Space Efficient Two-Dimensional Orthogonal Colored Range Counting

Younan Gao and Meng He

Dalhousie University

The Problem

 The input is a set P of n points on the grid. Each point is assigned in some color, which is encoded by an integer ∈ [1, C].

The Problem

 Given an orthogonal query range Q, compute the number (denoted by |C(Q ∩ P)|) of distinct colors in Q ∩ P, which is 2 in this example.

The Problem

Application in Database System: SELECT COUNT (DISTINCT country) FROM athletes WHERE a ≤ weight ≤ b AND c ≤ height ≤ d;

Related Work

	Space	Query Time
Non-Color Version	O(n)	$O(\frac{\lg n}{\lg \lg n})$
Color Version	$O(n^2 \frac{\lg n}{\lg \lg n})$	$O((\frac{\lg n}{\lg \lg n})^2)$

	Space	Query Time
Non-Color Version	O(n)	$O(\frac{\lg n}{\lg \lg n})$
Color Version	$O(n^2 \frac{\lg n}{\lg \lg n})$	$O((\frac{\lg n}{\lg \lg n})^2)$

	Space	Query Time
Non-Color Version	<i>O</i> (<i>n</i>)	$O(\frac{\lg n}{\lg \lg n})$
Color Version	$O(n^2 \frac{\lg n}{\lg \lg n})$	$O((\frac{\lg n}{\lg \lg n})^2)$

• Not decomposable:

Given $|C(P) \cap [a, b] \times [c, +\infty)|$ and $|C(P) \cap [a, b] \times (-\infty, d]|$,

 $|C(P) \cap [a, b] \times [c, d]|$ cannot be computed in constant time;

	Space	Query Time
Non-Color Version	<i>O</i> (<i>n</i>)	$O(\frac{\lg n}{\lg \lg n})$
Color Version	$O(n^2 \frac{\lg n}{\lg \lg n})$	$O((\frac{\lg n}{\lg \lg n})^2)$

• Not decomposable:

Given $|C(P) \cap [a, b] \times [c, +\infty)|$ and $|C(P) \cap [a, b] \times (-\infty, d]|$,

 $|C(P) \cap [a, b] \times [c, d]|$ cannot be computed in constant time;

• Reduce 2D colored counting to Boolean Matrix Multiplication: No solution can simultaneously have preprocessing time better than $\Omega(n^{3/2})$ and query time better than $\Omega(\sqrt{n})$, by purely combinatorial methods

	Space	Query Time
Non-Color Version	<i>O</i> (<i>n</i>)	$O(\frac{\lg n}{\lg \lg n})$
Color Version	$O(n^2 \frac{\lg n}{\lg \lg n})$	$O((\frac{\lg n}{\lg \lg n})^2)$

• Not decomposable:

Given $|C(P) \cap [a, b] \times [c, +\infty)|$ and $|C(P) \cap [a, b] \times (-\infty, d]|$,

 $|C(P) \cap [a, b] \times [c, d]|$ cannot be computed in constant time;

- Reduce 2D colored counting to Boolean Matrix Multiplication: No solution can simultaneously have preprocessing time better than $\Omega(n^{3/2})$ and query time better than $\Omega(\sqrt{n})$, by purely combinatorial methods
- A solution with $O(n \lg^4 n)$ words and $O(\sqrt{n} \lg^8 n)$ query time by Kaplan et al 2008.

	Model	Query Time	Space Usage in Words
Kaplan et al.	PM	$O(X \lg^7 n)$	$O((\frac{n}{X})^2 \lg^6 n + n \lg^4 n)$
Sol 1	PM	$O(\lg^5 n + X \lg^3 n)$	$O((\frac{n}{X})^2 \lg^4 n + n \lg^3 n)$
501.1	RAM	$O(\lg^4 n + X \lg^2 n \lg \lg n)$	$O((\frac{n}{X})^2 \lg^4 n + n \lg^3 n)$
Sol.2	RAM	$O(\lg^6 n + X \lg^{3+\epsilon} n)$	$O((\frac{n}{X})^2 \lg^4 n + n \lg^2 n)$
Sol.3	RAM	$O(\lambda^2 \lg^6 n \log_{\lambda}^2 n + X \lg^{3+\epsilon} n\lambda \log_{\lambda} n)$	$O((\frac{n}{X})^2 \lg^2 n \log_{\lambda}^2 n + n \lg n \log_{\lambda} n)$

