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Abstract— Although adaptive and heuristic approaches
perform well under idealized conditions to the packet
network routing problem, such algorithms are also dependent
on global information that is not available under real-world
conditions. This work benchmarks routing under local
information conditions using the AntNet algorithm and
makes recommendations regarding future approaches.

Index terms—Swar m Intelli gence, Networ k Routing.

I. INTRODUCTION

Networked information systems and telecommunication
in general rely on a combination of routing strategies and
protocols to ensure that information sent by a user is
actually recaeved at the desired remote location. In
addition, the distributed nature of the problem means that
multiple users can make requests smultaneoudly. This
results in delayed response times, lost information or other
reductions to the quality of service objedives on which
users judge network service Routing is the processused to
determine how a packet gets from source to destination.
Protocols are used to implement handshaking activities
such as error cheding and recever acknowledgements. In
this work we are interested in the routing problem on
computer networks.

The routing problem has several properties, which
make it particularly challenging. In particular, the problem
is distributed in nature; hence a solution that assimes
access to any form of global information is not desirable.
The probem is also dynamic; hence a solution that is
sufficient for presently experienced network conditions
may well be inefficient under other loads experienced by
the network. Moreover, the traffic experienced by networks
is sbjed to widey varying load conditions, making it
imposshleto design for ‘typical’ network conditi ons.

Traditionally, routing strategies are implemented
through the information contained in routing tables
available at each node in the network. That is, a table
detail s the next ‘hop’ a packet takes based on the overall
destination of the packet. This $ould not be taken to imply
that a routing table @nsists of an exhaustive list of all
destinations — this is a form of global information. Instead
the table mnsists of spedfic entries for the neighboring
nodes and then a series of default paths for packets with
any other destination. Application of a classca
optimization technique to such a problem might take the

form of first asessng the overal pattern of network
traffic, and then defining the mntents of each routing table
such that congestion is minimized. Such an approach does
not generally work in practice as it smply costs too much
to colled the information on aregular basis, where regular
updating is necessary in order to satisfy the dynamic nature
of network utilizaion. We therefore see the generic
ohedives of a routing strategy to be bath dynamically
reconfigurable and be based on localy available
information, whilst also satisfying the user quality of
serviceobjedives (i.e. aglobal objedive).

Several approaches have been proposed for addressng
these ohjedives including: active networking [1], social
insed metaphors [2], [3], cognitive packet networks [4]
and what might be loosdy called other ‘adaptive
techniques [5]. The latter typicaly involve using
evolutionary or neural techniques to produce a ‘routing
controller’ as opposed to a ‘routing table’ at each node,
where the ntroller typically requires knowledge of the
global connedivity to ensure a valid route. Both the social
insed metaphor and the agnitive packet approach provide
a methodology for routing, without such a constraint; by
using the packets themselves to investigate and report
network topology and performance

All methods as currently implemented, however, suffer
from one drawback or another. Cognitive packet networks
and active networking algorithms attempt to provide
routing programs at the packet level, hence achieving
scalable run time dficiency becomes an issie. To date,
implementations of ‘adaptive’ techniques and social insed
metaphors have relied, at some point, on the avail ahilit y of
global information

The purpose of this work is to sSmulate an example of
routing as based on the social insed metaphor [2] and
investigate the performance of such a system under the
local information constraints typically avail able in practice
That is to say, previous works have employed routing
tables that list all possble destinations, where this is not
the @se in practice Sedion Il introduces the ‘ant’ based
social insed metaphor, used to provide the routing
strategy. Experiments and results are presented in sedion
[, and conclusions are drawn in sedion 1V.

