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Abstract— The ultimate goal of subspace clustering algo-
rithms is to identify both the subset of attributes supporting
a cluster and the location of the cluster in the subspace.
In this work a generic evolutionary approach to bottom-up
subspace clustering is proposed consisting of three steps. The
first applies a non-evolutionary clustering algorithm attribute-
wise to establish the lattice from which subspace clusters will be
designed. In the second step a multi-objective Genetic Algorithm
(MOGA) is used to evolve good candidate subspace clusters
(CSC) through a combinatorial search w.r.t. the attribute-
wise lattice from step 1. The third step then searches in the
space of CSC from the population of the the first MOGA to
find the best combination of subspace clusters, again under
a MOGA formulation. Important properties of the approach
are that a standard clustering algorithm is deployed in step
one to build the initial lattice of attribute-wise clusters. This
helps to decouple the computational expense of clustering using
Evolutionary Computation, with the MOGA applied in steps 2
and 3 building clusters through a combinatorial search relative
to the original lattice parameters. Benchmarking on data sets
with tens to hundreds of attributes illustrates the feasibility of
the approach.

I. INTRODUCTION

The general goal of any clustering algorithm is to extract
the underlying structure of the data i.e., grouping data points
such that an a priori cost function is optimized. There
are many approaches to this task, but it is only relatively
recently that the wider task of simultaneously identifying
attributes as well as the cluster locations has been considered
[1]. Factors driving this development include the increasing
frequency of applications domains with large attribute counts
e.g., document analysis, web pages, and multi-media. The
large dimensionality gives rise to the observation that the
density or support for clusters might decrease i.e., clusters
lie within possibly unique subsets of the entire attribute
space. There are therefore at least two parts to this problem.
Firstly, entire subsets of attributes might be redundant from
the data description/ clustering perspective. Secondly, as
the dimensionality increases then the selectivity of distance
functions tend to break down. Thus, from the perspective
of a candidate cluster, redundant dimensions are sources of
noise with points appearing to be equally distant irrespective
of their cluster membership [1]. Finally, if subspace clusters
can be located, then it is much easier to visualize individual
subspaces than the union of (higher dimensional) subspaces.

There are two major categories of subspace clustering
based on their search strategy. Top-down algorithms find an
initial clustering in the full set of dimensions and evaluate the
subspaces of each cluster, iteratively improving the results.
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Bottom-up approaches find dense regions in low dimensional
spaces and combine them to form clusters. To do so, bottom
up methods frequently make use of data structures such as
grids, windows, cells, or units and iteratively combine the
content to identify higher dimensional regions of density
[1]. The insight motivating this work is that, once the initial
data structure has been identified, the search for appropriate
higher dimensional subspace clusters is combinatorial, and
Genetic Algorithms (GA) are very effective at combinato-
rial optimization problems. A short review of bottom-up
approaches is made in Section II.

Conversely, top-down approaches start by considering
clusters composed from all attributes. Attributes are incre-
mentally removed and the quality of the ensuing cluster(s)
measured until the performance reaches a plateau, as in wrap-
per style algorithms. Naturally, since clusters are initially
composed from all the attributes, the selection of appropriate
distance functions is very important and might represent a
significant computational overhead.

The general approach pursued here for Evolutionary Sub-
space Clustering (ESC) assumes a bottom-up methodology
in which a classical clustering algorithm is first applied to
each attribute independently to establish the initial ‘lattice’
of candidate 1-dimensional clusters from which subspace
clusters will then be composed. The lattice captures the
regions of high density with respect to each attribute. The
process of identifying the subspace clusters takes the form
of a combinatorial search for clusters described in terms of
the regions identified by the lattice. In order to achieve this,
a two stage evolutionary process is assumed. Stage 1 applies
a Multi-Objective GA (MOGA) to identify independent
subspace clusters subject to the constraint that clusters in the
Pareto front have minimal overlap in the exemplars assigned
to each other. Stage 2 applies an independent MOGA to find
the best combination of subspace clusters that will then form
the ultimate solutions. The details of ESC are presented in
Section III.

