Faster Path Queries in Colored Trees via Sparse Matrix Multiplication and Min-Plus **Product**

Younan Gao and Meng He

Dalhousie University

Define the Problems

- \bullet A tree of *n* colored nodes:
- colors drawn from $[0..C 1]$;
- color counting: $|C(P_{x,y})|=4$
- mode on $P_{x,y}$: blue
- Least-Frequent on $P_{x,y}$: black.

All problems listed above share the same conditional lower bound.

Colored Counting: Paths through the Root

Marking Rules:

- Mark nodes at every X levels,
- starting from some level $t \in [0, X - 1];$
- and mark the root.

Outcomes:

- At most n/X marked nodes;
- $\bullet \ \vert P_{s,s'} \vert \leq X+1$, where node s ′ is the lowest marked ancestor of node s.

- \bullet Suppose that $|C(P_{\varkappa',\varkappa'})|$ is given.
- For each color $c \in C(P'_{x,x'}) \cup C(P'_{y,y'})$,
- check whether c appears in $P_{x',y'}$.

return result

- in $O(X)$ polylog *n*) time,
- using $O((\frac{n}{X})^2 + n)$ words.
- How to compute $|C(P_{x',y'})|$ for all pairs of x' and y' efficiently?

The Matrices

- Construct an $n/X * C$ matrix, A.
- Entry $A[i, c]$ stores 1 if color c appears in path $P_{x_i,\perp}$; 0 otherwise.

The Matrices

$$
\frac{M[1,3] = |C(P_{x',\perp}) \cap C(P_{y',\perp})|}{|C(P_{x',y'})| = |C(P_{x',\perp}) \cup C(P_{y',\perp})|}
$$
\n
$$
= |C(P_{x',\perp})| + |C(P_{y',\perp})| - |C(P_{x',\perp}) \cap C(P_{y',\perp})|
$$
\n
$$
= |C(P_{x',\perp})| + |C(P_{y',\perp})| - M[1,3]
$$

The Matrices

However,

- Matrix A could have as many as Cn/X non-zero entries;
- and computing matrix M could take $C \cdot (\frac{n}{X})^2$ time.

The Updated Matrices

- Define $\hat{C}(x_i)$ to be $C(P'_{x_i,x'_i})\backslash C(P_{x'_i,\perp}).$
- Entry $\hat{A}[i, c]$ stores 1 if color c appears in $\hat{C}(x_i)$ and 0 otherwise.

- Matrix \hat{A} has at most $O(n)$ non-zero entries:
	- At most n/X rows and at most X non-zero entries per row.
- Matrix \hat{M} can be computed in $O(n^{(\omega+1)/2}/X^{(\omega-1)/2})$ time.
	- for any $X \in [n^{(\omega-1)/(\omega+1)}, n]$, using SRMM.
- Entry $\hat{M}[i, j]$ stores $|\hat{C}(x_i) \cap \hat{C}(x_i)|$;
- \hat{M} can be turned into M in $O((\frac{n}{X})^2)$ time.

Colored Counting: Arbitrary Path

- Apply centroid decomposition.
- After removing the centroid, each subtree contains at most $n/2$ nodes.
- A query path is either contained within a subtree or through the centroid.

Colored Counting: Arbitrary Path

- Apply centroid decomposition.
- After removing the centroid, each subtree contains at most $n/2$ nodes.
- A query path is either contained within a subtree or through the centroid.

Process Each Subtree Recursively

- Process each subtree recursively.
- The recursive tree contains $\lceil \lg \frac{n}{X} \rceil$ levels.
- Each base component contains at most X nodes.

- Centroids at level ℓ are assigned weight- ℓ .
- Non-centroids in the base components are assigned to weight-∞.
- Construct a data structure for path minimum queries.

• Find the node v carrying the minimum weight on the query path.

- Find the node v carrying the minimum weight on the query path.
- Identify the component s that has v as the centroid.

- Find the node v carrying the minimum weight on the query path.
- Identify the component s that has v as the centroid.
- The query path in s must contain the centroid.

- Find the node v carrying the minimum weight on the query path.
- Identify the component s that has v as the centroid.
- The query path in s must contain the centroid.
- If the minimum weight is ∞ , then the query path is within some base component.

Colored Counting

- Turn the query path to be a path through the root of the component.
- The space cost is increased by a $\lg n$ factor, i.e., $O(((\frac{n}{X})^2 + n) \times \lg n)$ words,
- while the query time bound is maintained, which is $O(X)$ polylog n).

Conclusions

- Breaking the bound $n^{3/2}$:
	- † Batched colored path counting;
	- † batched path mode;
		- * reducing to computing the Min-plus Product;
		- * applying the special structure inherited from tree topology.
	- † batched least-frequent queries;

*
$$
A_{i,k^*} + B_{k^*,j} = \min\{A_{i,k} + B_{k,j}\}\
$$

- * and $A_{i,k^{**}}+B_{k^{**},j}=\min\{A_{i,k}+B_{k,j}:A_{i,k}+B_{k,j}>A_{i,k^{*}}+B_{k^{*},j}\}$
- Their respective dynamization, breaking the bound $n^{2/3}$.
- Open Problem:
	- \dagger batched mode queries on arrays: $O(n^{1.479603})$ time;
	- \dagger batched path mode queries: $O(n^{1.483814})$

Questions?