Gathering Teams of Deterministic Finite Automata on a Line

 $\frac{\text{Younan Gao}^1}{\text{Gao}^1}$ and Andrzej Pelc 2

 1 University of Milan-Bicocca and 2 Université du Québec en Outaouais

- Mobile Agents: Modeled as deterministic finite automata,
- An infinite line: Oriented or unoriented,
- Goal: Gathering and stop.

Each node is unlabeled and its ports are labeled by -1 and 1.

Each node is unlabeled and its ports are labeled by -1 and 1.

Each node is unlabeled and its ports are labeled by -1 and 1.

• Deterministic finite Mealy automata;

- Deterministic finite Mealy automata;
- move (i.e., $\{-1, 1\}$) or stay idle (i.e., 0) in synchronous rounds;

- Deterministic finite Mealy automata;
- move (i.e., $\{-1, 1\}$) or stay idle (i.e., 0) in synchronous rounds;
- have distinct labels from $\{1, \ldots, L\}$;

- Deterministic finite Mealy automata;
- move (i.e., $\{-1, 1\}$) or stay idle (i.e., 0) in synchronous rounds;
- have distinct labels from $\{1, \ldots, L\}$;
- woke-up simultaneously in round 0;

- Deterministic finite Mealy automata;
- move (i.e., $\{-1, 1\}$) or stay idle (i.e., 0) in synchronous rounds;
- have distinct labels from $\{1, \ldots, L\}$;
- woke-up simultaneously in round 0;
- start in $R > 1$ teams of x agents each, where $x \cdot R \leq L$

- Deterministic finite Mealy automata;
- move (i.e., $\{-1, 1\}$) or stay idle (i.e., 0) in synchronous rounds;
- have distinct labels from $\{1, \ldots, L\}$;
- woke-up simultaneously in round 0;
- start in $R > 1$ teams of x agents each, where $x \cdot R \leq L$
- share the base in each team.

- Deterministic finite Mealy automata;
- move (i.e., $\{-1, 1\}$) or stay idle (i.e., 0) in synchronous rounds;
- have distinct labels from $\{1, \ldots, L\}$;
- woke-up simultaneously in round 0;
- start in $R > 1$ teams of x agents each, where $x \cdot R \leq L$
- share the base in each team.
- R, x, L are known by each agent.

When entering a node, an agent

• sees the entry port number,

When entering a node, an agent

- sees the entry port number,
- sees all the set of states of all currently collocated agents, and

When entering a node, an agent

- sees the entry port number,
- sees all the set of states of all currently collocated agents, and
- decides to stay idle, leave from current node via port −1 or port 1.

• Knows automata,

- Knows automata,
- decides all the labels of the agents,

- Knows automata,
- decides all the labels of the agents,
- decides the composition of teams and their bases, and

- Knows automata,
- decides all the labels of the agents,
- decides the composition of teams and their bases, and
- decides the port labeling at each node of an unoriented line

Goals:

• Feasibility: Decide if gathering is achievable?

Goals:

- Feasibility: Decide if gathering is achievable?
- Algorithm: If so, design automata that gather all the agents at the same node.
- Count-driven methods are not applicable,
	- instead, we design an event-driven method (meeting)
- Count-driven methods are not applicable,
	- instead, we design an event-driven method (meeting)
- meetings inside an edge is not allowed, and
- Count-driven methods are not applicable,
	- instead, we design an event-driven method (meeting)
- meetings inside an edge is not allowed, and
- agents cannot "see" other agents at a distance.

Preliminary: Trajectories, Periodic and Boundaries

Trajectory: A trajectory of an agent is defined as an infinite sequence of terms drawn from $\{-1, 0, 1\}$.

Proposition

The trajectory of any agent navigating either in the oriented or in the homogeneous line and starting at any node of it is periodic.

$$
-1 \hspace{0.1cm} -1 \hspace{0.1cm} -1 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} -1 \hspace{0.1cm} -1 \hspace{0.1cm} -1 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} -1 \hspace{0.1cm} -1 \hspace{0.1cm} 1 \hspace{0.1cm}
$$

Notes: The adversary can always fool a single mobile agent such that it cannot explore an infinite line by itself.

Three types of periodic trajectories on homogeneous and oriented lines:

- minus-progressing,
- *plus-progressing* and,
- bounded.

Bounded trajectories

Minus-Progressing and Plus-Progressing Trajectories

A plus-(or minus-) progressing trajectory is associated with speed.

The lower bound result

- On a Homogeneous line
- \bullet two teams of size two based at two nodes at a distance D
- gathering takes at least $cD \log L$ rounds, for some constant c

Notes: Consider two teams $(3, 5)$ and $(3, 7)$. Agent with label 3 in these teams might behave differently.

Canonical teams

Lemma

There are always at least $(|L/2|-1)$ canonical teams that the adversary can choose from; otherwise, the adversary could always avoid gathering.

E.g., $\{1, 2\}$, $\{3, 4\}$, $\{7, 8\}$, $\{9, 10\}$, $\{11, 12\}$, ..., $\{2C - 1, 2C\}$.

The Lower Bound: Team Size is Two

- Let $p = \lfloor L^{1/3} \rfloor$;
- \bullet divide all the canonical teams into p^2 groups as follows:

Lemma: There exists an instance such that the first meeting happens no later than c'D log L rounds.