	Model	Query Time	Space Usage in Words
Kaplan et al.	PM	$O(X \lg^7 n)$	$O((\frac{n}{X})^2 \lg^6 n + n \lg^4 n)$
Sol.1	PM	$O(\lg^5 n + X \lg^3 n)$	$O((\frac{n}{X})^2 \lg^4 n + n \lg^3 n)$
	RAM	$O(\lg^4 n + X \lg^2 n \lg \lg n)$	$O((\frac{n}{X})^2 \lg^4 n + n \lg^3 n)$
Sol.2	RAM	$O(\lg^6 n + X \lg^{3+\epsilon} n)$	$O((\frac{n}{X})^2 \lg^4 n + n \lg^2 n)$
Sol.3	RAM	$O(\lambda^2 \lg^6 n \log_{\lambda}^2 n + X \lg^{3+\epsilon} n\lambda \log_{\lambda} n)$	$O((\frac{n}{X})^2 \lg^2 n \log_{\lambda}^2 n + n \lg n \log_{\lambda} n)$
		+ (C , 8)	
Kaplan et al.	PM	$O(\sqrt{n \lg^{\circ} n})$	$O(n \lg^{+} n)$
Kaplan et al.	PM PM	$\frac{O(\sqrt{n \lg^{\circ} n})}{O(\sqrt{n \lg^{7/2} n})}$	$\frac{O(n \lg^4 n)}{O(n \lg^3 n)}$
Kaplan et al. Sol.1	PM PM RAM	$\frac{O(\sqrt{n} \mathbf{g}^{^{7}} n)}{O(\sqrt{n} \mathbf{g}^{^{7}} n)}$ $\frac{O(\sqrt{n} \mathbf{g}^{^{5}} n \mathbf{g} \mathbf{g} n)}{O(\sqrt{n} \mathbf{g}^{^{5}} n \mathbf{g} \mathbf{g} n)}$	O(n lg* n) O(n lg3 n) O(n lg3 n)
Kaplan et al. Sol.1 Sol.2	PM PM RAM RAM	$\frac{O(\sqrt{n} \lg^{\circ} n)}{O(\sqrt{n} \lg^{7/2} n)}$ $\frac{O(\sqrt{n} \lg^{5/2} n \lg \lg n)}{O(\sqrt{n} \lg^{5/2} n \lg \lg n)}$	$ \begin{array}{c} O(n \lg^* n) \\ O(n \lg^3 n) \\ O(n \lg^3 n) \\ O(n \lg^2 n) \end{array} $
Kaplan et al. Sol.1 Sol.2	PM PM RAM RAM	$\begin{array}{c} O(\sqrt{n} \lg^{e} n) \\ \hline O(\sqrt{n} \lg^{7/2} n) \\ O(\sqrt{n} \lg^{5/2} n \lg \lg n) \\ \hline O(\sqrt{n} \lg^{4+e} n) \\ \hline O(\sqrt{n} \lg^{5+e} n) \\ \hline \end{array}$	$\begin{array}{c} O(n \lg^{3} n) \\ O(n \lg^{3} n) \\ O(n \lg^{3} n) \\ O(n \lg^{2} n) \\ O(n \lg^{2} n) \\ O(n \lg^{2} n) \end{array}$

