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Define the Problems

Y e Word-RAM: w = ©(lg n) bits,
150 e on an n X n grid,

e colors drawn from [0..C — 1],
where C < n,

(11.10) e and colored dominance range
10 *

counting: k = 3.



Related Work and Our Result

H Adaptive 2D orthogonal range counting H

Space Query Time Remark
O(nlglgn) | O(lglgn+ log, k) | TALG'2016

e The a-capped version of the problem

e Nested shallow cuttings



Related Work and Our Result

Adaptive colored 1D range counting
O(n) | O(1+log, k) | TODS'2014




Related Work and Our Result

Colored 2D dominance range counting
O(n) ‘ O(log,, n) ‘ Known

e colored 2D dominance range counting — 2D stabbing counting;
e 2D stabbing counting — 2D dominance range counting.
o k=C—k.
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Adaptive colored 2D dominance range counting
O(n) ‘ O(1 + log,, k) ‘ New

e Colored 2D dominance range counting — 2D stabbing counting
e Adaptive 2D 3-sided stabbing counting

e The a-capped version of 2D 3-sided stabbing counting
e Nested shallow cuttings
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Reducing to 2D 3-Sided Stabbing Counting
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Reducing to 2D 3-Sided Stabbing Counting

e All rectangles are disjoint.
15 e Each rectangle has < 3 sides.

e An orange point is dominated
by the query point iff an orange

(11,10) rec_tangle contains the query
. 1 point.



Reducing to 2D 3-Sided Stabbing Counting

Y e At most ) _|P.| = n rectangles

e # of the rectangles that
contain the query point =
# of the distinct colors
dominated by the query point.

10

10



A t-level shallow cutting.

10

ot

V=

e Assume, w.l.0.g, each rect is of the form [xi, xo] X [y1, +00).
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A t-level shallow cutting.

10

[

e Divide the vertical edges into slabs of size t.

11



A t-level shallow cutting.

10

10 15 20

oy

e Each cell is of the form [x1, 2] x (—0o0, y2].
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A t-level shallow cutting.
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A t-level shallow cutting.
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e 4 rectangles span the third slab.
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A t-level shallow cutting.
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A t-level shallow cutting.
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e Overall, 2n/t cells are created.
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A t-level shallow cutting.
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e If g is not contained in any cells, then > t rects contain g.

e q-capped version of stabbing counting
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A t-level shallow cutting.

el LT L] !

10

e Each cell intersects with < 2t rectangles:

IA

t rectangles of type-1
e < t rectangles of
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A t-level shallow cutting.
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e In a-capped version, the query time is bounded by O(log,, «),
instead of O(log,, n).
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An O(nlglg n)-word solution

lg n-capped, lg? n-capped, - - -, 22° ' -capped, 22" -capped

| f f
v v v v

Failure Failure Failure 22° ' <k < 92"

e Foreachlglglgn < i <lglgn,
e construct 22f—capped data structure.

e Return k in O(lglg k + log,, k) time.
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Nested Shallow Cuttings: An Observation

e Observation: All rects that intersect a smaller cell of t-level cutting
intersect the parent cell in t3-level cutting.
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Nested Shallow Cuttings: An Observation

e Observation: All rects that intersect a smaller cell of t-level cutting
intersect the parent cell in t3-level cutting.

e Before, we looked for the smallest cell that contains the query point
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Handling Rectangles

Ay

ot

ot

10

e Saving space from O(«lgn) to O(alg ) bits by rank reduction;
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e Saving space from O(«lgn) to O(alg ) bits by rank reduction;

e x-rank of g: t; + tp, where
e t; is pre-stored, using O(lg «) bits and
e tis g.x mod «
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Handling Rectangles

Ay ‘

[

e Saving space from O(«lgn) to O(alg ) bits by rank reduction;
e x-rank of g: t; + tp, where
e t; is pre-stored, using O(lg «) bits and

e tis g.x mod «

e y-rank of q: Use O(«(lg n/log,, oo+ Iga)) bits, plus additional O(n)
words, and return in O(log,, «) time.
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Handling Type-2 Rectangles

Ay

e Recall that a cell intersects < « rects.
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ling Type-2 Rectangles

Ay

e Recall that a cell intersects < « rects.
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ling Type-2 Rectangles

Ay

e Recall that a cell intersects < « rects.
e Now, build the data structure for \/a lowest ones:

e A predecessor structure implemented by Fusion Trees
e using O(y/alg n) bits of space.

15



Wrap-Up: Space Costs

e Total space cost in bits:

O(nlgn) +ZO \flgn—l—a(l lgn a—i—lga))):O(nlgn)
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Wrap-Up: The Query Algorithm
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e Finding the smallest cell that contains g in constant time, e.g.,
227 <k <2?,
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e Finding the smallest cell that contains g in constant time, e.g.,
227 <k <2?,
e Finding the parent of the smallest cell.
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Wrap-Up: The Query Algorithm
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° Fiqding the smalllest cell that contains g in constant time, e.g.,
227 < k< 2?

e Finding the parent of the smallest cell.

e Search for k; among type-1 rects in O(log,, 22/”1) = O(log,, k) time.
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Wrap-Up: The Query Algorithm
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@
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Finding the smallest cell that contains g in constant time, e.g.,
227 <k <2?,

e Finding the parent of the smallest cell.
e Search for k; among type-1 rects in O(log,, 22 ) = O(log,, k) time.
e Search for k; among rects in O(log,, V/22"™) = O(log,, k).
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Wrap-Up: The Query Algorithm

Ay

ot

0 5 10 15

° Fiqding the smalllest cell that contains g in constant time, e.g.,
227 < k<22

e Finding the parent of the smallest cell.

e Search for k; among type-1 rects in O(log,, 22/”1) = O(log,, k) time.

e Search for k; among rects in O(log,, V/22"™) = O(log,, k).

e return ki + k> as k.
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Open Problems

Colored 3D dominance range counting:

e O(nlgn/lglgn) words of space and O((1 + log,, k)?) query time?
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Thanks!