Experimental methodology and resulting performance
evaluation are presented in Sections IV and V respectively.
Particular attention is given to the construction of data sets
with known distributions of subspace clusters — but without
resorting to purely artificial data — while also explicitly mod-
eling the impact of noise in the regions without identifiable
subspaces. The resulting data sets consist of tens to hundreds
of attributes. Performance evaluation demonstrates that ESC
is able to identify the correct subspaces with detection rates
in the order of 90 percent while utilizing as little as 2 to
35 unique attributes in total i.e., across all subspace clusters.
Computational requirements on the larger subspace is in the
order of 2 minutes per run (worst case) over all stages of the



framework. A concluding section summarizes the ensuing
findings (Section VII).

II. RELATED WORK

CLIQUE [2], ENCLUS [3], MAFIA [4], and CLTREE
[5] are among the most popular bottom-up subspace cluster-
ing algorithms, whereas PROCLUS [6], ORCLUS [7], and
COSA [8] are among the most well-known top-down ap-
proaches. However, none of these approaches use evolution-
ary algorithms to locate the subspace clusters. Conversely,
the work by Kim et al. [9] represents a case in which a
GA was employed. Specifically, a MOGA is used to define
both an attribute subset (under a direct binary encoding) and
suggest the number of clusters, k. The k-means clustering
algorithm is then used to design the corresponding clusters
for that particular individual. As a consequence, all the k
clusters share the same attribute space, and cluster formation
naturally assumes the standard greedy heuristic for cluster
formation once the attribute subspace and cluster count is
defined.

III. METHODOLOGY

The proposed approach to Evolutionary Subspace Clus-
tering (ESC) assumes a bottom-up approach to subspace
clustering and is based on three phases completed in a single
pass (as opposed to iteratively): Attribute-wise Clustering,
Evolving independent subspace clusters, and Cluster combi-
nation; and are detailed as follows.

A. Attribute-wise Clustering

Bottom-up methods require that a lattice/ grid/ cells from
which the ensuing subspace clusters are composed be iden-
tified as the initial step. This represents an implicit set of
tradeoffs, with the quality of the ensuing ‘discretization’ of
the original attributes biasing the quality of the resulting
clusters. Moreover, this process is also sensitive to com-
putational overheads. The view is taken in this work that
a traditional clustering algorithm, applied to each attribute
independently (i.e., attribute-wise) is sufficient for this task,
providing that the clustering algorithm is able to identify the
‘appropriate’ number of clusters as part of the attribute-wise
clustering activity. With these requirements in mind the X-
means generalization of the original k-means algorithm is
assumed [10]. Following application of X-means, we have
each attribute described in terms of a number of cluster
centroids and a corresponding (nearest neighbor) allocation
of exemplars to centroids, and therefore standard deviation.
See for example Figure 1. It is the combination of attribute
and centroid indexes which will then be used to build clusters
and, by extension, sets of clusters in the following two phases
of ESC.

At this point we are also in a position to test for degenerate
attribute-wise clusters. Specifically, any clusters with zero
standard deviation are considered cases of the ‘meaning-
less zeros’ problem. That is, under the subspace clustering
problem, attributes with a zero attribute value are frequently
used to denote the lack of data for a given attribute. Under
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Fig. 1. Result of attribute-wise clustering. Resulting lattice described by
1-d attribute-cluster pairs < a;,c; >.

sparse data sets a significant amount of the data might consist
of such data. Moreover, given the frequency of such data,
it is then highly likely that bottom up subspace clustering
algorithms will devote a lot of resource to clustering such
information. Unfortunately, this has little to do with describ-
ing the meaningful (non-zero) data content. This is therefore
an example of where a priori meta information is able to
guide the bottom-up process of subspace cluster formation.

