
 
Abstract— Although adaptive and heur istic approaches 
perform well under ideali zed conditions to the packet 
network routing problem, such algor ithms are also dependent 
on global information that is not available under real-wor ld 
conditions. This work benchmarks routing under local 
information conditions using the AntNet algor ithm and 
makes recommendations regarding future approaches. 
 
Index terms—Swarm Intelli gence, Network Routing. 
 

I. INTRODUCTION 

Networked information systems and telecommunication 
in general rely on a combination of routing strategies and 
protocols to ensure that information sent by a user is 
actuall y received at the desired remote location. In 
addition, the distributed nature of the problem means that 
multiple users can make requests simultaneously. This 
results in delayed response times, lost information or other 
reductions to the qualit y of service objectives on which 
users judge network service. Routing is the process used to 
determine how a packet gets from source to destination. 
Protocols are used to implement handshaking activities 
such as error checking and receiver acknowledgements. In 
this work we are interested in the routing problem on 
computer networks. 

The routing problem has several properties, which 
make it particularly challenging. In particular, the problem 
is distributed in nature; hence a solution that assumes 
access to any form of global information is not desirable. 
The problem is also dynamic; hence a solution that is 
suff icient for presently experienced network conditions 
may well be ineff icient under other loads experienced by 
the network. Moreover, the traff ic experienced by networks 
is subject to widely varying load conditions, making it 
impossible to design for ‘ typical’ network conditions. 

Traditionally, routing strategies are implemented 
through the information contained in routing tables 
available at each node in the network. That is, a table 
detail s the next ‘hop’ a packet takes based on the overall 
destination of the packet. This should not be taken to imply 
that a routing table consists of an exhaustive li st of all 
destinations – this is a form of global information. Instead 
the table consists of specific entries for the neighboring 
nodes and then a series of default paths for packets with 
any other destination. Application of a classical 
optimization technique to such a problem might take the 

form of first assessing the overall pattern of network 
traff ic, and then defining the contents of each routing table 
such that congestion is minimized. Such an approach does 
not generall y work in practice as it simply costs too much 
to collect the information on a regular basis, where regular 
updating is necessary in order to satisfy the dynamic nature 
of network utili zation. We therefore see the generic 
objectives of a routing strategy to be both dynamically 
reconfigurable and be based on locall y available 
information, whilst also satisfying the user qualit y of 
service objectives (i.e. a global objective). 

Several approaches have been proposed for addressing 
these objectives including: active networking [1], social 
insect metaphors [2], [3], cogniti ve packet networks [4] 
and what might be loosely called other ‘adaptive’ 
techniques [5]. The latter typicall y involve using 
evolutionary or neural techniques to produce a ‘ routing 
controller’ as opposed to a ‘ routing table’ at each node, 
where the controller typicall y requires knowledge of the 
global connectivity to ensure a valid route. Both the social 
insect metaphor and the cogniti ve packet approach provide 
a methodology for routing, without such a constraint; by 
using the packets themselves to investigate and report 
network topology and performance. 

All methods as currently implemented, however, suffer 
from one drawback or another. Cogniti ve packet networks 
and active networking algorithms attempt to provide 
routing programs at the packet level, hence achieving 
scalable run time eff iciency becomes an issue. To date, 
implementations of ‘adaptive’ techniques and social insect 
metaphors have relied, at some point, on the availabilit y of 
global information 

The purpose of this work is to simulate an example of 
routing as based on the social insect metaphor [2] and 
investigate the performance of such a system under the 
local information constraints typicall y available in practice. 
That is to say, previous works have employed routing 
tables that list all possible destinations, where this is not 
the case in practice. Section II introduces the ‘ant’ based 
social insect metaphor, used to provide the routing 
strategy. Experiments and results are presented in section 
III , and conclusions are drawn in section IV. 

