recognizing relayed Skype sessions but it might
not be appropriate to classify all Skype VoIP traffic. Ehlert
et al. find signatures containing different distinctiveness of
Skype signaling traffic such as port usage, packet size and
payload content [14]. However, they have employed deep
packet analysis on the payload, which makes their signatures
less generalizable given that the payload is encrypted. Bon-
figlio et al. have adopted two different and complementary
techniques to make a classification either when the flow
ends or when enough packets are captured to detect Skype
traffic [15]. These techniques were Chi-Square tests and
Naı̈ve Bayesian classifiers. However they also employed a

1Source code available from http://www.cs.dal.ca/˜mheywood/Code/SBB
/SCM.9.r20081212.tar.gz



payload based classification scheme. Perenyi et al. proposed
Skype identification algorithm depend on observable parts
such as speech flows, timing of voice packet and candidate
hosts found [16]. Their technique works on offline data
and depends on detecting Skype hosts found on traditional
IP and port number based identification and signaling flow
information. The signaling flow information relies on a
number of packets, their direction, size and time but no
packet payload is required. Bonfiglio et al. introduced three
approaches to classify Skype traffic [17]. The first approach
is to classify Skype client traffic based on Pearson’s Chi-
Square test using information revealed from the message
content randomness (e.g. the FIN and ID fields) introduced
by the cypher and the header format. Their second approach
is to classify Skype VoIP traffic made from Naı̈ve Bayesian
Classifier using packet arrival rate and packet length. Their
third apporach is based on deep packet inspection combined
with per-host analysis to correctly classify Skype traffic.

In contrast to the previous work, we specifically focus
on encrypted tunnel identification, where identifying Skype
encrypted tunnels is taken as a case study in this work.
However, our proposed system can potentially be applied to
any encrypted application since it applies flow based features
without using the IP addresses, port numbers and payload
data. It should be noted here, usage of port numbers, IP
addresses and payload based features make the solutions
less re-usable. In return, this causes a new feature set to
be chosen for each application that needs to be identified.
Whereas, we aim to use a generic feature set and let the
machine learning algorithm employed to identify the subsets
of it for classifying any given application. Recently, we
have evaluated AdaBoost, Support Vector Machine, Naı̈ve
Bayesian, RIPPER and C4.5 using flow based features,
where IP addresses, source/destination ports and payload
information are not employed to classify encrypted traffic
[3]. Results indicate the C4.5 based approach outperforms
other algorithms on the data sets employed. However, in that
work, we have not tested the Skype classifier in terms of how
well it generalizes on different network data sets. Further-
more, we have also developed and compared SBB-GP based
classifier against C4.5 [18] on SSH traffic classification. In
that work, results show that SBB-GP based classifier was
quiet competitive with the C4.5 based classifier. Thus in this
work, we aim to perform a investigation of SBB-GP based
classifier on classification of Skype encrypted tunnels as well
as explore its robustness in terms of evaluating it on different
network traces from different institutions.

III. SUMMARY OF SKYPE APPLICATION

Skype [19] is a very popular P2P VoIP client developed
in 2002 by the developers of KaZaa that allows its users
to communicate through voice calls, audio conferencing
and text messages. Skype protocols are proprietary and an
extensive use of cryptography is implemented by the Skype
creators. Moreover, Skype employs a number of methods to
circumvent NAT and firewall restrictions [12] which increase
the difficulty of identifying it. Skype is based on P2P

architecture except users authentication, which is performed
based on a central architecture. Skype uses the TCP or the
UDP protocols at the transport layer to provide its services.
For network communication, Skype mostly prefers the UDP
protocol. A more detailed description of Skype protocol can
be found in [12].

IV. CLASSIFIER METHODOLOGIES

Given the general success of C4.5 and AdaBoost in
previous studies [2], [3], [4], [5], [6], [7], [9], [20], we
employ both models during this study in order to establish a
performance baseline. A more detailed explanation of C4.5
and AdaBoost algorithms can be found in [21] whereas a
more detailed explanation of SBB-GP can be found in [10].
The following will summarize the C4.5, AdaBoost and SBB-
GP algorithms.