B. Evolving independent subspace clusters — MOGA(a)

The goal of this step is to establish a population of ‘good’
candidate subspace clusters (CSC) in the space of possible
subspace clusters. To do so, the search for subspace clusters
is formulated as an evolutionary combinatorial optimization
problem. Thus, as each cluster is required to meet generic
properties of cluster quality, the use of a MOGA is justified.

CSC individuals design a subspace cluster using a pair-
wise gene in which each attribute and attribute-wise cluster
index is specified as a pair of integers (<attribute, cluster>
or < a,c >). A variable length representation is assumed,
thus the number of attributes supporting a subspace cluster
is free to evolve. Specifically, each individual is of the form,

Individual(i): SC; = {91, 9p}

gi =<aj,c;>and 1 <p <P

and P is the number of attributes.

Subspace clusters are formed independently from each
other, hence objectives are formulated to reward both diver-
sity (very unlikely that a single cluster will capture all data
set properties) and intra-cluster properties (exemplars which
are explicitly associated with an individual should result in
a ‘tight’ distribution), or

1) Cluster Compactness (CC): With respect to the subset

of exemplars that are common to all attributes identi-
fied by the CSC, we assume the following measure of
‘distortion’ or intra-cluster variation,

p
ce(se) = % > dis(a, c; i) (1)
i=1



where p provides a linear normalization relative to
the number of attributes included; dis(a,c;i) is the
Euclidean distance between centroid ¢, attribute a
and exemplar i under the constraint that the subset
of exemplars considered are common to each of the
attributes supporting the CSC. This information was
collected during the nearest neighbor allocation step
of attribute-wise cluster creation (Section III-A). More
formally this process is defined by,

. . d(z;, usc); Va; € SClx; € a;
dis(a, ¢; i) = Z { ( ()’L;L ) ’ otherv!/ise ’
x, €T
2)
where pgc is the centroid of the CSC cluster as
defined by the p centroid—attribute pairs; 7 is the total
set of data points that are common to all attributes
of CSC SC; as identified during the attribute-wise
nearest neighbor allocation process of Section III-A;
and d(-,-) is the Euclidean distance function. Thus,
by minimizing this objective we give higher fitness to
compact (spherical) subspace clusters.

2) Exemplar Count (EC): The number of exemplars
mapped to a CSC should be maximized. In order to
estimate this through a bottom up process, the number
of common exemplars shared across the union of each
attribute contributing to a CSC is utilized.! Naturally,
this process is analogous to that of estimating the
Cluster Compactness, but this time the summation is
over a binary distance function, or

Vaj € SC|1’Z € aj
otherwise

3)

EC(SC) = % { (1)

z, €T

3) Unique Exemplars (UE): One byproduct of Pareto
multi-objective algorithms commonly utilized for
MOGA is that at the end of each generation the ‘solu-
tion’ (typically) takes the form of a set of individuals —
in this case subspace clusters — considered to be Pareto
equivalent, instead of a single ‘best’ individual. We
utilize the individuals comprising the previous Pareto
front to prioritize CSCs from the current generation
that index exemplars that are not present in the previ-
ous Pareto front.

UE, — {zi € SCxNx; ¢ SCjxr, NSC; € PFy_4}|
k ‘{LCZ ESCJ‘QSC]’ GPthlH @
where || denotes the cardinality of the set, SC; denotes
subspace cluster j, and PF(t-1) denotes membership
of the previous Pareto front. A subspace cluster that
indexes many exemplars that are not indexed by other
CSCs on the Pareto front receives a larger value; hence,

this objective should be maximized.

'Again making use of the information collected during the nearest
neighbor allocation step of attribute-wise cluster creation (Section III-A).

The MOGA implementation could naturally make use of
any recent development of research in this area (see for
example [11] for a survey of the field). The only property
we considered of particular relevance was a need for elitism.
This work assumes the popular NSGA-II [12] model, how-
ever, there is nothing in NSGA-II which ties ESC to this
particular MOGA.

