
Abstract

The work presented in this paper is intended to test
crucial system services against stack overflow
vulnerabilities. The focus of the test is the user-accessible
variables, that is to say, the inputs from the user as
specified at the command line or in a configuration file.
The tester is defined as a process for automatically
generating a wide variety of user-accessible variables that
result in malicious buffers (an exploit). In this work, the
search for successful exploits is formulated as an
optimization problem and solved using evolutionary
computation. Moreover the resulting attacks are passed
through the Snort misuse detection system to observe the
detection (or not) of each exploit.

1 Introduction

Buffer overflow attacks aim to alter the execution of a
vulnerable program by copying data to a variable in such a
way that the original storage capacity is exceeded [7]. This
may cause excess data to spill over the unallocated address
space and overwrite the pointer to the next instruction after
the function call. However, in order to deploy the attack
successfully, execution must be accurately diverted to
attacker’s arbitrary code. To do so, the attacker might
develop a program, which can assemble the different
components of the malicious buffer. Moreover, because
the location of the vulnerable program in address space is
determined at runtime, certain characteristics of the
malicious buffer should be approximated in the code.

In this work we propose the utilization of Evolutionary
Computation (EC) [8] to discover the characteristics of the
malicious buffer with the objective of identifying a wide
range of successful attacks. The population represents the
set of candidate exploits. The EC approach only requires
the address of the user-accessible variable being tested and
the outcome of the attack, both of which can be determined
by a debugger or an executable code analyzer. Evolution is
guided by the definition of a suitably informative fitness
(cost) function that determines the quality of a malicious
buffer exploit. Attack diversity is maintained by modifying
the fitness function to incorporate fitness sharing, which
discounts fitness based on the degree of similarity between

individuals (exploits). The fitness function also represents
the principle mechanism for incorporating a priori
knowledge. In this case, minimizing the NoOP sled is
known to improve the chances of avoiding detection.
Incorporating this bias into the fitness function, and
testing the resulting exploits on a misuse detection
system, Snort, indicated that the resulting attacks were
more effective at avoiding detection.

The principal objective of evolving overflow attacks is
to assess critical applications against buffer overflow
vulnerabilities. Recent work on vulnerability testing
indicated that intrusion detection systems can detect a
particular instance of an attack, but are unable to
‘generalize’ to the class of overflow attacks [1, 3, 4, 13,
15, 17, 18, 19]. The main contribution of this work is to
automate the generation of successful malicious buffers.
We consider this as a part of a wider ‘white hat’ framework
where a co-evolutionary scheme is used to instigate an
‘arms race’ between exploits and detector.  That is to say,
detectors are only as good as our ability to provide
signatures for new exploits. A framework based on co-
evolution provides the basis discovering generic detectors
for classes of attack by providing a sufficiently wide range
of exploit behavior.

The remainder of the paper is organized as follows.
Section 2 describes the buffer overflow concepts.
Methodology is discussed in Section 3. Experimental
results are presented in Section 4 and conclusions are
drawn in Section 5.  

2 Buffer overflow attacks

In programming languages such as C, data integrity
checks are minimal for performance reasons; therefore the
programmer is responsible for making sure that the
memory allocated for a variable is sufficient. If these
checks are omitted, a buffer overflow occurs, thus the
contents spill over to other variables and overwrite the
unallocated memory addresses.  When a function is called
within a program, the program uses a stack segment,
which has a first-in-last-out structure, to push function
variables. Moreover, a stack is used to remember which
instruction is executed following the function call. This is
called the return address and is stored at the bottom of the

Evolving Successful Stack Overflow Attacks for Vulnerability Testing

H. Günes Kayacık, A. Nur Zincir-Heywood, Malcolm Heywood

Dalhousie University, Faculty of Computer Science,
6050 University Avenue, Halifax, Nova Scotia. B3H 1W5

{kayacik,zincir, mheywood}@cs.dal.ca



stack. Following the execution of a function, variables are
popped from the stack and the return address is used to
fetch the next instruction.  