II . SOCIAL INSECT METAPHOR TO ROUTING 

As indicated above, active networking [1] and cogniti ve 
packet [4] based approaches emphasize a per packet 
mechanism for routing. The aforementioned ‘adaptive’ 
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techniques [5] tend to emphasize adding ‘ intelli gence’ to 
the routers leaving the packets unchanged. A social insect 
metaphor provides a middle ground, in which the concepts 
of a routing table and data packets still exist, but in 
addition, intelli gent packets – ants – are introduced that 
interact to keep the contents of the routing tables up to 
date. To do so, the operation of ant packets is modeled on 
observations made regarding the manner, in which worker 
ants use chemical trail s as a method of indirect stigmergic 
communication. Specificall y, ants are only capable of 
simple stochastic decisions influenced by the availabilit y of 
previously laid stigmergic trail s. The chemical denoting a 
stigmergic trail i s subject to decay over time, and 
reinforcement proportional to the number of ants taking 
the same path. Trail building is naturally a bi-directional 
process, ants need to reach the food (destination) and make 
a successful return path, in order to significantly reinforce 
a stigmergic trail (Forward only routing has also been 
demonstrated [3]). Moreover, the faster the route, then the 
sooner the trail i s reinforced. An ant on encountering 
multiple stigmergic trail s will probabilistically choose the 
route with greatest stigmergic reinforcement. Naturall y, 
this will correspond to the ‘ fastest’ route to the food 
(destination). The probabili stic nature of the decision, 
however, means that ants are still able to investigate routes 
with a lower stigmergic trial. 

This approach has proved to be a flexible framework 
for solving a range of problems including the traveling 
salesman problem [6] and the quadratic assignment 
problem [7]. The work reported here follows the ‘AntNet’ 
algorithm of Di Caro and Dorigo [2], and is informally 
summarized as follows, 
•  Each node in the network retains a record of packet 

destinations as seen on data packets passing through 
that node. This is used to periodicall y, but 
asynchronously, launch ‘ forward’ ants with 
destinations stochasticall y sampled from the collected 
set of destinations; 

•  Once launched, a forward ant uses the routing table 
information to make probabili stic decisions regarding 
the next hop to take at each node. While moving, 
each forward ant collects time stamp and node 
identifier information, where this is later used to 
update the routing tables along the path followed; 

•  If a forward ant re-encounters a node previously 
visited before reaching the destination, it is kill ed (in 
other words, identification of a loop in the path); 

•  On successfull y reaching the destination node, total 
trip time is estimated, and the forward ant converted 
into a backward ant; 

•  The backward ant returns to the source using exactly 
the same route as recorded by the forward ant. Instead 
of using the data packet queues, however, the 
backward ant uses a priority queue; 

•  At each node visited by the backward ant, the 
corresponding routing table entries are updated to 
reflect the relative performance of the path; 

•  When the backward ant reaches the source, it dies. 
Simulation of the above AntNet scheme has been 

shown to provide a robust alternative to six standard 
routing algorithms – OSPF, SPF, BF, Q-R, P-QR and 
Daemon [2]. However, an assumption is made, which 
inadvertently implies the use of ‘global’ routing table 
information. That is to say, the definition of routing tables 
is such that it is assumed that every node has a unique 
location in the routing table, Table I. Thus, if there are a 
total of L neighboring nodes and K nodes in the entire 
network, then there are L×K entries in the table. In 
practice, this is never the case. Instead, routing tables 
consist of specific entries for the neighboring nodes and 
then a series of default paths for packets with any other 
destination – such as OSPF or BGP4 [8]. Table II , in 
which case there are only L×2 entries in the routing table, 
summarizes the ‘ local’ routing table information format 
employed here, where every node sees only its neighbors, 
i.e. global information is not introduced.  
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In the case of the “global table” , as originall y used in 

the AntNet algorithm, if the network configuration 
changes, then all nodes will be updated with additional 
rows and columns. Moreover, as forward ants propagate 
across the network the amount of information they need to 
‘carry’ also increases (node identifier and time stamp). 



Finally, the availabilit y of globally synchronized time is 
also assumed.  

In order to avoid the use of the aforementioned global 
information, the following methods are therefore 
employed, 
•  Routing tables only detail the neighboring nodes. 

Such a limitation therefore places greater emphasis 
on the learning capacity of the ant. This is 
particularly significant during step (2) of the ant 
forward pass (sub-section II -A). Tables 1 and 2 
ill ustrate the difference in available information for 
a node in the commonly used Japanese benchmark 
backbone (NTTNet) routing problem, Figure 1; 

•  Each node has a buffer in which forward ants 
deposit time stamp and identifier for the previous 
node. As will become apparent in the following 
section, it is only the inter-node information, which 
is important; 

•  Time synchronization is treated as a protocol issue. 
That is to say, during low load conditions each node 
is responsible for letting neighboring nodes know 
what their current time clock is. Moreover, 
whenever interrupts to services are sustained, then 
the first step once a node returns to operation will 
be to reinitiate local time references. 

In the following section, the detail s of the AntNet 
algorithm [2] are summarized in order to better understand 
the significance of the above modifications. 