The crossover operator takes the form of 1-point crossover
with pruning/ repair. Specifically, once crossover is applied,
there might be more than one attribute-wise cluster from
the same attribute indexed by the individual; whereas we
consider subspace clusters to be based on a unimodal support
from each attribute, thus use pruning to delete any duplicates.
The mutation operator replaces a gene with feasible attribute-
wise cluster values selected with uniform p.d.f. In other
words the mutation operator creates an attribute-wise cluster
index which does not exist in the individual and introduces
one of its cluster centroids.

C. Cluster combination — MOGA(b)

The goal of MOGA(a) was to build a population of ‘good’
candidate subspace clusters, thus the last step is to define a
combination of CSCs that provide the best final clustering
solution. This is a combinatorial search in the space of all
CSC individuals from the final generation of MOGA(a) and
is again conducted under a Pareto multi-objective context;
hereafter denoted MOGA(b).

Each individual in MOGA(b) consists of g integers
each indexing one individual from the final population of
MOGA(a). Thus, each MOGA(b) individual denotes a set of
CSCs, or

Individual(i): CS; ={5C,...,5C,},

qge{l,...,Q}and Q = |[MOGA(a)|

where |[MOGA(a)| is the size limit of the MOGA (a) popula-
tion. MOGA(b) also assumes a variable length representation
where this is equivalent to letting the algorithm evolve the
optimal number of subspace clusters in a clustering solution.

In the case of general clustering optimization criteria, we
consider two categories [13], [1]: intra-cluster distance and
connectedness. Clustering algorithms based on intra-cluster
distance are designed to form compact spherical clusters by
minimizing the ‘distance’ between data items of the same
cluster or data items and cluster representatives, as in k-
means. Conversely, a cluster connectedness objective forms
clusters in which data items “close to each other” fall into
the same cluster, as in single link agglomerative clustering.
This category of clustering algorithms can find clusters of
arbitrary shape, however, they might fail when clusters are
close to each other.

Since clustering algorithms relying on a single optimiza-
tion criterion may find one category of clusters but fail on
the other, we assume a methodology based on objectives
from both categories for MOGA(b) as in the work of Handl
and Knowles [13]. In fact these two objectives are com-
plementary, implying that the first objective, compactness,



tries to include spherical clusters whereas connectivity tries
to include clusters in which neighbouring data items share
the same cluster, regardless of cluster shape. Specifically:
1) Solution intra-cluster distortion: A new nearest neigh-
bor allocation of exemplars to cluster centroids is
performed against the set of candidate cluster centroids
indexed by the MOGA(b) individual.> Each exemplar
of the data set is allocated to one of the g subspace
clusters of the clustering solution. The distance be-
tween an exemplar and its subspace cluster centroid
is defined over the attributes specific to each subspace
cluster. The sum of all distances is the overall distortion
value of a MOGA(b) individual, or

q [5Ci|

=" dis(x;, psc,) (5)

i=1 j=1
where ¢ is the number of CSCs in a MOGA(b)
solution, |SC;| is the number of exemplars allocated
to SC; and pgc, is the centroid of SC;.

2) Solution Connectivity: While the first objective tries
to build spherical subspace clusters to minimize the
distortion value, the second objective tries to give more
weight to subspace clusters that allocate neighboring
exemplars to the same subspace clusters [13].

Dis(CS)

IF 6(z;, NN;j)
otherwise

N M 1.
C J 6
on(cs) =Y. 3{ 4 ©
=1 j=1
where N is the exemplar count of the data set, M is the
number of nearest neighbor exemplars to x; considered
for connectivity which we define as max(10,0.01 x V).
NN;; is the jth nearest neighbor exemplar to x;, and

the 6 function is defined as:

0(z;, NN;j) = BSCy, : 2; € SCLNNN;; € SCi, (7)

A large value of connectivity indicates that there are a
lot of neighboring exemplars placed in different clus-
ters, whereas a small value of connectivity indicates
that only a few neighboring exemplars are allocated to
different subspace clusters [13]. Thus, this objective is
to be minimized.