A. C4.5

C4.5 is a decision tree based classification algorithm. A
decision tree is a hierarchical data structure for implement-
ing a divide-and-conquer strategy of attribute based model
building. It is an efficient non-parametric method applicable
both to classification and regression. Non-parametric models
divide the input space into local regions defined by a distance
metric. In a decision tree, the local region is identified in
a sequence of recursive splits in smaller number of steps.
A decision tree is composed of internal decision nodes and
terminal leaves. Each node m implements a test function
fm(x) with discrete outcomes labeling the branches. This
process starts at the root and is repeated until a leaf node
is encountered. The value of a leaf constitutes the output. In
the case of a decision tree for classification, the goodness of
a split is quantified by an impurity measure, typically entropy
based. Naturally, if the split is not ‘pure’, then the instances
should be split to decrease impurity, and there are multiple
possible attributes on which a split can be performed. Such a
scheme is locally optimal, hence has no guarantee on finding
the smallest decision tree.

B. AdaBoost

AdaBoost, Adaptive Boosting, is a meta-learning algo-
rithm, which means that a strong classifier is built from
a linear combination of weak (simple) classifiers. It incre-
mentally constructs a complex classifier by overlapping the
performance of possibly hundreds of simple classifiers using
a voting scheme. These simple classifiers are called decision
stumps. They examine the feature set and return a decision
tree with two leaves. The leaves of the tree are used for binary
classification and the root node evaluates the value of only
one feature. Thus, each decision stump will return either +1
if the object is in class, or -1 if it is out class. AdaBoost is
simple to implement and known to work well on very large
sets of features by selecting the features required for good
classification.



C. Overview of SBB-GP

1) Overview: The canonical framework for applying
model based cases of evolution – such as GP – to the
supervised learning domain of classification requires an
individual to map exemplars from an attribute space to a class
label space. An individual’s program expresses the mapping.
However, this is not the case under the SBB framework [22].
Instead the task is divided into two components: (1) deciding
which exemplars to label, or the bid, and (2) suggesting
class label, or the action. In the case of the individual’s
action, the assumption is made that an individual will always
be associated with the same action (class label). Thus at
initialization, a problem with C classes results in PopSize

C
of the individuals in the population being pre-assigned to
each class. The assignment is defined by assigning a scalar
a to each individual at initialization. Scalars are selected
with uniform probability from the set {1, ..., C}. The actions
are not adapted during evolution. Conversely, the task of
deciding which subset of exemplars to label is expressed in
terms of a bid. The individual with the maximum (winning)
bid suggests its pre-assigned action as the class label. During
training, individuals are rewarded for bidding high only on
exemplars whose class label matches their action.

The most recent form of the bid-based framework makes
extensive use of coevolution [10], with a total of three
populations involved: a population of points, a population
of learners, and a population of teams (Fig. 1). Individuals
comprising a team are specified by the team population,
thus establishing a symbiotic relationship with the learner
population. Only the subset of individuals indexed by an
individual in the team population compete to bid against each
other on training exemplars. The use of a symbiotic relation
between teams and learners makes the credit assignment
process more transparent than in the case of a population
wide competition between bids (as used in the earlier variant
of the model [22]). Thus, variation operators may now be
defined for independently investigating team composition
(team population) and bidding strategy (learner population).
The third population provides the mechanism for scaling
evolution to large data sets. In particular the interaction
between team and point population is formulated in terms
of a competitive coevolutionary relation [23]. As such, the
point population indexes a subset of the training data set
under an active learning model (i.e. the subset indexed varies
as classifier performance improves). Biases are enforced to
ensure equal sampling of each class, irrespective of their
original exemplar class distribution [24], whereas the concept
of Pareto competitive coevolution is used to retain points of
most relevance to the competitive coevolution of teams.

2) SBB Algorithm: The SBB model of evolution generates
Pgap new exemplar indexes in the point population and Mgap

new teams in the team population at each generation. Specif-
ically, individuals in the point population take the form of
indexes to the training data and are generated stochastically
(subject to the aforementioned class balancing heuristic).
New teams are created through variation operators applied

Symbiotic Coevolution

Team
Population

Learner
Population

Competitive Coevolution

Point
Population

Team
Population

Fig. 1: Architecture of Symbolic Bid-based GP: Point to team
populations are competitive, Team to learner populations are
symbiotic (cooperative).

to the current team population. Fitness evaluation evaluates
all teams against all points with (Psize − Pgap) points and
(Msize − Mgap) teams appearing in the next generation.
Pareto competitive coevolution ranks the performance of
teams in terms of a vector of outcomes, thus the Pareto
non-dominated teams are ranked the highest [23]. Likewise,
the points supporting the identification of non-dominated
individuals (distinctions) are also retained. In addition, use
is made of competitive fitness sharing in order to bias
survival in favor of teams that exhibit uniqueness in the non-
dominated set (Pareto front).