 

 
 

Fig 1. Japanese NTTnet backbone (55 nodes) 
 

A. AntNet Algorithm 

It is assumed that routing tables, Tk, exist at each node, 
k, in which a routing decision is made. Tables consist of 
‘n’ rows, one row for each neighboring node/link. As far as 
a normal data packet is concerned, if the destination, d, 
from current node, k, is a neighbor then routing is 
deterministic (Pd,d = 1, where L = d). In all other cases, a 
route is selected based on the neighbor node probabiliti es.  
1. New forward ants, Fsd, are created periodicall y, but 

independently of the other nodes, from source, s, to 
destination node, d, in proportion to the destination 
frequency of passing data packets. Forward ants travel 

the network using the same priority structures as data 
packets, hence are subject to the same delay profiles. 

2. Next link in the forward ant route is selected 
stochasticall y, p� (j), in proportion to the routing table 
probabiliti es and length of the corresponding output 
queue. 
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where p(j) is the probabilit y of selecting node j as the 
next hop; α weights the significance given to local 
queue length verses global routing information, p(j); lj 
is the queue length of destination ‘ j’ normalized to 
the unit interval; and Nk is the number of links from 
node k. 

3. On visiting a node different from the destination, a 
forward ant checks for a buffer with the same 
identifier as itself. If such a buffer exists the ant must 
be entering a cycle and dies. If this is not the case, 
then the ant saves the previously visited node 
identifier and time stamp at which the ant was 
serviced by the current node in a buffer with the 
forward ant’s identifier. The total number of buffers 
at a node is managed by attaching “an age”  to buffer 
space and allowing backward ants to free the 
corresponding buffer space. 

4. When the current node is the destination, k = d, then 
the forward ant is converted into a backward ant, Bds. 
The information recorded at the forward ant buffer is 
then used to retrace the route followed by the forward 
ant.  

5. At each node visited by the backward ant, routing 
table probabiliti es are updated using the following 
rule, 
IF (node was in the path of the ant) 
THEN p(i) = p(i) + r { 1 – p(i)}  
ELSE p(i) = p(i) + r P(i) 
where r ∈  (0, 1] is the reinforcement factor central to 
expressing path qualit y (length), congestion and 
underlying network dynamics. 

 
As indicated above, the reinforcement factor should be 

a factor of trip time and local statistical model of the node 
neighborhood. To this end [2] recommend the following 
relationship, 







î





−+−
−

+





=

)()( infinfsup

infsup
21 ITII

II
c

t

W
cr

ant

best   (1) 

where Wbest is the best case trip time to destination d over a 
suitable temporal horizon, W; tant is the actual trip time 
taken by the ant; Iinf = Wbest; Isup = µkd + W0.5{ σkd / (1 - γ)} . 

The estimates for mean, µkd, and variant, σkd, of the trip 
time are also made iteratively, using the trip time 
information thus, 

µd = µd + η(okd – µd) 
(ρd)

2 = (ρd)
2 + η{ (okd – µd)

2 – (ρd)
2}  
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13 
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From the above algorithm, it is, therefore, apparent that 
ants are required to make decisions under more uncertainty 
than was previously the case. Moreover, the trip time 
information is updated incrementall y based on the recorded 
trip duration between current node, k, and ultimate 
destination, d. This means that it is no longer necessary to 
carry all node and duration information as a ‘stack’ to the 
target duration as in the original model [2]. Only the 
previous step information is therefore necessary. 

III . SIMULATIONS 

To test the performance of the modified AntNet 
algorithm(local information only) we also simulated the 
original AntNet algorithm(global information).  The two 
programs were written in C++ under UNIX environment. 

The event driven simulation models the network as 
routers (nodes) and links. Every router has an incoming 
buffer, a memory space for processing packets, and an 
outgoing buffer for each link to its neighbor routers. A 
priority queue is used to store the events. In order to let the 
two programs have the same input, an event generator is 
used to generate the events, such as the new packets, or 
routers going down and up. The following is the 
parameters that are used in the simulation: 
•  The forward ants are launched every 300ms; 
•  The AntNet algorithm is given 5 seconds time to 

converge the initial routing tables, during this period, 
ants are the only packets traversing the network; 

•  Packets are generated by Poisson distribution (mean 
of 35ms). 

Measurements used to compare the two algorithms are 
network throughput, and the queue length due to network 
failures. The network throughput is defined as the bytes 
(packets) that arrive at the destination routers per time 
step. The simulation length is 1250s, as the result, 
1984840 packets are generated within 1250s. The 
following figures (2-11) are the result of our simulations, 
where all dark black li nes indicate results for AntNet 
running with ‘global routing’ tables, Table I, whilst gray 
lines show the results for the AntNet running with ‘ local 
routing’ tables, Table II . 