The crossover operator of MOGA(b) takes the form of 1-
point crossover in which two new offspring are created by
merging the first (second) half of the first (second) parent
with the second (first) half of the second (first) parent. Du-
plicate CSC indexes are deleted from the resulting offspring.
The mutation operator replaces one of the CSC indexes of an
individual with a CSC index either from the Pareto front of
MOGA(a) or the last population of the MOGA(a) depending
on the parameter settings of the ESC algorithm.

2This nearest neighbor allocation is independent of the attribute-wise
nearest neighbor allocation performed in Section III-A and reflects the true
allocation of exemplars to clusters as the set of ¢ CSC is now explicitly
defined.
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Fig. 2. Construction of subspace benchmarking data set.

IV. EXPERIMENTAL METHODOLOGY

A. Data Sets and ESC Parameterization

In order to provide a known ‘ground truth’ with respect to
the structure of the underlying data, we take the following
approach to explicitly building subspace clusters within the
data sets used for benchmarking purposes. Real data sets
from the UCI repository are selected, and attributes pre-
processed to standardize the dynamic range for each attribute
to the unit interval [0, 1]. Specifically, a measure of distortion
appears as one of the objectives during MOGA(a) and
MOGA(b), thus attribute standardization mitigates against
one attribute artificially appearing more significant than
another. Pairs of data sets are then combined with dissimilar
attribute counts, resulting in a matrix style of combination
in which each exemplar only consists of attributes from
one subspace cluster (data set) and not the other, Figure
2. Regions corresponding to the subspaces naturally need
padding with suitable values. Two scenarios are considered.
Either zero values are employed or random noise® under a
uniform p.d.f.; hereafter referred to as the zero-padded and
noise-padded data sets respectively. Moreover, in the case
of the noise source model, the attributes from the subspace
clusters with zero values are also replaced with data from the
noise source. This naturally presents a more difficult problem
than the case of zero padding as a distortion is introduced into
the true subspaces as well as the ‘framing effect’ provided
by the zero attribute information now being removed.

In this initial study UCI data sets are selected to represent
subspace clusters with tens or hundreds of attributes and
differing amounts of implicit ‘sparsity’ (Table I). Specifically,
Iris has only 4 attributes whereas lonosphere has 34, resulting
in a benchmarking data set with 38 attributes; hereafter
referred to as Iris-Ion. Moreover, approximately ten percent
of the attribute values in Ionosphere are zero values, which
under the above noise padding model for subspace construc-
tion, are also replaced with noise. The second subspace data
set consists of the union of Musk and Ionosphere (Musk-Ion),
resulting in a much larger attribute space of 200 attributes
(Table I). The first data set is balanced, with only a subset
of exemplars from the larger Ionosphere data set appearing;

3Distributed over the unit interval to match the range employed for the
subspace clusters.



TABLE 1
CONSTRUCTION OF BENCHMARKING DATA SETS. ‘ATTR’ AND ‘INST’
DENOTE ATTRIBUTE AND INSTANCE COUNTS RESPECTIVELY; ‘IRIS,’
‘IONOSPHERE’ AND ‘MUSK’ ARE THE ORIGINAL SOURCE DATA SETS;
‘RESULT’ IS THE CORRESPONDING SUBSPACE DATA SET.