Figure 1. Example of a stack buffer
overflow

Figure 1 shows three components: (i) A simple
vulnerable program that omits the data integrity check; (ii)
the stack layout after this program is started; and (iii) the
malicious buffer overflow, which overwrites the return
address with the attacker’s desired return address. The size
of ‘char’ is assumed 1 byte and the size of ‘long’ is
assumed 4 bytes.

If the buffer overflow in the stack overwrites the return
address, the execution of a program can be diverted to any
arbitrary code. This is particularly dangerous if the
program runs with super user privileges. In order to deploy
a successful overflow, the attacker should create a
malicious buffer, which (1) contains a shellcode and (2)
overwrites the return address and gains control. Shellcode
provides the assembly of instructions that spawn a root
shell or adds a root privileged user.

Since the address of the unchecked variable is
determined at runtime, estimating the address of the first
instruction in shellcode is crucial (i.e. jumping elsewhere
in the shellcode will have an undetermined outcome). To
increase the chance of success of the malicious buffer, two
supplementary components are added to the shellcode.
First, the end of the shellcode is flooded with the desired
return address. Attackers can approximate the desired return
address by determining the address of the current stack
pointer (ESP) and appending a suitable offset. Since the
desired return address is an approximation and it is
important to jump to the first instruction of the shellcode,
the head of the malicious buffer is filled with a special
purpose instruction called ‘no operation’ or NoOP, which
is used to intentionally waste computational cycles.
Sequences of NoOP instructions are referred to as the
NoOP sled. As long as the desired return address is accurate
enough to direct execution to the NoOP sled or the first
instruction of the shellcode, the attack is successful.
However, the NoOP sled, which usually manifests itself as
a long sequence of 0x90 bytes, presents a very obvious
detection signature. Therefore from attacker’s point of
view, shorter NoOP sleds are desirable, where this implies
that the original stack pointer offset must be estimated
more accurately.

3  Methodology

Our objective is to evolve programs that can craft
buffer overflows to automate vulnerability testing. To do
so, we employ Grammatical Evolution to discover the
characteristics of a successful buffer overflow. Moreover,
we utilize fitness sharing to encourage the evolution of
different malicious buffers. For the purposes of this work,
a simple (generic) vulnerable application was developed,
which performs a data copy without checking the internal
buffer size.  Resulting attacks are passed through the
Snort1 intrusion detection system to assess the detection
rate.

3.1 Grammatical evolution

Evolutionary Computation, and Genetic Programming
(GP) in particular [9], provide several properties of utility
to this work. The GP representation takes the form of a
computer program, thus naturally fitting the objective of
designing alternative malicious code. Performance is
quantified using a fitness function, where there are no
smoothness constraints on the form that such a function
should take (unlike neural networks, where the cost
function must typically be differentiable).  As with other
forms of Evolutionary Computation, GP is based on a
‘population’ of candidate solutions. In order to guide the
‘evolution’ of such a population, selection and search
operators are based on the concepts of natural selection and
genetics respectively. Specifically, a selection operator is
used to define which individuals get to survive and
reproduce, whereas the search operators define how new
individuals (children) are introduced into the population. In
this case, two parents are selected with uniform probability
from the original population. Search operators are then
stochastically applied to the parents, thus creating two
children. The fitness (performance) of the parents and
children is then compared using the a priori defined fitness
function (sections 3.1.1 and 3.1.2). If the children perform
better than the parents, they replace the parents. Otherwise,
the parents are retained.  Such a scheme results in a
stochastic hill-climbing algorithm, where this forms the
basis for the deterministic crowding method for
multimodal optimization [11].

Where Grammatical Evolution (GE) [12] differs from
GP is in the representation. Specifically, GE utilizes a
separate genotypic and phenotypic representation. The
genotypic representation is translated into the phenotypic
form using a Context Free Grammar (CFG), typically of a
Backus-Naur Form. The use of a CFG enforces the typing
rules – syntax and semantics of the language – irrespective
of the changes made by the search operators [12]. Unlike

                                                
1 A widely used open source intrusion detection system, Section 3.3.



other structures typically employed to evolve computer
programs, such as Tree or Linearly structured Genetic
Programming; support for multi-typed languages is now
straightforward. Moreover, we will also be able to make
use of recent advances that combine GE with fitness
sharing [11] to provide multiple solutions from the same
population.

