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Introduction

• Mobile Agents: Modeled as deterministic finite automata,

• An infinite line: Oriented or unoriented,

• Goal: Gathering and stop.

· · · · · ·
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An Infinite Line

Each node is unlabeled and its ports are labeled by −1 and 1.

• Oriented:
· · · · · ·

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1

• Unoriented:
· · · · · ·

1 -1 1 -1 -1 1 -1 1 1 -1 -1 1

• Homogeneous Line
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Mobile Agents

Mobile Agents:

• Deterministic finite Mealy automata;

• move (i.e., {−1, 1}) or stay idle (i.e., 0) in synchronous rounds;

• have distinct labels from {1, . . . , L};
• woke-up simultaneously in round 0;

• start in R > 1 teams of x agents each, where x · R ≤ L

• share the base in each team.

• R, x , L are known by each agent.
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Mobile Agents

When entering a node, an agent

• sees the entry port number,

• sees all the set of states of all currently collocated agents, and

• decides to stay idle, leave from current node via port −1 or port 1.
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The Adversary and the Goal

The adversary:

• Knows automata,

• decides all the labels of the agents,

• decides the composition of teams and their bases, and

• decides the port labeling at each node of an unoriented line
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The Adversary and the Goal

Goals:

• Feasibility: Decide if gathering is achievable?

• Algorithm: If so, design automata that gather all the agents at the

same node.
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Challenges

• Count-driven methods are not applicable,

• instead, we design an event-driven method (meeting)

• meetings inside an edge is not allowed, and

• agents cannot “see” other agents at a distance.
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Our Results

Team Size Oriented Line Unoriented Line

x = 1 Infeasible Infeasible

x = 2 Θ(D) Θ(D log L)

x > 2 Θ(D) Θ(D)
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Preliminary: Trajectories, Periodic and Boundaries

Trajectory: A trajectory of an agent is defined as an infinite sequence of

terms drawn from {−1, 0, 1}.

· · · · · ·

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1
round t

· · · · · ·

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1
round t+ 1

· · · · · ·

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1
round t+ 2

· · · · · ·

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1
round t+ 3

· · · · · ·

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1
round t+ 4
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Preliminary: Periodic

Proposition

The trajectory of any agent navigating either in the oriented or in the

homogeneous line and starting at any node of it is periodic.

Notes: The adversary can always fool a single mobile agent such that it

cannot explore an infinite line by itself.
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Boundaries of Periodic Trajectories

Three types of periodic trajectories on homogeneous and oriented lines:

• minus-progressing,

• plus-progressing and,

• bounded.
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Bounded trajectories

-1 1 -1 1 -1 1 -1 1 -1 1
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Minus-Progressing and Plus-Progressing Trajectories

-1 1 -1 1 -1 1 -1 1 -1 1

· · ·

-1

-1

1

1

1

1

1

1

1

· · · · · ·

A plus-(or minus-) progressing trajectory is associated with speed.
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The Lower Bound: Team Size is Two

The lower bound result

• On a Homogeneous line

• two teams of size two based at two nodes at a distance D

• gathering takes at least cD log L rounds, for some constant c

Notes: Consider two teams (3, 5) and (3, 7). Agent with label 3 in these

teams might behave differently.
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The Lower Bound: Team Size is Two

Canonical teams

· · · · · ·

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1

Lemma

There are always at least (⌊L/2⌋−1) canonical teams that the adversary

can choose from; otherwise, the adversary could always avoid gathering.

E.g., {1, 2}, {3, 4}, {7, 8}, {9, 10}, {11, 12}, ... , {2C − 1, 2C}.
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The Lower Bound: Team Size is Two

• Let p = ⌊L1/3⌋;
• divide all the canonical teams into p2 groups as follows:

1/pO 2/p · · ·
j-axis:

plus-progressing speed

1/p

2/p

· · ·

i-axis: minus-progressing speed

p−1

p
p/p

p−1

p

p/p

|
∑

i,j | ≥ p/2
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The Lower Bound: Team Size is Two

Lemma: There exists an instance such that the first meeting happens no

later than c ′D log L rounds.

1/pO 2/p · · ·
j-axis:

plus-progressing speed

1/p

2/p

· · ·

i-axis: minus-progressing speed

p−1

p
p/p

p−1

p

p/p

|
∑

i,j | ≥ p/2

• W.l.o.g, assume that i ≥ j ,

• there exists agents p1 and p2
such that their meeting requires

cD log |
∑

i,j | rounds,
• if i > j , then v(q1) ≥ v(p2)

and v(q2) ≥ v(p1),

• otherwise, catch-up cannot

happen quickly.