	Model	Query Time	Space Usage in Words
Kaplan et al.	PM	$O(X \lg^7 n)$	$O((\frac{n}{X})^2 \lg^6 n + n \lg^4 n)$
Cal 1	PM	$O(\lg^5 n + X \lg^3 n)$	$O((\frac{n}{X})^2 \lg^4 n + n \lg^3 n)$
301.1	RAM	$O(\lg^4 n + X \lg^2 n \lg \lg n)$	$O((\frac{n}{X})^2 \lg^4 n + n \lg^3 n)$
Sol.2	RAM	$O(\lg^6 n + X \lg^{3+\epsilon} n)$	$O((\frac{n}{X})^2 \lg^4 n + n \lg^2 n)$
Sol.3	RAM	$O(\lambda^2 \lg^6 n \log_{\lambda}^2 n + X \lg^{3+\epsilon} n\lambda \log_{\lambda} n)$	$O((\frac{n}{X})^2 \lg^2 n \log_{\lambda}^2 n + n \lg n \log_{\lambda} n)$
Kaplan et al.	PM	$O(\sqrt{n} \lg^8 n)$	$O(n \lg^4 n)$
Sol 1	PM	$O(\sqrt{n} \lg^{7/2} n)$	$O(n \lg^3 n)$
501.1	RAM	$O(\sqrt{n} \lg^{5/2} n \lg \lg n)$	$O(n \lg^3 n)$
Sol.2	RAM	$O(\sqrt{n} \lg^{4+\epsilon} n)$	$O(n \lg^2 n)$
Sol 3	RAM	$O(\sqrt{n} \lg^{5+\epsilon} n)$	$O(n \frac{\lg^2 n}{\lg \lg n})$
501.5	RAM	$O(n^{1/2+\epsilon})$	$O(n \lg n)$
Grossi and Vind	RAM	$O(n/\operatorname{polylog}(n))$	<i>O</i> (<i>n</i>)
Kaplan et al.	RAM	$O(n^{3/4} \lg^{\epsilon} n)$	<i>O</i> (<i>n</i>)

- Techniques:
 - Decomposing a 4-sided query range to two 3-sided subranges with a range tree;
 - Achieving new time-space tradeoffs when computing the number of colors that exist in both subranges. (Main contribution)

2D 3-Sided Colored Range Counting

3D 3-Sided Colored Range Counting

3D Stabbing Queries over 3D 5-Sided Boxes

3D Stabbing Queries over 3D 5-Sided Boxes

Lemma (Kaplan et al.)

Given a set, P, of n points in three-dimensional space, we can assign points of P into a set B(P) of O(n) pairwise disjoint 3D canonical boxes (i.e., each in the form of $[x_1, +\infty) \times [y_1, y_2) \times [z_1, z_2)$) such that a query point q dominates some point in P iff q is contained in exactly one of the boxes from B(P).

• Stabbing Queries is to report/count the number of canonical boxes containing the query point *q*;

- Stabbing Queries is to report/count the number of canonical boxes containing the query point *q*;
- In total O(n) boxes will be built over all colors;

- Stabbing Queries is to report/count the number of canonical boxes containing the query point *q*;
- In total O(n) boxes will be built over all colors;
- Within each color, at most one box contains the query point;

- Stabbing Queries is to report/count the number of canonical boxes containing the query point *q*;
- In total O(n) boxes will be built over all colors;
- Within each color, at most one box contains the query point;
- The number of colors of the points dominated by *q* is the same as the number of boxes containing *q*;

- Stabbing Queries is to report/count the number of canonical boxes containing the query point *q*;
- In total O(n) boxes will be built over all colors;
- Within each color, at most one box contains the query point;
- The number of colors of the points dominated by *q* is the same as the number of boxes containing *q*;

• It is a two-layer segment tree structure;

- It is a two-layer segment tree structure;
- The first-layer is contructed upon the intervals of the boxes along *z*-axis;

- It is a two-layer segment tree structure;
- The first-layer is contructed upon the intervals of the boxes along *z*-axis;
- The second-layer is contructed upon the intervals of the boxes along y-axis;

- It is a two-layer segment tree structure;
- The first-layer is contructed upon the intervals of the boxes along *z*-axis;
- The second-layer is contructed upon the intervals of the boxes along y-axis;
- A query accesses $O(\lg^2 n)$ bottom-layer node;

 Boxes stored in the bottom-layer node are sorted by one-side bounded x-coordinate;

