Adaptive Data Structures for Colored 2D
Dominance Range Counting

Younan Gao

Dalhousie University

Define the Problems

Y e Word-RAM: w = ©(lg n) bits,
150 e on an n X n grid,

e colors drawn from [0..C — 1],
where C < n,

(11.10) e and colored dominance range
10 *

counting: k = 3.

Related Work and Our Result

H Adaptive 2D orthogonal range counting H

Space Query Time Remark
O(nlglgn) | O(lglgn+ log, k) | TALG'2016

e The a-capped version of the problem

e Nested shallow cuttings

Related Work and Our Result

Adaptive colored 1D range counting
O(n) | O(1+log, k) | TODS'2014

Related Work and Our Result

Colored 2D dominance range counting
O(n) ‘ O(log,, n) ‘ Known

e colored 2D dominance range counting — 2D stabbing counting;
e 2D stabbing counting — 2D dominance range counting.
o k=C—k.

Related Work and Our Result

| |
| |

Adaptive colored 2D dominance range counting
O(n) ‘ O(1 + log,, k) ‘ New

e Colored 2D dominance range counting — 2D stabbing counting
e Adaptive 2D 3-sided stabbing counting

e The a-capped version of 2D 3-sided stabbing counting
e Nested shallow cuttings

Related Work and Our Result

| |
| |

Adaptive colored 2D dominance range counting
O(n) ‘ O(1 + log,, k) ‘ New

e Colored 2D dominance range counting — 2D stabbing counting v~
e Adaptive 2D 3-sided stabbing counting v~

e The a-capped version of 2D 3-sided stabbing counting
e Nested shallow cuttings

Reducing to 2D 3-Sided Stabbing Counting

Y

15

11,10
10 (11,10)

Reducing to 2D 3-Sided Stabbing Counting

Y

15

11,10
10 (1110

Reducing to 2D 3-Sided Stabbing Counting

Y

15

11,10
10 (1L10)

Reducing to 2D 3-Sided Stabbing Counting

Y

15

11,10
10 (1L10)

Reducing to 2D 3-Sided Stabbing Counting

e All rectangles are disjoint.
15 e Each rectangle has < 3 sides.

e An orange point is dominated
by the query point iff an orange

(11,10) rec_tangle contains the query
. 1 point.

Reducing to 2D 3-Sided Stabbing Counting

Y e At most) _|P.| = n rectangles

e # of the rectangles that
contain the query point =
of the distinct colors
dominated by the query point.

10

10

A t-level shallow cutting.

10

ot

V=

e Assume, w.l.0.g, each rect is of the form [xi, xo] X [y1, +00).

11

A t-level shallow cutting.

10

[

e Divide the vertical edges into slabs of size t.

11

A t-level shallow cutting.

10

10 15 20

oy

e Each cell is of the form [x1, 2] x (—0o0, y2].

11

A t-level shallow cutting.

10

11

A t-level shallow cutting.

10

[

=

e 4 rectangles span the third slab.

11

A t-level shallow cutting.

PR |]|

10

11

A t-level shallow cutting.

EEE | | || S

10

e Overall, 2n/t cells are created.

11

A t-level shallow cutting.

VIR | | || S

10

e If g is not contained in any cells, then > t rects contain g.

e q-capped version of stabbing counting

11

A t-level shallow cutting.

el LT L] !

10

e Each cell intersects with < 2t rectangles:

IA

t rectangles of type-1
e < t rectangles of

11

A t-level shallow cutting.

el L] L] SR
10 :

x ;
5 :
0 5 10 5 20 >

e In a-capped version, the query time is bounded by O(log,, «),
instead of O(log,, n).

11

An O(nlglg n)-word solution

lg n-capped, lg? n-capped, - - -, 22° ' -capped, 22" -capped

| f f
v v v v

Failure Failure Failure 22° ' <k < 92"

e Foreachlglglgn < i <lglgn,
e construct 22f—capped data structure.

e Return k in O(lglg k + log,, k) time.

12

Nested Shallow Cuttings: An Observation

e Observation: All rects that intersect a smaller cell of t-level cutting
intersect the parent cell in t3-level cutting.

13

Nested Shallow Cuttings: An Observation

e Observation: All rects that intersect a smaller cell of t-level cutting
intersect the parent cell in t3-level cutting.

e Before, we looked for the smallest cell that contains the query point

13

Nested Shallow Cuttings: An Observation

e Observation: All rects that intersect a smaller cell of t-level cutting
intersect the parent cell in t3-level cutting.

e Before, we looked for the smallest cell that contains the query point

13

Handling Rectangles

Ay

ot

ot

10

e Saving space from O(«lgn) to O(alg) bits by rank reduction;

14

Handling Rectangles

Ay

[

ot

10

v

ot

e Saving space from O(«lgn) to O(alg) bits by rank reduction;

e x-rank of g: t; + tp, where
e t; is pre-stored, using O(lg «) bits and
e tis g.x mod «

14

Handling Rectangles

Ay ‘

[

e Saving space from O(«lgn) to O(alg) bits by rank reduction;
e x-rank of g: t; + tp, where
e t; is pre-stored, using O(lg «) bits and

e tis g.x mod «

e y-rank of q: Use O(«(lg n/log,, oo+ Iga)) bits, plus additional O(n)
words, and return in O(log,, «) time.

14

Handling Type-2 Rectangles

Ay

e Recall that a cell intersects < « rects.

15

ling Type-2 Rectangles

Ay

e Recall that a cell intersects < « rects.

15

ling Type-2 Rectangles

Ay

e Recall that a cell intersects < « rects.
e Now, build the data structure for \/a lowest ones:

e A predecessor structure implemented by Fusion Trees
e using O(y/alg n) bits of space.

15

Wrap-Up: Space Costs

e Total space cost in bits:

O(nlgn) +ZO \flgn—l—a(l lgn a—i—lga))):O(nlgn)

16

Wrap-Up: The Query Algorithm

Ay

(<2

|
|
g

0 5 10 15

e Finding the smallest cell that contains g in constant time, e.g.,
227 <k <2?,

17

Wrap-Up: The Query Algorithm

Ay

(o2

10 15

e Finding the smallest cell that contains g in constant time, e.g.,
227 <k <2?,
e Finding the parent of the smallest cell.

17

Wrap-Up: The Query Algorithm

Ay

ot

0 5 10 15

° Fiqding the smalllest cell that contains g in constant time, e.g.,
227 < k< 2?

e Finding the parent of the smallest cell.

e Search for k; among type-1 rects in O(log,, 22/”1) = O(log,, k) time.

17

Wrap-Up: The Query Algorithm

Ay

ot

@
0 5 10 15

Finding the smallest cell that contains g in constant time, e.g.,
227 <k <2?,

e Finding the parent of the smallest cell.
e Search for k; among type-1 rects in O(log,, 22) = O(log,, k) time.
e Search for k; among rects in O(log,, V/22"™) = O(log,, k).

17

Wrap-Up: The Query Algorithm

Ay

ot

0 5 10 15

° Fiqding the smalllest cell that contains g in constant time, e.g.,
227 < k<22

e Finding the parent of the smallest cell.

e Search for k; among type-1 rects in O(log,, 22/”1) = O(log,, k) time.

e Search for k; among rects in O(log,, V/22"™) = O(log,, k).

e return ki + k> as k.

17

Open Problems

Colored 3D dominance range counting:

e O(nlgn/lglgn) words of space and O((1 + log,, k)?) query time?

18

Thanks!