In this case a simple C grammar was developed for
generating programs that assemble the malicious buffer
exploits. The resulting C program is an individual, which
approximates the desired return address and assembles the
malicious buffer exploit. Each individual of the population
represents a buffer overflow attack. The grammar specifies
the offset, size of the NoOP sled, and the number of
desired return addresses; hence GE alters these parameters
to generate a wide variety of malicious buffers. The exploit
contains a NoOP sled, a 46-byte shellcode that spawns a
UNIX shell, and back-to-back desired return addresses. The
first set of experiments with a basic GE (detailed in
Section 4) showed that the population converges to one
type of solution. In our second and third set of
experiments, niching based on fitness sharing [2, 11] was
used to encourage population diversity, that is, multiple
types of attack. Thus, a fit individual can get a low
‘shared’ fitness, if many individuals find a similar
solution. Fitness sharing is implemented to pressure
individuals into utilizing different NoOP sled sizes and
return addresses. The generic parameters employed in
training of the individuals are summarized in Table 1.

Parameter Setting
Number of individuals 200
Number of generations 500
Probability of mutation 0.0
Probability of crossover 0.9
Replacement Strategy Children replace the parents

if their fitness is better
Number of niches 5
Training Time Approximately 7 hours

Table 1. Training parameters

3.1.1 Fitness function.  The fitness function is
used to express several characteristics that are related to
achieving the overall objective. That is to say, basing the
fitness function on a binary criteria – such as, does this
individual successfully gain super user status – would not
provide a sufficiently informative function space for the
efficient evolution of exploits. In this work, six
characteristics of a malicious buffer are utilized:

Existence of the shellcode (µshellcode) :  A binary flag
declaring whether the (root shell access) shellcode is
inserted into the malicious buffer successfully. Thus, even

if the overflow is successful, without the shellcode, the
attack cannot succeed.

Success of the attack (µsuccess) :  The reaction of the
application, i.e. a binary flag indicating whether the root
shell was obtained.  

NoOP Sled Score: Based on the ratio of NoOP
instructions to the overall size of NoOP sled prior the
shellcode. If the execution jumps into the NoOP sled, any
non-NoOP instruction in NoOP sled can have undesirable
effects on the succeeding shellcode. The NoOP sled score
is formulated as:

# of non-NoOP instructions
1 –

NoOP sled length

Back-to-back Desired Return Addresses Score:  Similar
to NoOP sled score; it is based on the ratio of correct
desired return addresses to the total number of 4-byte return
addresses following the shellcode.  If the stack pointer is
overwritten with a faulty desired return address, execution
will not jump to the shellcode.  Score can be calculated
with:

# of faulty return addresses
1 –

Total # of return addresses

Desired return address accuracy:  The difference between
the desired return address and the actual address of the
variable. Small difference indicates that the approximation
is accurate.  Accuracy is formulated as:

1

address actual – address desired  + 1

Score calculated on NoOP sled size: We consider this is
the easiest characteristic of a buffer attack to detect, thus
minimizing the size of the NoOP sled is considered to
improve the chances of not being detected. This is
implemented in the third set of experiments. Score on
NoOP sled length is expressed as:

1

1 + NoOP sled length

The last 4 characteristics are incorporated into the
fitness function with their respective weights. In our
experiments, the weights are all equal and detailed in Table
2.

