Faster Path Queries in Colored Trees via
Sparse Matrix Multiplication and Min-Plus
Product

Younan Gao and Meng He

Dalhousie University

Define the Problems

e A tree of n colored nodes;

colors drawn from [0..C — 1J;

color counting: |C(Px,)| =4

mode on P, ,: blue

e Least-Frequent on Py ,: black.

elated Work

n queries
Previous Ours
Grid 1.40704
| .
Color Counting Tree 15 1.40704
Arrays 1.4805 1.479603
Mode Tree 15 1.483814
Least Frg Arrays 1.5 1.479603
Tree 15 1.483814

All problems listed above share the same conditional lower bound.

Colored Counting: Paths through the Root

Marking Rules:

LQ e Mark nodes at every X
,,,,,,,,, } levels,
‘LS e starting from some level
)I tel0,X —1];
ﬂ,;gs e and mark the root.
Outcomes:

e At most n/X marked
nodes;

o |Pso| < X+ 1, where
node s’ is the lowest
marked ancestor of node s.

The Solution

e Suppose that |C(Py /)| is
given.

e For each color
c € C(P,)V C(P}’,J,).

e check whether ¢ appears in
(B g

The Solution

result = |C’(PI/,y/)\

00O e
}

result

The Solution

result = |C’(PI/,y/)\

00O e
}

result

The Solution

result = |C’(PI/,y/)\

00O e
|

result + +

The Solution

result = IC(P:c’,y’)|

©0O0Oe
}

result

The Solution

result = |C(Pz/’y/)|

©0O0Oe

return result

The Solution

e in O(X polylog n) time,

e using O(()? + n) words.

e How to compute
|C(Pys,y)] for all pairs of
x" and y’ efficiently?

e Construct an n/X % C
matrix, A.

e Entry A[/, c] stores 1 if
color ¢ appears in path
Py 1; 0 otherwise.

NN NG

OOHHOI

Rlo|k|r|o
Rk (k|olo

A WIN R O[>

r|lolo|o|o
N

The Matrices

4

3(y)

2

1

1(x')

MI[1,3] = [C(Px, 1) 0 C(Py, 1)l

‘C('D '7y’)|

[C(Per, 1) U C(Py 1)
= [C(Pw,) +[C(Pyr, 1) = [C(Pw, 1) N C(Pyr 1)

= |C(Pw,)|+ |C(Py,1)| — MI[L,3]

The Matrices

A . T ar [o[1 [2314
0 0 1 0 0 0 0 0 0 0 0 1
1 0 1 1 0 1 0 1 1 1 1 1
2 0 1 1 1 1 1 * 0 1 1 0 0
3 0 1 0 1 0 1 0 0 1 1 1
4 1 1 0 1 1 1 0 1 1 0 1
0 0 1 1 1
M 0 1 2 [3y)] 4
0 1 1 1 1 1
i) | 1 3 3 1 2
= 2 1 3 5 3 4
3 1 1 3 3 3
4 1 2 4 3 5
However,

e Matrix A could have as many as Cn/X non-zero entries;

e and computing matrix M could take C - (%)? time.

10

The Updated Matrices

o Define é(x,-) to be
C(P, NC(Py.L).

e Entry A[i, c] stores 1 if
color ¢ appears in C(x;)
and 0 otherwise.

g
1

o|r|rio|o

0
0
1

B WIN (= (O

~|olo|o|o
olo|o|o|o
o|o|o|r
N
:ocm

11

The Updated Matrix

i I e it o[1 [27374
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 1 0 0 0 0 0 0
2 0 0 0 1 0 1 * 0 1 0 0 0
3 0 0 0 1 0 1 0 0 1 1 0
4 1 0 0 0 1 0 0 1 0 0 1
0 0 1 1 0

M 0 1 2 3(y) 4

0 0 0 0 0 0

1(x!) 0 2 0 0 1

= 2 0 0 2 2 0

3 0 0 2 2 0

4 0 1 0 0 2

Matrix A has at most O(n) non-zero entries:
e At most n/X rows and at most X non-zero entries per row.
Matrix M can be computed in O(n(“+1)/2/X(©=1)/2) time.
e for any X € [0~ D+ n] using SRMM.
Entry M[i,] stores |C(x;) N C(x))I;
e M can be turned into M in O((%)?) time.

12

Colored Counting: Arbitrary Path

e Apply centroid
decomposition.

e After removing the
centroid, each subtree
contains at most n/2
nodes.

e A query path is either
contained within a subtree
or through the centroid.

13

Colored Counting: Arbitrary Path

e Apply centroid
O O pply

decomposition.

e After removing the
centroid, each subtree
contains at most n/2
nodes.

e A query path is either
contained within a subtree
or through the centroid.

13

Process Each Subtree Recursively

e Process each subtree
recursively.
e The recursive tree contains
n
[lg | levels.
e Each base component
contains at most X nodes.

14

Weighted Tree

e Centroids at level ¢ are
assigned weight-/.

e Non-centroids in the base
components are assigned to
weight-oo.

e Construct a data structure
for path minimum queries.

15

Path Minimum Queries

e Find the node v carrying
the minimum weight on
the query path.

16

Path Minimum Queries

e Find the node v carrying
the minimum weight on
the query path.

e |dentify the component s
that has v as the centroid.

16

Path Minimum Queries

e Find the node v carrying
the minimum weight on
the query path.

e |dentify the component s
that has v as the centroid.

e The query path in s must
contain the centroid.

16

Path Minimum Queries

Find the node v carrying
the minimum weight on
the query path.

Identify the component s
that has v as the centroid.
The query path in s must
contain the centroid.

If the minimum weight is
00, then the query path is
within some base

component.

16

Colored Counting

F Al AR

e Turn the query path to be a path through the root of the

component.

e The space cost is increased by a Ig n factor, i.e.,
O(((%)? + n) x Ig n) words,
e while the query time bound is maintained, which is O(X polylog n).

17

Conclusions

e Breaking the bound n®/2:

T Batched colored path counting;
T batched path mode;

* reducing to computing the Min-plus Product;
* applying the special structure inherited from tree topology.

T batched least-frequent queries;
* Aj ke + Bix j = min{A; x + By j}
* and Aj gxx + Bixx j = min{A; x + By j : Aik + Bij > Aikx + Bi j}
e Their respective dynamization, breaking the bound n?/3.
e Open Problem:

1 batched mode queries on arrays: O(n**"%%%) time;

T batched path mode queries: O(n'*3381%)

18

Questions?