II. SociAL INSECT METAPHOR TO ROUTING
As indicated abowe, active networking [1] and cognitive
packet [4] based approaches emphasize a per packet
medhanism for routing. The aforementioned ‘adaptive



techniques [5] tend to emphasize adding ‘intelligence to
the routers leaving the packets unchanged. A socia insed
metaphor provides a midde ground, in which the mncepts
of a routing table and data packets gill exist, but in
addition, intelligent packets — ants — are introduced that
interact to kee the mntents of the routing tables up to
date. To do so, the operation of ant packets is modeled on
observations made regarding the manner, in which worker
ants use chemical trail s as a method of indired stigmergic
communication. Spedfically, ants are only capable of
simple stochastic dedsions influenced by the avail abilit y of
previoudly laid stigmergic trails. The diemical dencting a
stigmergic trail is sbjed to deay over time, and
reinforcement proportional to the number of ants taking
the same path. Trail building is naturally a bi-diredional
process ants neel to reach the food (destination) and make
a succesdul return path, in order to significantly reinforce
a stigmergic trail (Forward only routing has also been
demonstrated [3]). Moreover, the faster the route, then the
sooner the trail is reinforced. An ant on encountering
multi ple stigmergic trails will probabilistically choose the
route with greatest stigmergic reinforcement. Naturally,
this will correspond to the ‘fastest’ route to the food
(destination). The probabilistic nature of the dedsion,
however, means that ants are ill able to investigate routes
with alower stigmergic trial.

This approach has proved to be a flexible framework
for solving a range of problems including the traveling
salesman problem [6] and the quadratic assgnment
probem [7]. The work reported here foll ows the ‘ AntNet’
algorithm of Di Caro and Dorigo [2], and is informally
summarized as foll ows,
¢ Each node in the network retains a record of packet

destinations as e on data packets passng through
that node. This is used to periodicaly, but
asynchronoudy, launch ‘forward ants with
destinations gochastically sampled from the lleded
set of destinations,

¢ Once launched, a forward ant uses the routing table
information to make probabili stic dedsions regarding
the next hop to take at each node. While moving,
each forward ant colleds time stamp and node
identifier information, where this is later used to
update the routing tables along the path foll owed,;

« |If a forward ant re-encounters a node previousy
visited before reaching the destination, it iskilled (in
other words, identification of aloop in the path);

e On succesqully reaching the destination node, total
trip time is estimated, and the forward ant converted
into a backward ant;

¢ The backward ant returns to the source using exactly
the same route as recorded by the forward ant. Instead
of using the data packet queues, however, the
backward ant uses a priority queue;

e At each node visited by the backward ant, the
corresponding routing table entries are updated to
refled the relative performance of the path;

¢ When the backward ant reaches the source it dies.

Simulation of the above AntNet scheme has been
shown to provide a robust aternative to six standard
routing algorithms — OSPE SPF BF, Q-R, P-QR and
Daemon [2]. However, an asamption is made, which
inadvertently implies the use of ‘global’ routing table
information. That is to say, the definition of routing tables
is such that it is assumed that every node has a unique
location in the routing table, Table I. Thus, if there are a
total of L neighboring nodes and K nodes in the entire
network, then there are LxK entries in the table. In
practice this is never the @se. Instead, routing tables
consist of spedfic entries for the neighboring nodes and
then a series of default paths for packets with any other
destination — such as OSPF or BGP4 [8]. Table Il, in
which case there are only Lx2 entriesin the routing table,
summarizes the ‘local’ routing table information format
employed here, where every node sees only its neighbars,
i.e. global information is not introduced.
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In the @se of the “global table’, as originally used in
the AntNet algorithm, if the network configuration
changes, then all nodes will be updated with additional
rows and columns. Moreover, as forward ants propagate
acrossthe network the amount of information they need to
‘carry’ aso increases (node identifier and time stamp).



Finally, the availahility of globelly synchronized time is

also asumed.

In order to avoid the use of the aforementioned gobal
information, the following methods are therefore
employed,

e Routing tables only detail the neighbaring nodes.
Such a limitation therefore places greater emphasis
on the learning capacity of the ant. This is
particularly significant during step (2) of the ant
forward pass (sub-sedion 11-A). Tables 1 and 2
illustrate the difference in avail able information for
a node in the ommonly used Japanese benchmark
backbone (NTTNet) routing problem, Figure 1;

e Each node has a buffer in which forward ants
deposit time stamp and identifier for the previous
node. As will becwme apparent in the following
sedion, it is only the inter-node information, which
isimportant;

e Time synchronization is treated as a protocol isse.
That isto say, during low load conditi ons each node
is responsible for letting neighboring nodes know
what their current time dock is. Moreover,
whenever interrupts to services are sustained, then
the first step once a node returns to gperation will
be to reinitiate local time references.