The fitness function provides the basis for directing the
search for solutions. In this work the view is taken that a
hierarchy of objectives exists. Thus, if the malicious
buffer does not contain the shellcode (i.e. µshellcode = 0), the
individual is assigned the minimum fitness. If the attack is



successful (i.e. µsuccess = 1), the individual is assigned
fitness between 100 and 120 based on the size of its NoOP
sled. The perfect individual should be successful with a
small NoOP sled, or no NoOP sled at all. If the attack is
not successful, it is assigned a fitness based on the error
rate of the NoOP sled, desired return addresses and the
accuracy of the approximation. The overall fitness function
incorporating these properties (with NoOP sled
minimization) has the following form,

€ 

fitness = µshellcode ×

µsuccess × 100 +WNS × score(NoOP)( ) +

1−µsuccess( ) ×
WNE × score(NoOPError) +

WRE × score(retError) +

WDA × score(dist)

 

 

 
  

 

 

 
  

 

 

 
 
 
  

 

 

 
 
 
  

Weight Value
Error on NOOP Sled (WNE) 20
Error on desired return addresses (WRE) 20
Desired return address accuracy (WDA) 20
NOOP sled size score (WNS) 20

Table 2. Weights of the four characteristics
of a malicious buffer

3.1.2 Fitness s h a r i n g .  Although EC is a
population based search algorithm, schema theory indicates
that as the fitter individuals reproduce, the population
diversity decreases, resulting in the population converging
on a small region of the search space [10]. In order to
encourage the same population to provide multiple unique
solutions, we borrow the concept of Fitness Sharing from
Genetic Algorithms. In this case the fitness of an
individual is discounted in proportion to the similarity
with others in the population. Such a scheme is introduced
to encourage solutions with different NoOP sled lengths
and number of desired return addresses. That is to say,
given a successful attack, fitness sharing encourages the
identification of additional variants of the same attack.

Shared fitness for an individual i is calculated based on
the raw fitness of the individual divided by the niche count
mi:

i

raw
shared m

f
f =

where niche count, mi, increases as the similarity of an
individual to other individuals increases, and is calculated
over the population of N individuals:

∑
=

=
N

j
jii dshm

1
, )(

di,j denotes the Euclidean distance between individual i
and j, which is calculated on two dimensions formed by
NoOP sled length and the number of desired return
addresses:

€ 

di, j = NoOPi − NoOPj( )
2

+ reti − ret j( )
2

If distance d is smaller than the determined radius σ,
sharing function sh(d) returns a value between 0 and 1,
which increases as the distance decreases. Hence the
sharing function can be expressed as:

€ 

sh(d) = 1− d
σ
0

 
 
 

  

d <σ

otherwise

σ is estimated from the population by determining the
current extremes. This takes the form of the minimum and
maximum values of the NoOP sled length and number of
desired return addresses.  Given the number of niches q, σ
can be calculated as follows [2]:

€ 

σ =
max(NoOP) −min(NoOP)( )2 + max(ret) −min(ret)( )2

2 q

As the population evolves, the boundaries formed by
NoOP sled lengths and number of desired return addresses
will also change. Since determining the boundaries requires
a pass of the entire population, σ is calculated every 5
generations in our experiments.

3.2 The vulnerable application

Similar to the example given by Erickson [6], we
developed a basic vulnerable application, but this time
using four 500-byte arrays. Erickson [6] only employed
one 500-byte array whereas our preliminary experiments
with that application indicated that the NoOP sled is
frequently too small to raise any alarms (detailed in
Section 4). The vulnerable program has setuid bit enabled
and runs with root privileges. It copies the first command
line argument to the fourth array without checking the
size. This means, a successful attack should deploy a
malicious buffer that is long enough to overwrite the
return address after exceeding 2,000 bytes.

3.3 Intrusion detection system

After initial experiments, the aforementioned bias
towards a minimal NoOP sled was utilized to improve the
chances of avoiding detection. To validate the
enhancement, the attacks were passed through a misuse
detection system, Snort, to observe the detection (or lack
of detection) of the malicious buffers. Snort is one of the
best-known lightweight IDSs, which attempts to balance
(detection) performance, flexibility and simplicity. It
represents a widely used open-source intrusion detection
system, able to detect various attacks and probes including
instances of buffer overflows, denial of service attacks and
stealth port scans [14]. Snort 2.3.2 (build 12) was installed
and patched with the latest signatures (Mar 9, 2005) from



the Snort web site [16]. Since we are interested in the
detection of shellcode attacks, all signatures are disabled
except the shellcode signatures. There are 21 shellcode
signatures, which mainly detect different encodings of
NoOP instructions as well as other well-known
instructions such as setting user or group ID to root. Other
than the signature reduction, Snort is employed with
default parameters.