· · · · · ·

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1

p1 p2q1 q2
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Open Problems

• Gathering of teams of automata in arbitrary (connected) infinite

graphs and

• Gathering of teams of possibly different sizes

18



Thanks!

18



Appendix



Mobile Agents: Automata

• Deterministic finite Mealy automaton A = (I,O,Q, δ, λ),

• I = {(L,R)} × {−1, 1, 0} × Q
• O = {−1, 1, 0},
• Q = Q1 ∪ · · · ∪ QL,

• δ : Q × I → Q,

• Restriction: If q ∈ Qℓ then δ(q, I ) ∈ Qℓ, for any input I ,

• λ : Q × I → O.
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Mobile Agents: Automata

· · · · · ·

1 -1 1

a b

c

• I:
• Ia = {(L,R)} × {−1} × {Qa ∪ Qb ∪ Qc},
• Ib = {(L,R)} × {0} × {Qa ∪ Qb ∪ Qc},
• Ib = {(L,R)} × {0} × {Qa ∪ Qb ∪ Qc}.

• δ:

• qa(∈ Qa)× I → q′
a(∈ Qa),

• qb(∈ Qb)× I → q′
b(∈ Qb),

• qc(∈ Qc)× I → q′
b(∈ Qc)

• λ :

• qa × Ia → oa,

• qb × Ib → ob,

• qc × Ic → oc .
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Reasoning the Assumptions

• Knowing L is necessary

• the Mealy automaton formalizing the agents must have sufficiently

many states to code the labels of the agents, in order to permit

interaction between them at the meetings.

• Knowing R is necessary

• Without knowing R, gathering cannot be achieved.

• Simultaneous start:

• If the start was not simultaneous, then no bound on gathering time

could be established
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Related Work

Rendezvous and Gathering on graph networks

• Nodes with labels

• Nodes without labels

• Marking Nodes by agents

• Agents cannot leave marks

• Finite Graphs

• Infinite Graphs

• Synchronous

• Asynchronous

• Agents modeled as Turing machines with unbounded memory

• Agents modeled as automata with finite number of states

• Agents with distinct identities

• Identical agents

22



Related Work

Rendezvous and Gathering on graph networks

• Nodes with labels

• Nodes without labels

• Marking Nodes by agents

• Agents cannot leave marks

• Finite Graphs

• Infinite Graphs

• Synchronous

• Asynchronous

• Agents modeled as Turing machines with unbounded memory

• Agents modeled as automata with finite number of states

• Agents with distinct identities

• Identical agents

22



Related Work

Rendezvous and Gathering on graph networks

• Nodes with labels

• Nodes without labels

• Marking Nodes by agents

• Agents cannot leave marks

• Finite Graphs

• Infinite Graphs

• Synchronous

• Asynchronous

• Agents modeled as Turing machines with unbounded memory

• Agents modeled as automata with finite number of states

• Agents with distinct identities

• Identical agents

22



Related Work

Rendezvous and Gathering on graph networks

• Nodes with labels

• Nodes without labels

• Marking Nodes by agents

• Agents cannot leave marks

• Finite Graphs

• Infinite Graphs

• Synchronous

• Asynchronous

• Agents modeled as Turing machines with unbounded memory

• Agents modeled as automata with finite number of states

• Agents with distinct identities

• Identical agents

22



Related Work

Rendezvous and Gathering on graph networks

• Nodes with labels

• Nodes without labels

• Marking Nodes by agents

• Agents cannot leave marks

• Finite Graphs

• Infinite Graphs

• Synchronous

• Asynchronous

• Agents modeled as Turing machines with unbounded memory

• Agents modeled as automata with finite number of states

• Agents with distinct identities

• Identical agents

22



Related Work

Rendezvous and Gathering on graph networks

• Nodes with labels

• Nodes without labels

• Marking Nodes by agents

• Agents cannot leave marks

• Finite Graphs

• Infinite Graphs

• Synchronous

• Asynchronous

• Agents modeled as Turing machines with unbounded memory

• Agents modeled as automata with finite number of states

• Agents with distinct identities

• Identical agents

22



Related Work

Rendezvous and Gathering on graph networks

• Nodes with labels

• Nodes without labels ✓

• Marking Nodes by agents

• Agents cannot leave marks ✓

• Finite Graphs
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• Synchronous ✓
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Feasibility: Team Size is One

Theorem

Consider an arbitrary set of agents. Then the adversary can place these

agents at distinct nodes of the oriented line in such a way that no pair

of agents will ever meet.
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Feasibility: Team Size is One

· · · · · ·
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