TABLE 11
SUMMARY STATISTICS FROM COMPLETE STUDY. ‘SC COUNT’ IS THE
NUMBER OF SUBSPACE CLUSTERS PER SOLUTION; ‘DETECTION’ IS THE
BALANCED DETECTION RATE; ‘ATTRIBUTE COUNT’ IS THE NUMBER OF
ATTRIBUTES PER SOLUTION

Data Set Iris Ionosphere Musk Result Iris-Ion data set
Parameter | Attr | Inst | Attr | Inst | Attr | Inst | Attr | Inst - - SC count Detection Attribute count

Iris-Ion 4 150 34 150 - - 38 300 CSC | padding | Med | Max | Med Max | Min Avg
Musk-Ion - - 34 351 166 | 476 | 200 | 827 PF Zeros 3 22 0.937 0.99 2 4.85
PF noise 5 25 0.92 1.0 2 6.37
Full Zeros 2 25 0.903 | 0.997 2 4.76
Full noise 3 25 0.873 1.0 2 6.47

whereas Musk-Ion has a mild exemplar imbalance in the Musk-lon data set
. PF Zeros 3 11 0.946 0.99 3 3.88
representation from each subspace (57.6% Musk). P oo 3 5 T0903 10 5 315
In total there are therefore 4 benchmarking data sets: Iris- Full | zeros 3 25 0935 [ 1.0 2 6.32
Ton and Musk-Ion each combined into pairwise subspaces Full | nmoise | 4 | 25 | 0919 ] 10 | 2 | 805

under either zero-padding or uniform noise. This then results
in a total of 8 experiments as we consider two ESC scenarios.
In the first case, MOGA(b) is limited to building solutions
from the CSCs lying in the Pareto front of MOGA(a). In the
second case MOGA(b) is allowed to index CSCs from the
entire final population of MOGA(a). Each experiment com-
prises of 100 ESC runs using the common parameterization
of 100 individuals per population, 100 generations, and 100
percent likelihood of applying crossover and mutation.

B. Performance Measures

Performance will be assessed from two generic perspec-
tives: the ability to build clusters that separate the two
subspaces, and solution complexity. Given that the ground
truth for membership of the two subspace clusters comprising
Iris-Ion and Musk-Ion is explicitly known we can measure
the quality of subspace clusters in terms of the ability to
associate subspace clusters with each of the original source
data sets. The performance metric of balanced detection rate
will be used for this purpose, where this resists the impact of
class imbalance under Musk-Ion (degenerate solutions would
have a best case performance of 50 percent). Thus, a solution
has a balanced detection rate of ﬁ > _icg detection(i, S)
where |S| is the number of subspaces (always 2) and
detection(i, S) is the detection rate of the individual with
respect to subspace S exemplar i. The properties of the
MOGA(b) objectives in the final population can also be
measured, where this gives some qualitative information re-
garding to what degree satisfaction of the subspace clustering
objectives correlates with good post training performance.

Complexity will be measured from the perspective of
the number of subspace clusters and attribute count of the
clusters. Again, each data set is known to be based on two
explicitly embedded attribute subspaces, however, this does
not preclude the process of subspace clustering discovering
additional subspaces which may impact the total number of
subspaces per solution, potentially gaining additional insight
to the distribution of data. With regards to attribute counts
frequency histograms will be used to summarize the number
of attributes typically employed over ESC solutions.

V. EMPIRICAL EVALUATION

ESC solutions are taken across the entire Pareto front
of MOGA(b) on the last generation, naturally the designer
would normally filter this information, however, to minimize
any bias in the reporting, all Pareto non-dominated individ-
uals are considered in compiling the following results. Table
IT summarizes the overall performance of ESC solutions
across all 8 experiments in terms of the median subspace
clusters per solution, median and maximum detection rates,
and the average number of (unique) attributes per solution
i.e., attribute support. In all cases ESC results in concise
solutions, both from the perspective of subspace cluster
count, and in terms of attribute support. Likewise cluster
quality, as measured in terms of the balanced detection rate,
is also very consistent. On cross referencing the MOGA (b)
training objectives of distortion and connectivity with the
post training metric, it was also apparent that solutions
which focused on minimizing distortion or connectivity alone
were not correlated with the better detection rates (see the
following subsections). A result that supports including both
measures of cluster quality during MOGA(b) evolution. The
other general trend apparent is that increasing the set of
candidate subspace clusters that MOGA(b) may index from
MOGA(a) — that is candidate subspace clusters from the
Pareto front versus the entire population of MOGA(a) —
does not lead to significant improvements. In the following
subsections we provide the associated context for these
general trends.