For the IDS to detect an attack, the attack in question
should be manifested in the event stream that the IDS
monitors. Since Snort is a network based IDS, this means
the shellcode should appear in the network traffic. To make
the shellcode apparent in the Snort event stream (i.e. the
network traffic), the vulnerable application is altered to
print the contents of a variable. To achieve this situation,
the attacker connects to the target host via telnet and
dispatches the malicious buffer. We assume that he/she has
no way of suppressing the variable dump, which triggers
the Snort signatures. Given the use of encrypted protocols
such as SSH, we note that the shellcode may not always
appear in the network traffic. However, our objective in
employing Snort is not to observe the detection of the
shellcode by a network based IDS, by itself. Instead, our
objective is to determine the detection of the attack with a
misuse detection system (especially since the NoOP sled
length is being minimized) and Snort is one of the most
widely used misuse detection systems. After each attack is
deployed, the Snort log files are checked to determine how
many alarms were raised. From the attacker’s point of
view, between two successful attacks, the one that raises
fewer alarms is favored. A similar evaluation methodology
was employed to test the detection capabilities of IDSs on
service vulnerability attacks in Vigna et al. [18].

4 Results

In the initial set of experiments, fitness sharing is not
utilized, the second set of experiments utilizes fitness
sharing, whereas the third set of experiments incorporates
the bias to encourage smaller NoOP sleds.

The results are expressed in terms of fitness of the
individuals (attacks) and the number of alerts that Snort
generates when they were executed. Moreover, we are
naturally interested in identifying whether a subset of
attack properties is more correlated with evolving
successful buffer overflow attacks than others. To do so,
three characteristics of a malicious buffer are observed: the
NoOP sled size, the number of desired return addresses, and
an assessment of buffer overflow. For the latter, four types
of buffer overflow are considered:

  Invalid Buffer: The buffer does not contain the
shellcode, hence has zero chance of success.

  Valid Buffer: The buffer has NoOP sled, shellcode
and desired return addresses present.

  V i a b l e : Over 10 trials, the buffer deploys
successfully, obtaining a root shell.

  Undetectable: In addition to its success, Snort
raises no alarms during its execution.

Table 3 details the assessment of buffer overflows for
different experiments. In all three experiments, the C
grammar (forms the program for assembling the malicious
buffer) ensures that majority of the population is at least
valid. Although niching reduces the number of viable
buffers, it also encourages diversity in the population,
which will be discussed later in this section.

No
Niching

Niching Niching &
NoOP min

Invalid 2 6 2
Valid 0 118 111
Viable 146 54 57

Undetectable 52 22 30
Table 3. Malicious buffer types and

counts for three experiments

Figure 2 summarizes the population from the three
experiments with NoOP size and number of desired return
addresses plotted with fitness. As mentioned above, the
vulnerable variable is approximately 2000 bytes away
from the return address (EIP).  Experiments with basic GE
provided attacks that resulted in a range of return addresses.
Introduction of the sharing function increased the diversity
of all three parameters: fitness, NoOP size, and return
address.  This indicates that the attacks learned to overwrite
the EIP with an approximated return address. In the third
set of experiments, two attacks stand out from the rest of
the population with a fitness value of 110. These attacks
successfully deployed, whilst using a single one NoOP
instruction, making them very difficult to detect using
signatures targeting the NoOP code. Moreover, this was
achieved without compromising the success of the attack
itself.

Figure 3 shows the NoOP sled size and the accuracy of
the desired return address. In all three experiments, NoOP
sled size has a linear relation with the accuracy of the
desired return address, i.e., the population appears on the
far side of Figure 3. That is to say, as the accuracy gets
better, the NoOP sled size gets smaller. Moreover in case
of successful attacks, it is observed that NoOP sled size is
always kept below 2,000 bytes.