Evaluation of team mi on a training exemplar defined by
point population member pk results in the construction of
an outcome matrix G(mi, pk) in which unity implies a cor-
rectly classified exemplar, and zero an incorrectly classified
exemplar. A distinction for point pk is defined as{

1 if G(mi, pk) > G(mj , pk)
0 otherwise (1)

where unity implies that point pk ‘distinguishes’ between
team mi and mj , and the result of all such pairwise team
comparisons defines the objectives for the point. The ensuing
Pareto competitive coevolutionary process identifies the non-
dominated teams and points supporting their identification.

Denoting the non-dominated and dominated points as
F (P ) and D(P ) respectively, the SBB framework notes
that as long as F (P ) contains less than (Psize − Pgap)
points, all the points from F (P ) are copied into the next
generation. On the other hand, if F (P ) contains more points
than are allowed to survive, then the following fitness sharing
heuristic is imposed to rank the collection of non-dominated
points [25], ∑

i

dk[i]

1 +Ni
(2)

where dk[i] is the ith entry of the distinction vector for pk;
and Ni is the sum of the i th entries over the distinction



vectors across all points in F (P ) i.e., the number of points
making the same distinction. Thus, points making the same
distinction are weighted less than points making unique
distinctions.

An analogous process is repeated for the case of team
selection, with (Msize −Mgap) individuals copied into the
next generation. Naturally, under the condition where the
(team) non-dominated set exceeds this number, the fitness
sharing ranking employs F (M) and D(M) in place of
F (P ) and D(P ) respectively. The resulting process of fitness
sharing under a Pareto model of competitive coevolution has
been shown to be effective at promoting solutions in which
multiple models cooperate to decompose the original |C|
class problem into a set of non-overlapping behaviors [10],
[22].

Finally, the learner population of individuals expressing
specific bidding strategies employs a linear representation.
Bid values are standardized to the unit interval through the
use of a sigmoid function, or bid(y) = (1+exp−y)−1, where
y is the real valued result of program execution on the current
exemplar. Variation operators take the form of instruction
add, delete, swap and mutate, applied with independent
likelihoods, under a uniform probability of selection. When
an individual is no longer indexed by the team population
it becomes extinct and deleted from the learner population.
Conversely, during evaluation of the team population, exactly
Mgap children are created pairwise care of team based
crossover. Learners that are common to both child teams
are considered to be the candidates for retention. Learners
not common to the child teams are subject to stochastic
deletion or modification, with corresponding tests for dele-
tion/insertion at the learner population. The instruction set
follows from that assumed in [10] and consists of eight
opcodes ({cos, exp, log,+,×,−,÷,%}) operating on up to
8 registers, as per a linear GP representation.

V. EVALUATION METHODOLOGY

As discussed earlier, in this work, the preferred models of
classifications from Section II (C4.5 and AdaBoost) will be
compared against SBB-GP using the flow based features for
Skype encrypted tunnel classification.

A. Data Collection

In our experiments, the performance of the different
machine learning algorithms is established on Dalhousie
University traces and the Italy traces. Dalhousie traces were
captured on the Dalhousie University Campus network by
the University Computing and Information Services Centre
(UCIS) in January 2007. Dalhousie is one of the biggest
universities in the Atlantic region of Canada. There are more
than 15000 students and 3300 faculty and staff. The UCIS
is responsible for all the networking on the campus which
includes more than 250 servers and 5000 computers. More-
over, the wireless network is enabled on the campus where
thousands of users (students and staff) are connected daily.
Dalhousie network is connected to the Internet via a full-
duplex T1 fiber link. Full-duplex traffic on this connection

TABLE I: An overview of network traces employed

University Italy
Total Packets 337,041,778 41,985,540

MBytes 213,562 8,147
% of TCP packets 86.51% 5.62%
% of TCP bytes 91.03% 3.75%

% of UDP packets 13.33% 94.38%
% of UDP bytes 8.95% 96.25%

% of Other packets 0.16% 0.0%
% of Other bytes 0.02% 0.0%
Total SSH Flows 19,384 N/A

