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Define the Problems

x y

• A tree of n colored nodes;

• colors drawn from [0..C − 1];

• color counting: |C (Px,y )| = 4

• mode on Px,y : blue

• Least-Frequent on Px,y : black.
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Related Work

All problems listed above share the same conditional lower bound.
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Colored Counting: Paths through the Root

n = 33

t = 2

X = 3

Marking Rules:

• Mark nodes at every X

levels,

• starting from some level

t ∈ [0,X − 1];

• and mark the root.

Outcomes:

• At most n/X marked

nodes;

• |Ps,s′ | ≤ X + 1, where

node s ′ is the lowest

marked ancestor of node s.
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The Solution

n = 33

t = 2

X = 3

x y

x
′

y
′

• Suppose that |C (Px′,y ′)| is
given.

• For each color

c ∈ C (P ′
x,x′) ∪ C (P ′

y ,y ′),

• check whether c appears in

Px′,y ′ .
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The Solution

n = 33

t = 2

X = 3

x y

x
′

y
′

result = |C(P
x′,y′ )|

result
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The Solution

n = 33

t = 2

X = 3

x y

x
′

y
′

result = |C(P
x′,y′ )|

return result
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The Solution

n = 33

t = 2

X = 3

x y

x
′

y
′

• in O(X polylog n) time,

• using O(( n
X )

2 + n) words.

• How to compute

|C (Px′,y ′)| for all pairs of
x ′ and y ′ efficiently?
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The Matrices

n = 33

t = 2

X = 3

x y

x
′

y
′

• Construct an n/X ∗ C
matrix, A.

• Entry A[i , c] stores 1 if

color c appears in path

Pxi ,⊥; 0 otherwise.
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The Matrices

M[1, 3] = |C (Px′,⊥) ∩ C (Py ′,⊥)|
|C (Px′,y ′)| = |C (Px′,⊥) ∪ C (Py ′,⊥)|

= |C (Px′,⊥)|+ |C (Py ′,⊥)| − |C (Px′,⊥) ∩ C (Py ′,⊥)|
= |C (Px′,⊥)|+ |C (Py ′,⊥)| −M[1, 3]
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The Matrices

However,

• Matrix A could have as many as Cn/X non-zero entries;

• and computing matrix M could take C · ( n
X )

2 time.
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The Updated Matrices

n = 33

t = 2

X = 3

x2

x
′

2

• Define Ĉ (xi ) to be

C (P ′
xi ,x′

i
)\C (Px′

i ,⊥).

• Entry Â[i , c] stores 1 if

color c appears in Ĉ (xi )

and 0 otherwise.
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The Updated Matrix

• Matrix Â has at most O(n) non-zero entries:

• At most n/X rows and at most X non-zero entries per row.

• Matrix M̂ can be computed in O(n(ω+1)/2/X (ω−1)/2) time.

• for any X ∈ [n(ω−1)/(ω+1), n], using SRMM.

• Entry M̂[i , j ] stores |Ĉ (xi ) ∩ Ĉ (xj)|;
• M̂ can be turned into M in O(( n

X )
2) time. 12



Colored Counting: Arbitrary Path

• Apply centroid

decomposition.

• After removing the

centroid, each subtree

contains at most n/2

nodes.

• A query path is either

contained within a subtree

or through the centroid.
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Process Each Subtree Recursively

• Process each subtree

recursively.

• The recursive tree contains

⌈lg n
X ⌉ levels.

• Each base component

contains at most X nodes.
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Weighted Tree
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• Centroids at level ℓ are

assigned weight-ℓ.

• Non-centroids in the base

components are assigned to

weight-∞.

• Construct a data structure

for path minimum queries.
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Path Minimum Queries

0

1

1

2

2 2

2 2
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∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
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• Find the node v carrying

the minimum weight on

the query path.

• Identify the component s

that has v as the centroid.

• The query path in s must

contain the centroid.

• If the minimum weight is

∞, then the query path is

within some base

component.
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Colored Counting

• Turn the query path to be a path through the root of the

component.

• The space cost is increased by a lg n factor, i.e.,

O((( n
X )

2 + n)× lg n) words,

• while the query time bound is maintained, which is O(X polylog n).
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Conclusions

• Breaking the bound n3/2:

† Batched colored path counting;
† batched path mode;

* reducing to computing the Min-plus Product;

* applying the special structure inherited from tree topology.

† batched least-frequent queries;

* Ai,k∗ + Bk∗,j = min{Ai,k + Bk,j}
* and Ai,k∗∗ + Bk∗∗,j = min{Ai,k + Bk,j : Ai,k + Bk,j > Ai,k∗ + Bk∗,j}

• Their respective dynamization, breaking the bound n2/3.

• Open Problem:

† batched mode queries on arrays: O(n1.479603) time;

† batched path mode queries: O(n1.483814)
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Questions?
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