In the following sedion, the details of the AntNet
agorithm [2] are summarized in order to better understand

the significance of the above modifications.

Fig 1 Japanese NTTnet backbone (55 nodes)

A. AntNet Algorithm

It is assumed that routing tables, T, exist at each node,
k, in which a routing dedsion is made. Tables consist of
‘n’ rows, one row for each neighboring node/link. Asfar as
a normal data packet is concerned, if the destination, d,
from current node, k, is a neighbor then routing is
deterministic (Pyg = 1, where L = d). In all other cases, a
routeis sleded based on the neighbor node probabiliti es.
1. New forward ants, Fy, are aeated periodically, but
independently of the other nodes, from source s, to
destination node, d, in proportion to the destination
frequency of passng data packets. Forward ants travel

the network using the same priority structures as data
packets, henceare subjed to the same delay profil es.

2. Next link in the forward ant route is sleded
stochastically, p'(j), in proportion to the routing table
probabiliti es and length of the @rresponding output
queue.

p(j) + al,

1+a(| N |_1)
where p(j) is the probability of sdeding node j asthe
next hop; a weights the significance given to local
queue length verses global routing information, p(j); I;
is the queue length of destination ‘j’ normalized to
the unit interval; and Ny is the number of links from
node k.

3. On visiting a node different from the destination, a
forward ant cheds for a buffer with the same
identifier asitsdf. If such a buffer exists the ant must
be entering a cycle and des. If this is not the @ase,
then the ant saves the previoudy visited node
identifier and time stamp at which the ant was
serviced by the airrent node in a buffer with the
forward ant’s identifier. The total number of buffers
at a node is managed by attaching “an age’ to buffer
space and alowing backward ants to free the
corresponding buffer space

4. When the arrent node is the destination, k = d, then
the forward ant is converted into a backward ant, Bgs.
The information recorded at the forward ant buffer is
then used to retrace the route foll owed by the forward
ant.

5. At each node visited by the backward ant, routing
table probabilities are updated using the following
rule,

IF (node was in the path of the ant)

THEN p(i) = p(i) +r {1—p(i)}

ELSE p(i) = p(i) + r P(i)

wherer O (0, 1] is the reinforcement factor central to
expressng path quality (length), congestion and
underlying network dynamics.

p'(j) =

As indicated abowe, the reinforcement factor should be
a factor of trip time and local statistical modd of the node
neighborhood. To this end [2] recmmend the following
relationship,

r=g M%C@ TS I
Htant 2%|sup_|inf)+(-r_linf)a

where W,ey S the best case trip time to destination d over a
suitable temporal horizon, W t, is the actua trip time
taken by the ant; lint = Whest; lsup = Mg + W{Oua / (1 - V)} -

The estimates for mean, g, and variant, Oyq, of thetrip
time are also made iteratively, using the trip time
information thus,

HMd = Ha + N(Okd — Ha)
(Pa)* = (Pe)* *+ N{ (Owa — Ma)” — (Pe)°}




From the abowe agorithm, it is, therefore, apparent that
ants are required to make dedsions under more uncertainty
than was previoudy the @se. Moreover, the trip time
information is updated incrementall y based on the recorded
trip duation between current node, k, and utimate
destination, d. This means that it is no longer necessary to
carry al node and duation information as a ‘stack’ to the
target duration as in the original model [2]. Only the
previous gep information is therefore necessary.

IIl. SIMULATIONS

To test the performance of the modified AntNet
algorithm(local information only) we also simulated the
origina AntNet algorithm(global information). The two
programs were written in C++ under UNIX environment.