Total non-SSH Flows 44,210,314 N/A
Total Skype Flows 8,664,137 389070

Total non-Skype Flows 35,565,561 0

was captured for 8 hours. Given the privacy related issues,
data is filtered to scramble the IP addresses and each packet
is further truncated to the end of the IP header so that
all payload is excluded. Moreover, the checksums are set
to zero since they could conceivably leak information from
short packets. However, any information regarding size of the
packet is left intact. Moreover, Dalhousie traces (University)
are labeled by UCIS by a commercial classification tool
called PacketShaper, which is a deep packet analyzer [26].
PacketShaper uses Layer 7 filters (L7filter) to classify the
applications [27]. On the other hand, the Italy data set
consists of 96 hours of Skype Traffic over TCP and UDP
protocols [28]. The data set is captured on the main link at
the Politecnico di Torino University campus. TCP Statistic
and Analysis Tool (Tstat) and the traffic classification method
employed are described in [17]. As described in section II,
the creators of this data set classified Skype traffic based on
deep packet inspection and per-host analysis. Furthermore,
their second approach results in a classifier, which depends
on Pearsons Chi-Square test using information from the
message content (payload) and their third approach results in
a classifier, which depends on Naı̈ve Bayesian classification
technique using packet arrival rate and packet length to
classify the Skype traffic. The third approach is closer to
our method however we have shown that C4.5 work much
better than Naı̈ve Bayesian [3]. In this work, we employed
their two Skype End-to-End call traces. The first trace, which
is captured over UDP, consists of voice only calls as well as
voice plus video calls. The second trace is captured over TCP
and consists of SkypeOut traffic. Brief statistics on the traffic
data collected are given in Table I.

Naturally, these traffic traces represent large data sets from
a machine learning perspective. Thus, subset sampling is
used to decouple the overall exemplar count from the subset
over which training is conducted. Indeed when subsampling
algorithms impose a simple class balance heuristic, per-
formance of the resulting models is frequently better than
when trained over all exemplars. Specifically, the balanced
subset sampling heuristic results in performance correlated
with maximization of the AUC (Area Under the Receiver
Operating characteristic (ROC) Curve) statistic [29]. Thus,
we performed subset sampling to limit the memory and CPU
time required for training. In this case, Skype Dal Training



TABLE II: Flow based features employed

Feature Name Abbreviation
1 Protocol proto
2 Duration of the flow Duration
3 # Packets in forward direction fpackets
4 # Bytes in forward direction fbytes
5 # Packets in backward direction bpackts
6 # Bytes in backward direction bbytes
7 Min forward inter-arrival time minfiat
8 Mean forward inter-arrival time meanfiat
9 Max forward inter-arrival time maxfiat
10 Std deviation of forward inter-arrival times stdfiat
11 Min backward inter-arrival time minbiat
12 Mean backward inter-arrival time meanbiat
13 Max backward inter-arrival time maxbiat
14 Std deviation of backward inter-arrival times stdbiat
15 Min forward packet length minfpkt
16 Mean forward packet length meanfpkt
17 Max forward packet length maxfpkt
18 Std deviation of forward packet length stdfpkt
19 Min backward packet length minbpkt
20 Mean backward packet length meanbpkt
21 Max backward packet length maxbpkt
22 Std deviation of backward packet length stdbpkt

Sample is generated by sampling randomly selected (uniform
probability) flows from different classes (FTP, SSH, MAIL,
DNS, HTTP, HTTPS and Random UDP). The applications
in the “Random UDP” class includes random UDP flow
instances. In total, Skype Dal Sample consists of 600000
balanced flows (skype flows vs non-skype flows).

B. Feature Selection

Network traffic is represented using flow-based features. In
this case, each network flow is described by a set of statistical
features, Table II. Here, a feature is a descriptive statistic
that can be calculated from one or more packets. To this end,
NetMate [30] is employed to process packets, generate flows
and compute feature values. Flows are bidirectional and the
first packet seen by the tool determines the forward direction.
Moreover, flows are of limited duration. UDP flows are
terminated by a flow timeout. TCP flows are terminated upon
proper connection teardown or by a flow timeout, whichever
occurs first. The flow time out value employed in this work
is 600 seconds [31]. The flows are defined by the features,
we extract a similar set of features as in [2], form the input
vector for the machine learning model, which then provides
a label {Skype, non-Skype} for each flow. As discussed
earlier, features such as IP addresses, source/destination port
numbers and payload are excluded from the feature set to
ensure that the results are not dependent on such biased
features.