Five different scenarios are considered. In the first case, 
all routers remain operational for the duration of the 
simulation, figures 2 and 3, hence the base line conditions 
are identified. Scenario 2, figures 4 and 5, removes node 
34, a degree 5 node that plays a predominant role in 
establi shing network connectivity in the lower left of the 
Japanese backbone, figure 1. Two nodes (nodes 13 and 49) 
are removed in scenario 3, figures 6 and 7, and 3 nodes 
(nodes 6, 19 and 42) in scenario 4, figures 8 and 9. The 
last scenario removes 2 nodes (nodes 13 and 49), but at 
different times (13 at 300s, 49 at 500s), and lets them be 
repaired (both at 800s) before the simulation completes, 
figures 10 and 11. 
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 Fig 2. Queue Length - No network failure on the network 
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Fig 3. Throughput – No network failure on the network 
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Fig 4. Queue Length – A criti cal router (degree 5) goes 
down at time 500 sec. 
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Fig 5. Throughput – A criti cal router (degree 5) goes down 
at time 500 sec 
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Fig 6. Queue Length – Two routers (one has degree 4, one 
has degree 3 respectively) go down at time 500sec. 
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Fig 7. Throughput – Two routers (one has degree 4, one 
has degree 3 respectively) go down at time 500sec. 
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Fig 8. Queue Length – Three routers (they have degree 3, 
3, 2 respectively) go down at time 500sec. 
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Fig 9. Throughput – Three routers (they have degree 3, 3, 
2 respectively) go down at time 500sec. 
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Fig 10. Queue Length – One of the two routers (same as in 
figures 4-5) go down at time 300sec; repaired at time 
600sec. Second router goes down at time 500sec; repaired 
at time 800sec. 
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Fig 11. Throughput – One of the two routers (same as in 
figures 4-5) go down at time 300sec; repaired at time 
600sec. Second router goes down at time 500sec; repaired 
at time 800sec. 
 

From figures 2 and 3 it is readily apparent that the 
availabilit y of global information makes a significant 
impact on the qualit y of the route. The global case 
effectively returning twice the throughput and an order of 
magnitude reduction in the queue length of the local 
information case. In the following 4 scenarios, the global 
case appears to be more sensiti ve, with worse queue 
lengths for all but the case of 3 nodes removed. However, 
this is deceptive as the number of lost packets under the 
local information AntNet is much higher, actuall y reducing 
queue lengths significantly! Thus, the AntNet algorithm 
under global information is much more desirable in all 
circumstances. 

IV. CONCLUSION 

The routing algorithms current used on the Internet are 
centrali zed, with some central routers, e.g., at the border 
gateways, taking the responsibili ty to redistribute routing 
information. This leaves the network engineer with the 
opportunity to tune router configurations according to their 
experience. Unfortunately, the network topology, and the 
traff ic pattern are subject to continual change. This 
requires the network engineers to adjust the parameters for 
better performance. Distributed adaptive and intelli gent 
routing algorithms have therefore become more and more 
important; in this way, the network can set up the routing 
tables itself, and adjust them automaticall y. 

This paper characterizes performance from the AntNet 
routing algorithm under local information constraints. By 
doing so the aim of the authors is to demonstrate the 
importance of including this limitation when attempting to 
solve the general case of the packet routing problem 
(distributed dynamic information). Such a shortcoming is 
not unique to the AntNet algorithm, but a factor of 
heuristic and adaptive techniques the authors are currently 
aware of. In order to address these issues, increased 
intelli gence will be necessary on the ‘agent’ side. In the 

specific case of the AntNet algorithm one possible solution 
would be to explicitl y make the ‘agent’ responsible for 
learning the reinforcement in equation (1). Such an agent 
would require memory properties, e.g. recurrent 
interconnect of neural network models, and has indeed 
been initiall y proposed under the context of a different 
‘agent’ routing framework (cogniti ve packet framework 
[3]). Such a solution would address the problem of letting 
the ‘agents’ see beyond the information retained in routing 
tables. However, under what conditions this is suff icient to 
ensure ‘good’ routes for the data packets is an open 
question. 

The authors are currently working on approaches based 
on the co-evolution of routes by genetic algorithm based 
methods. In doing so, the objective is to provide a more 
explicit li nk between the routes identified by ‘agents’ and 
the information that data packets are routed against. 
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