The event driven smulation models the network as
routers (nodes) and links. Every router has an incoming
buffer, a memory space for processng packets, and an
outgoing buffer for each link to its neighbor routers. A
priority queue is used to store the events. In order to let the
two programs have the same input, an event generator is
used to generate the events, such as the new packets, or
routers going down and up The following is the
parameters that are used in the simulation:

e Theforward ants are launched every 300ms;

e The AntNet agorithm is given 5 semnds time to
converge theinitial routing tables, during this period,
ants are the only packets traversing the network;

. Packets are generated by Poison distribution (mean
of 35ms).

Measurements used to compare the two algorithms are
network throughput, and the queue length due to network
failures. The network throughput is defined as the bytes
(packets) that arrive at the destination routers per time
step. The simulation length is 125G, as the result,
1984840 pckets are generated within 125G The
following figures (2-11) are the result of our simulations,
where al dark black lines indicate results for AntNet
running with ‘global routing’ tables, Table I, whilst gray
lines show the results for the AntNet running with ‘local
routing’ tables, Tablell.

Five different scenarios are mnsidered. In thefirst case,
al routers remain operational for the duration of the
simulation, figures 2 and 3, hence the base line cnditions
are identified. Scenario 2, figures 4 and 5, removes node
34, a degree 5 node that plays a predominant role in
establishing network connedivity in the lower left of the
Japanese backbone, figure 1. Two nodes (nodes 13 and 49
are removed in scenario 3, figures 6 and 7, and 3 nodes
(nodes 6, 19 and 42 in scenario 4, figures 8 and 9. The
last scenario removes 2 nodes (nodes 13 and 49, but at
different times (13 at 300s, 49 at 500s), and lets them be
repaired (bath at 800s) before the simulation completes,
figures10and 11
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From figures 2 and 3 it is readily apparent that the
availability of global information makes a significant
impact on the quality of the route. The global case
effedively returning twice the throughput and an order of
magnitude reduction in the queue length of the local
information case. In the following 4 scenarios, the global
case appears to be more senstive, with worse queue
lengths for all but the @se of 3 nodes removed. However,
this is deceptive as the number of lost packets under the
local information AntNet is much higher, actually reducing
queue lengths ggnificantly! Thus, the AntNet algorithm
under global information is much more desirable in all
circumstances.

IV. CONCLUSION

The routing algorithms current used on the Internet are
centralized, with some central routers, e.g., at the border
gateways, taking the responsibility to redistribute routing
information. This leaves the network engineg with the
opportunity to tune router configurations according to their
experience Unfortunately, the network topology, and the
traffic pattern are subjed to continual change. This
requires the network enginees to adjust the parameters for
better performance Distributed adaptive and intelli gent
routing algorithms have therefore become more and more
important; in this way, the network can set up the routing
tablesitsalf, and adjust them automatically.

This paper characterizes performance from the AntNet
routing algorithm under local information constraints. By
doing so the aim of the authors is to demonstrate the
importance of including this limitation when attempting to
solve the general case of the packet routing problem
(distributed dynamic information). Such a shortcoming is
not unique to the AntNet algorithm, but a factor of
heuristic and adaptive techniques the authors are airrently
aware of. In order to address these isaues, increased
intelligence will be necessary on the ‘agent’ side. In the

spedfic case of the AntNet algorithm one possble solution
would be to explicitly make the ‘agent’ responsible for
learning the reinforcement in equation (1). Such an agent
would require memory properties, eg. rearrent
interconned of neural network modes, and has indeed
been initially proposed under the mntext of a different
‘agent’ routing framework (cognitive packet framework
[3]). Such a solution would addressthe problem of letting
the ‘agents seebeyond the information retained in routing
tables. However, under what conditions thisis sufficient to
ensure ‘good’ routes for the data packets is an open
question.

The authors are arrently working on approaches based
on the w-evolution of routes by genetic algorithm based
methods. In doing so, the oljedive is to provide a more
explicit link between the routes identified by ‘agents and
the information that data packets are routed against.
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