A. Iris-Ion data set

The Iris-Ion benchmark uses equal exemplar counts per
subspace cluster but only a very small attribute support for
the Iris subspace.

1) MOGA(b) limited to CSC individuals from MOGA(a)
Fareto front: The violin/ quartile box plots of Figures 3
and 4 summarize complexity and cluster quality of the
resulting solutions under zero padding and noise padding
scenarios respectively. Both methods demonstrate a high
class-wise detection rate, whereas the principle difference
between the two scenarios lies in the number of subspace
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Fig. 3. Cluster quality on Iris-Ion data set. Limited MOGA(b) indexing
under zero padding scenario.
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Fig. 4. Cluster quality on Iris-Ion data set. Limited MOGA(b) indexing
and noise padding scenario.

clusters typically returned. When noise appears the number
of subspace clusters increases from 3 to 5. Naturally, the
cluster quality objectives used during training (distortion and
connectivity) also record a relative increase in their values
as noise based padding is introduced.

Figures 5 and 6 summarize the normalized frequency* of
attribute indexing across all 100 runs for the zero and noise
padding scenarios respectively. There appears to be consis-
tency with which subspace clustering weight the attributes,
however, the use of noise decreases the relative significance
of attributes 12 and 28 with respect to the no noise case.
Thresholding the attribute frequencies at 1% leaves 8 (10)
significant attributes under the zero (noise) padding cases
respectively; where these are consistently identified in all
runs. One other aspect of interest is that the addition of noise
actually resulted in support for attributes corresponding to the
Iris subspace disappearing (attributes 1 to 4 are not indexed).
Thus, support for the Iris partition has been ‘washed out’ by
the noise source — probably due to the dynamic range of the

4Normalized relative to the largest attribute count encountered.

20
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Fig. 5.  Attribute support under Iris-lon data set. Limited MOGA(b)
indexing and zero padding scenario.

20
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Fig. 6.  Attribute support under Iris-lon data set. Limited MOGA(b)
indexing and noise padding scenario.

noise matching that of the Iris attributes, but representing
nearly 90% of the available attributes.

2) MOGA(b) indexing any CSC from MOGA(a): In-
creasing the number of candidate subspace clusters from
MOGA(a) so that MOGA(b) might compose solutions be-
yond that of the MOGA(a) Pareto front may potentially
result in better overall solutions at MOGA(b). Specifically,
the nearest neighbor allocation of exemplars to clusters
now takes into account other clusters contributing to the
overall solution; where this is naturally not possible during
MOGA(a). In the case of the violin/ boxplot for the zero
padded scenario (not shown), the general picture established
under Section V-A.l was unchanged (also reflected in the
general summary of Table II). Conversely, under the noise
padding scenario a 3 percent reduction in balanced detection
rate was evident. Moreover, the count of subspace clusters
also increased. Distortion value remained very similar (w.r.t.
that established in Section V-A.l) whereas connectivity ac-
tually underwent a net elongation towards lower values.

Naturally, increasing the set of possible CSCs from
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Fig. 7. Attribute support under Iris-Ion data set. Population wide MOGA (b)
indexing and noise padding scenario.

MOGA(a) did result in more attribute diversity across all
possible solutions. Figure 7 illustrates this under the case
of the noise based padding scenario (compare to Figure 6).
However, this does not result in an increase in the number
of attributes typically appearing per solution (Table II), with
no change to the overall distribution of attribute preferences.

B. Musk-Ion data set

The Musk-Ion benchmark is unbalanced and represents a
much wider total attribute space than Iris-Ion.