VI. EMPIRICAL EVALUATION

In traffic classification, two metrics are typically used in
order to quantify the performance of the classifier: Detection
Rate (DR) and False Positive Rate (FP). In this case DR will
reflect the number of Skype flows correctly classified and
is calculated using DR = TP

TP+FN ; whereas FP rate will
reflect the number of Non-Skype flows incorrectly classified

TABLE III: SBB-GP parameters

Parameter Description Value
Psize Point population size. 90
Msize Team population size. 90
tmax Number of generations. 30000
pd Probability of learner deletion. 0.1
pa Probability of learner addition. 0.2
µa Probability of learner mutation. 0.1
ω Maximum team size. 30
Pgap Point generation gap. 30
Mgap Team generation gap. 60

Fig. 2: ROC Curve plot for the C4.5 for training performance
using Flow based Feature set for Skype (DR versus FPR)

as Skype and is calculated using FPR = FP
FP+TN . Naturally,

a high DR rate and a low FP rate are the most desirable
outcomes. False Negative, FN, implies that Skype traffic is
classified as non-Skype traffic, FP, False Positive, implies
that non-Skype traffic is classified as Skype traffic. All three
candidate classifiers are trained on the training data using
fifty runs to generate 50 different models for each run. Weka
[32] is employed with default parameters to run C4.5 and Ad-
aBoost. Fifty runs of the C4.5 algorithm are performed using
different confidence factors to generate different models for
C4.5 and fifty runs of the AdaBoost algorithm are performed
using different weight thresholds to generate different models
for AdaBoost. The SBB-GP classifier default parameters are
summarized in Table III. Fifty runs of the SBB-GP algorithm
are performed using different population initializations to
generate different models.

Fig. 2, 3 and 4 summarize solutions; there are ten that
are non-dominated for GP, five that are non-dominated for
AdaBoost and three that is non-dominated for C4.5. These
non-dominated solutions for GP, AdaBoost and C4.5 are then
evaluated on the test data sets and compared based on their
performance to detect Skype encrypted tunnels with high DR
and low FPR.



TABLE IV: Best results out of 50 runs for each Classifier on training and testing data sets.

C4.5 AdaBoost GP
DR FPR DR FPR DR FPR

Training Sample (subset of university)
Non-Skype 0.98 0.02 0.95 0.17 0.91 0.13
Skype 0.98 0.02 0.83 0.05 0.87 0.09

University Traces (test)
Non-Skype 0.92 0.02 0.96 0.15 0.94 0.08
Skype 0.98 0.08 0.85 0.04 0.92 0.06

Italy Traces (test)
Non-Skype 0.0 0.40 0.0 0.89 0.0 0.15
Skype 0.60 0.0 0.11 0.0 0.85 0.0

Fig. 3: ROC Curve plot for the AdaBoost for training
performance using Flow based Feature set for Skype (DR
versus FPR)

Fig. 4: ROC Curve plot for the SBB-GP for training perfor-
mance using Flow based Feature set for Skype (DR versus
FPR)

TABLE V: Standard Deviation of Results on the training data

C4.5 AdaBoost GP
DR FPR DR FPR DR FPR

Training Sample (subset of university) x 50
non-Skype 0.001 0.002 0.17 0.04 0.03 0.05
Skype 0.002 0.001 0.04 0.17 0.05 0.03

A. Results

Results are summarized in terms of both accuracy and
model complexity. Accuracy provides us the performance of
the learning models in terms of DR and FP rate. On the
other hand, model complexity is also very important if such
a classification system were to be used in real-time or near
real-time environments.

In these experiments, we first trained each classifier on
our training data set (which is sub-sampled from University
traces) using the same feature set. Then, we tested each
trained model (C4.5, AdaBoost and SBB-GP) on two differ-
ent test data sets, namely, University traces (Dalhousie traces
minus the training partition) and the Italy traces. Results
given in Table IV shows that C4.5 based classification ap-
proach is much better than other machine learning algorithms
employed in identifying the Skype traffic. Moreover, in the
case of C4.5, much lower variance (Table V) implies that
the corresponding solutions generalize to the wider case,
implicit in the test results. In this case, C4.5 based system
can correctly classify ≈98% of the instances with 8% FPR
on the University Test trace. On the same data set, SBB-
GP based system closely follows the performance of C4.5
based system (with ≈92% DR and ≈6% FPR whereas the
AdaBoost based system performs the poorest of the three.
However, introducing the entirely independent test set –
Italy – indicated that C4.5 and AdaBoost had over-learnt
the properties implicit in the training partition. Furthermore,
SBB-GP was observed to provide the best case performance
under the independent test partition (≈85% DR ). The SBB-
GP classifier was the most consistent performer across all
test and training conditions. It should be noted here, the FP
rate for Skype and DR for non-Skype are zero in the Italy
traces because this network trace contains only Skype traffic.