Figure 2. Fitness, NoOP sled size and the
desired return address size of the
population in the last generation

Figure 4 details the mean fitness of the population over
500 generations.  In all three experiments, populations
converged to a solution after approximately 100
generations.  In the niching experiments, mean fitness of
the population is lower because attacks that generate valid
buffers while maintaining diversity have a shared fitness
comparable to the shared fitness of the attacks that generate
viable buffers with similar parameters.

Figure 5 shows the change of NoOP sled length over
generations.  As indicated before, in all three experiments
NoOP sizes are reduced below 200 to deploy viable buffer
overflows. In Figure 4, we demonstrated that the
population converges after 100 generations. In the
experiments without NoOP minimization, after a few
hundred generations, the mean NoOP sled length stops
decreasing; whereas in the NoOP minimization
experiments the fitness function continues to minimize
NoOP sled length even if the buffer overflow deploys
successfully.

Figure 3. Fitness, NoOP sled size and the
accuracy of the desired return address of

the population in the last generation

Figure 4. Mean raw fitness of the population
over 500 generations



Figure 5. Mean NoOP size of the viable and
undetected attacks over 500 generations

In Figure 6, buffer overflows are plotted with NoOP
sled sizes, generated alerts and the fitness. Since
population without niching converged with less diversity,
the number of alerts is 0, 1 or 2. In case of niching, alert
count ranges between 0 and 10 (greater diversity in NoOP
sled length). Signature analysis showed that the Sort
NoOP signature (shown below), which monitors the
existence of large blocks of 0x90, triggered all alerts.

alert ip $EXTERNAL_NET
$SHELLCODE_PORTS -> $HOME_NET
any (msg:"SHELLCODE x86 NOOP";
content:"|90 90 90 90 90 90 90 90 90 90
90 90 90 90|"; depth:128;
reference:arachnids,181;
classtype:shellcode-detect; sid:648; rev:7;)

Figure 7 details the average alert count for viable
attacks. Table 3 showed that the basic GE managed to
produce the most undetectable attacks. However, it is also
apparent that in terms of the average alert count of the
population, niching with NoOP minimization produced
the least alerts. Moreover niching with NoOP
minimization resulted in two attacks with only one NoOP
instruction each, effectively undetectable.

5 Conclusion

Grammatical Evolution was investigated within the
context of vulnerability testing. Specifically, the evolved
C program performs three tasks (1) approximating the
address of the vulnerable variable, (2) determining the
length of the NoOP sled and the number of desired return
addresses (3) assembling the malicious buffer in the light
of the characteristics established in first two tasks. As
indicated before, between two attacks that deploy

successfully, the one that raises fewer alarms is preferred.
Hence, every 100 generations, the population is tested
against Snort to determine the detection (or lack of
detection) of the attacks. Results indicated that Snort
detects buffer overflow attacks based only on the NoOP
sled size.

Three sets of experiments were performed, namely the
basic GE, GE with niching which encourages a population
to maintain diversity, and GE with niching and NoOP
minimization since longer NoOP sleds are easily detected.
Although all three experiments produced comparable
results, basic GE produced the best mean fitness and the
most viable attacks. On the other hand niching produced
programs that can craft a malicious buffer with different
NoOP sled sizes and number of desired return addresses.
Furthermore, NoOP minimization produced smaller mean
NoOP sled lengths and fewer alerts per population, which
are desirable from an attacker’s point of view. Results also
showed that in order an attack to be successful, the return
address (EIP) should be overwritten with an accurate desired
return address that directs the execution to a point in the
NoOP sled or the first instruction of the shellcode.  NoOP
sled length decreases as the accuracy of the desired return
address increases.

Figure 6. Fitness, NoOP size and alert
counts of the population in the last

generation



Figure 7. Average alert count of viable and
undetectable attacks for three sets of

experiments

Future work will mainly focus on attack obfuscation to
generate variant buffer overflows for IDS blind spot testing
and the implementation of buffer overflows for a well-
known service such as SSH or FTP. Moreover, we
anticipate being able to integrate the attack generation
component into a co-evolutionary context. The resulting
arms race between detectors and exploits will provide
generic detectors that do not rely on third parties first
labeling previously unseen exploits.