1) MOGA(b) limited to CSC individuals from MOGA(a)
Pareto front: As per the Iris-lon data set, violin/ quartile
box plots summarize complexity and cluster quality of the
resulting solutions under zero padding and noise padding
scenarios (Figures 8 and 9 respectively). Similar trends are
apparent, with the noise padding scenario resulting in more
subspace clusters appearing and a lower overall cluster purity
(balanced detection rate). There is now also a pronounced
tail/ second peak to the balanced detection rate; again more
so in the case of the noisy data scenario. This is to be
expected as we are considering all members of the MOGA (b)
Pareto front as solutions, whereas in practice solutions that
fail to balance distortion and connectivity would be filtered
i.e., preference for the knee of the Pareto front.

Figures 10 and 11 summarize the normalized frequency
of attribute indexing under the Musk-Ion benchmark across
all 100 runs for the zero and noise padding scenarios re-
spectively. Both the no-noise and noise scenarios result in
more attributes being ignored entirely than under the smaller
Iris-Ion benchmark. However, there are also some significant
changes to the attributes indexed, indicating that the intro-
duction of noise results in previously useful attributes being
replaced with selections that are more robust to the noise
source. This is to be expected as the zero attributes resulted
in the zero instances being replaced with noise source values,
effectively rendering the attribute useless as a robust attribute
candidate. That ESC is able to filter such cases is therefore
considered in a positive light.
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Fig. 8. Cluster quality on Musk-Ion data set. Limited MOGA(b) indexing
under zero padding scenario.
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Fig. 9. Cluster quality on Musk-Ion data set. Limited MOGA(b) indexing
and noise padding scenario.
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Fig. 10. Attribute support under Musk-Ion data set. Limited MOGA(b)
indexing and zero padding scenario.
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Fig. 11.  Attribute support under Musk-Ion data set. Limited MOGA(b)
indexing and noise padding scenario.
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Fig. 12.  Attribute support under Musk-Ion data set. Population wide
MOGA(b) indexing and noise padding scenario.

2) MOGA(b) indexing any CSC from MOGA(a): On in-
troducing all MOGA(a) individuals as potential CSCs for
MOGA(b) there is some evidence for a reduction to the
total number of subspace clusters per solution (Table II).
This is reflected in a corresponding shifting down in the
violin/ box plot distribution (not shown), but otherwise there
is no significant variation relative to the distributions returned
under the results reported in Section V-B.1. Likewise, in the
case of the frequency with which attributes are indexed (over
all runs and entire content of the MOGA(b) Pareto front) a
floor of infrequently indexed attributes occurs, but otherwise
the distribution remains unchanged. Figure 12 illustrates this
under the case of the noise based padding scenario (compare
to Figure 11). As before, this does not result in an increase
in the number of attributes typically appearing per solution
(Table II) and the overall distribution of attribute preferences
remains largely unchanged.

VI. CONCLUSION

Subspace clustering under arbitrary degrees of freedom
represents a new avenue of research for Evolutionary Com-

putation. Previous work assumes a common subspace for
all clusters and apply a classical (greedy) clustering algo-
rithm in the fitness evaluation stage of evolution e.g., [9].
Instead this work follows the bottom up approach to sub-
space clustering and therefore avoids applying the classical
clustering algorithm in the inner loop of fitness evaluation.
The resulting ‘lattice’ of 1-d attribute clusters forms the
basis for representing the subspace clustering problem as a
combinatorial search. Two separate applications of a MOGA
are then used to identify candidate subspace clusters and
combinations of these subspace clusters respectively. Most of
the computational cost is now associated with evaluating the
connectivity objective of the second MOGA, although worst
case computational requirements for both applying MOGA
are just over 2 minutes on a Dell laptop computer.

A framework is developed for testing the resulting ESC
algorithm, with particular attention paid to the representation
of noise, a property that is rarely considered in previous stud-
ies. Solutions returned appear to be effective at separating the
embedded clusters and consist of subspace clusters with very
low attribute support.
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