These results demonstrate that it is not only possible to



identify Skype encrypted tunnels without using IP addresses,
port numbers and payload information but also it is possible
to have a generic attribute set that can be employed to
identify encrypted tunnels such as Skype (in our previous
work, we have employed the same feature set for SSH tunnel
identification [1], [2], [3], [4], [5], [20]). Moreover, these
results show that the classification based system trained on
data from one network can be employed to run on a different
network without new training. Our results show that, the
SBB-GP solution seems to generalize well from one network
data to another and is therefore robust. In all cases, the
approach adopted to attribute selection was to include as
wide a set as possible and let the ‘embedded’ properties
of the various learning algorithms establish which subset of
attributes to actually employ. Given this capability, we are
now in a position to review the attributes selected by each
model, where this is readily achieved class-wise in the case
of both C4.5 and SBB-GP. The summary for AdaBoost is
not as straight-forward and will therefore be limited to the
total set of attributes utilized, independent of class.

Table VI summarizes these findings. SBB-GP clearly uses
a lower total count of attributes relative to C4.5, and a lower
count of attributes for Skype detection. Conversely, C4.5 uses
the largest set of attributes as a whole or class-wise. Each
classifier also identifies attributes unique to their solution. For
example, SBB-GP is the only model to choose the Protocol
attribute since Skype application runs on both TCP and UDP
protocols; while C4.5 utilizes the packet size and inter-arrival
time attributes. Also of interest is the low level of overlap in
shared attributes, with only 2 of 3 attributes shared between
C4.5 and SBB-GP and 1 of 3 attributes shared between
AdaBoost and SBB-GP under Skype detection.

In terms of solution complexity for the best
model/solution, we note that AdaBoost generates 7
rules for Skype traffic and 10 rules for Non-Skype traffic;
whereas C4.5 employs 101 rules for Skype classification
and 104 rules to classify non-Skype traffic. Conversely,
SBB-GP uses 2 individuals for Skype classification and 7
for non-Skype. We also note that instruction counts of the
SBB-GP for the Skype classifying individuals was 3 and
13 instructions respectively; whereas individuals engaged
in classifying non-Skype utilized 3, 4 (three off), 5 (two
off) and 13 instructions. These results show the simplicity
of GP solutions does not appear to be traded off for
classifier complexity in the identification of Skype tunnels.
In summary, machine learning algorithms such as AdaBoost,
SBB-GP and C4.5 select the most appropriate attributes
(among the set given) to build their classifier model. We
used this information to distinguish 3 flow attributes from
22 flow attributes that are used in our experiments for
identifying Skype tunnels using SBB-GP.

VII. CONCLUSIONS

Previous research on traffic classification indicated that
embedded paradigms such as C4.5 and AdaBoost provided
better classification performance than methods without this
capacity. In this work, we are able to take this concept further

by introducing a model for learning problem decomposition
in classification that explicitly associates independent subsets
of exemplars with models identified during training. Such a
team-based model of learning is not a weak learner, thus
solutions take the form of a small number of simple pro-
grams with an explicitly non-overlapping behavioral trait and
independent attribute subspaces. Such a methodology is able
to provide solutions that are competitive under independent
training and test data sets, while returning solutions that
are potentially capable of higher throughputs of data than
provided under a single ‘monolithic’ classifier per binary
classification model (such as C4.5). Thus, solutions from
C4.5 utilized deep decision trees, and are expensive to
evaluate from a throughput perspective. Solutions located
by AdaBoost were not effective under the network from
which training data was collected. Moreover, the weak
learner methodology implicit in AdaBoost makes it much
more difficult to associate attributes with class, reducing
transparency of the resulting solution.

Future work will follow similar lines to perform more tests
on different and/or larger data sets in order to continue to
test the robustness of the classifiers as well as exploring the
appropriateness of other machine learning algorithms. Evalu-
ation under other encrypted applications as well as exploring
the possibilities for integrating our approach with approaches
employing host based behavior are also of interest.
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