Acknowledgments

This work was supported in part by Discovery grants
from the Natural Sciences and Engineering Research
Council of Canada, and the CFI New Opportunities
program. All research was conducted at the NIMS
Laboratory,    http://www.cs.dal.ca/projectx/   .

Bibliography
[1] Christodorescu M., Jha S., “Static analysis of executables

to detect malicious patterns”, Proceedings of the USENIX
Security Symposium, 2003.

[2] Deb K., Goldberg D. E., “An Investigation of Niche and
Species Formation in Genetic Function Optimization”
Proceedings of the third international conference on
Genetic algorithms, pp 42 - 50, 1-55860-006-3, 1989.

[3] Detristan T., Ulenspiegel T., Malcom Y., Underduk M. S.,
"Polymorphic shellcode engine using spectrum analysis",
Phrack Online Magazine, 61, 2003.

[4] Dozier, G., Brown, D., Cain, K., Hurley, J., “Vulnerability
analysis of immunity-based intrusion detection systems
using evolutionary hackers,” Proceedings of the Genetic
and Evolutionary Computation Conference, Lecture Notes
in Computer Science, LNCS 3102, pp 263-274, 2004.

[5] Eiben A.E., Smith J.E., “Introduction to Evolutionary
Computing”, Springer, ISBN 3-540-40184-9, 2003.

[6] Erickson J., “Hacking: The Art of Exploitation”, No
Starch Press, ISBN 1-59327-007-0, Ch. 2, 2003.

[7] Foster J.C., Osipov V., Bhalla N., Heinen N., “Buffer
Overflow Attacks: Detect, Exploit, Prevent”, Syngress
Publishing, ISBN 1-932266-67-4, Ch.5, 2005.

[8] Goldberg D.E., Deb K., “A Comparative Analysis of
Selection Schemes Used in Genetic Algorithms,” in
Foundations of Genetic Algorithms, G.J.E. Rawlins (ed.),
Morgan Kaufmann, ISBN 1-55860-170-8, 1991.

[9] Koza J.R., “Genetic Programming”, MIT Press, 1992.
[10] Langdon W.B., Poli R., “Foundations of Genetic

Programming”, Springer-Verlag, IBSN 3-540-42451-2,
2002.

[11] Miller B.L., Shaw M.J., “Genetic Algorithms with
dynamic Niche Sharing for Multimodal Function
optimization”, University Of Illinois at Urbana-
Champaign, Dept. General Engineering, IlliGAL Report
95010, 1995.

[12] O’Neill, M., Ryan, C.: “Grammatical Evolution”, IEEE
Transactions on Evolutionary Computation, Vol. 5, No. 4 ,
pp 349-358, 2001.

[13] Marti R., “THOR: A tool to test intrusion detection
systems by variations of attacks”, Master’s Thesis, Swiss
Federal Institute of Technology, March 2002.

[14] Roesch, M., “Snort - lightweight intrusion detection for
networks”, Proceedings of Thirteenth Systems
Administration Conference – LISA, pp 229-238, 1999.

[15] Rubin S., Jha S., Miller B.P., “Automatic Generation and
Analysis of NIDS Attacks”, 20th Annual Computer
Security Applications Conference - ACSAC, pp 28-38,
2004.

[16] Snort Web Site -      www.snort.org    , last accessed Mar 2005.
[17] Tan, K.M.C., Killourhy, K.S., Maxion, R.A.,

“Undermining an Anomaly-based Intrusion Detection
System using Common Exploits”, 5th International
Symposium on Recent Advances in Intrusion Detection -
RAID, Lecture Notes in Computer Science, LNCS 2516, pp
54-73, 2002.

[18] Vigna, G., Robertson, W., Balzarotti D., “Testing
Network Based Intrusion Detection Signatures Using
Mutant Exploits”, ACM Conference on Computer Security,
2004.

[19] Wagner, D., Soto, P., “Mimicry Attacks on Host-based
Intrusion Detection Systems”, ACM Conference on
Computer Security, pp 255-264, 2002.