- W.l.o.g, assume that $i > j$,
- there exists agents p_1 and p_2 such that their meeting requires *cD* log $|\sum_{i,j}|$ rounds,
- if $i > j$, then $v(q_1) > v(p_2)$ and $v(q_2) \ge v(p_1)$,
- otherwise, catch-up cannot happen quickly.

- Gathering of teams of automata in arbitrary (connected) infinite graphs and
- Gathering of teams of possibly different sizes

Thanks!

[Appendix](#page-36-0)

• Deterministic finite Mealy automaton $A = (\mathcal{I}, O, Q, \delta, \lambda)$,

• Deterministic finite Mealy automaton $A = (\mathcal{I}, O, Q, \delta, \lambda)$,

•
$$
\mathcal{I} = \{(L, R)\} \times \{-1, 1, 0\} \times \mathcal{Q}
$$

• Deterministic finite Mealy automaton $A = (\mathcal{I}, O, Q, \delta, \lambda)$,

•
$$
\mathcal{I} = \{ (L, R) \} \times \{ -1, 1, 0 \} \times \mathcal{Q}
$$

• $O = \{-1, 1, 0\},\$

- Deterministic finite Mealy automaton $A = (\mathcal{I}, O, Q, \delta, \lambda)$,
- $\mathcal{I} = \{ (L, R) \} \times \{ -1, 1, 0 \} \times \mathcal{Q}$
- $O = \{-1, 1, 0\},\$
- $\bullet \ \ Q = Q^1 \cup \cdots \cup Q^L,$
- Deterministic finite Mealy automaton $A = (\mathcal{I}, O, Q, \delta, \lambda)$,
- $\mathcal{I} = \{(L, R)\}\times \{-1, 1, 0\}\times \mathcal{Q}$
- $O = \{-1, 1, 0\},\$
- $\bullet \ \ Q = Q^1 \cup \cdots \cup Q^L,$
- \bullet δ : $\mathcal{Q} \times \mathcal{I} \rightarrow \mathcal{Q}$.
	- \bullet Restriction: If $q \in Q^{\ell}$ then $\delta(q, l) \in Q^{\ell}$, for any input 1,
- Deterministic finite Mealy automaton $A = (\mathcal{I}, O, Q, \delta, \lambda)$,
- $\mathcal{I} = \{ (L, R) \} \times \{ -1, 1, 0 \} \times \mathcal{Q}$
- $O = \{-1, 1, 0\},\$
- $\bullet \ \ Q = Q^1 \cup \cdots \cup Q^L,$
- \bullet δ : $\mathcal{Q} \times \mathcal{I} \rightarrow \mathcal{Q}$.
	- \bullet Restriction: If $q \in Q^{\ell}$ then $\delta(q, l) \in Q^{\ell}$, for any input 1,
- $\lambda: Q \times I \rightarrow Q$.

Mobile Agents: Automata

- Knowing L is necessary
	- the Mealy automaton formalizing the agents must have sufficiently many states to code the labels of the agents, in order to permit interaction between them at the meetings.
- Knowing L is necessary
	- the Mealy automaton formalizing the agents must have sufficiently many states to code the labels of the agents, in order to permit interaction between them at the meetings.
- Knowing R is necessary
	- Without knowing R , gathering cannot be achieved.
- Knowing L is necessary
	- the Mealy automaton formalizing the agents must have sufficiently many states to code the labels of the agents, in order to permit interaction between them at the meetings.
- Knowing R is necessary
	- Without knowing R , gathering cannot be achieved.
- Simultaneous start:
	- If the start was not simultaneous, then no bound on gathering time could be established

- Nodes with labels
- Nodes without labels

- Nodes with labels
- Nodes without labels
- Marking Nodes by agents
- Agents cannot leave marks

- Nodes with labels
- Nodes without labels
- Marking Nodes by agents
- Agents cannot leave marks
- Finite Graphs
- Infinite Graphs

- Nodes with labels
- Nodes without labels
- Marking Nodes by agents
- Agents cannot leave marks
- Finite Graphs
- Infinite Graphs
- Synchronous
- Asynchronous

- Nodes with labels
- Nodes without labels
- Marking Nodes by agents
- Agents cannot leave marks
- Finite Graphs
- Infinite Graphs
- Synchronous
- Asynchronous
- Agents modeled as Turing machines with unbounded memory
- Agents modeled as automata with finite number of states

- Nodes with labels
- Nodes without labels
- Marking Nodes by agents
- Agents cannot leave marks
- Finite Graphs
- Infinite Graphs
- Synchronous
- Asynchronous
- Agents modeled as Turing machines with unbounded memory
- Agents modeled as automata with finite number of states
- Agents with distinct identities
- Identical agents

- Nodes with labels
- Nodes without labels ✓
- Marking Nodes by agents
- Agents cannot leave marks √
- Finite Graphs
- Infinite Graphs √
- Synchronous √
- Asynchronous
- Agents modeled as Turing machines with unbounded memory
- Agents modeled as automata with finite number of states ✓
- Agents with distinct identities √
- Identical agents

Theorem

Consider an arbitrary set of agents. Then the adversary can place these agents at distinct nodes of the oriented line in such a way that no pair of agents will ever meet.

Feasibility: Team Size is One