- Boxes stored in the bottom-layer node are sorted by one-side bounded x-coordinate;
- Boxes stored in the same bottom-layer node are in distinct color;

- Boxes stored in the bottom-layer node are sorted by one-side bounded x-coordinate;
- Boxes stored in the same bottom-layer node are in distinct color;
- A query upon a bottom-layer node would return some prefix of the box list (as reporting) or the size of the prefix list (as counting);

• The data structure uses $O(n \lg^2 n)$ words of space;
- The data structure uses $O(n \lg^2 n)$ words of space;
- Each counting/reporting query takes $O(\lg^2 n)/O(\lg^2 n + k)$ time;

The First Solution

• Construct a binary range tree T upon y-coordinates of points.

The First Solution

- Construct a binary range tree T upon y-coordinates of points.
- Construct and store S(v_l) and S(v_r) for 2D 3-sided colored counting upon P(v_l) and P(v_r) at node v.
- Construct and store E(v_l) and E(v_r) for 2D colored emptiness queries upon P(v_l) and P(v_r) at node v.

The First Solution

- Construct a binary range tree T upon y-coordinates of points.
- Construct and store S(v_l) and S(v_r) for 2D 3-sided colored counting upon P(v_l) and P(v_r) at node v.
- Construct and store E(v_l) and E(v_r) for 2D colored emptiness queries upon P(v_l) and P(v_r) at node v.

• By the exclusion-inclusion principle, we know that $|C_Q(u)| = |C_Q(u_l)| + |C_Q(u_r)| - |C_Q(u_l) \cap C_Q(u_r)|.$

Computing the Intersection

• We denote D_Q and U_Q to be the sets of the $O(\lg^2 n)$ prefix lists on the accessed bottom-layer nodes of $S(u_I)$ and $S(u_r)$, respectively.

Computing the Intersection

- We denote D_Q and U_Q to be the sets of the $O(\lg^2 n)$ prefix lists on the accessed bottom-layer nodes of $S(u_I)$ and $S(u_r)$, respectively.
- In the preprocessing, each list stored at the bottom-layer node is divided into blocks of size X;

Computing the Intersection

- We denote D_Q and U_Q to be the sets of the O(lg² n) prefix lists on the accessed bottom-layer nodes of S(u_l) and S(u_r), respectively.
- In the preprocessing, each list stored at the bottom-layer node is divided into blocks of size *X*;

• We have $C(s_h) \cup C(s_l) = C(s)$ and $C(t_h) \cup C(t_l) = C(t)$; and $C(s_h) \cap C(s_l) = C(t_h) \cap C(t_l) = \emptyset$ also holds;

$$|C_Q(u_l)\cap C_Q(u_r)|=\sum_{s\in D_Q,t\in U_Q}|C(s)\cap C(t)|$$

$$|C_Q(u_l) \cap C_Q(u_r)| = \sum_{s \in D_Q, t \in U_Q} |C(s) \cap C(t)|$$
$$= \sum_{s \in D_Q, t \in U_Q} (|(C(s_h) \cup C(s_l)) \cap (C(t_h) \cup C(t_l))|$$

$$\begin{aligned} |C_Q(u_l) \cap C_Q(u_r)| &= \sum_{s \in D_Q, t \in U_Q} |C(s) \cap C(t)| \\ &= \sum_{s \in D_Q, t \in U_Q} (|(C(s_h) \cup C(s_l)) \cap (C(t_h) \cup C(t_l))| \\ &= \sum_{s \in D_Q, t \in U_Q} (|(C(s_h) \cap C(t_h)) \cup (C(s_h) \cap C(t_l)) \cup (C(s_l) \cap C(t)|)) \end{aligned}$$

$$\begin{aligned} |C_Q(u_l) \cap C_Q(u_r)| &= \sum_{s \in D_Q, t \in U_Q} |C(s) \cap C(t)| \\ &= \sum_{s \in D_Q, t \in U_Q} (|(C(s_h) \cup C(s_l)) \cap (C(t_h) \cup C(t_l))| \\ &= \sum_{s \in D_Q, t \in U_Q} (|(C(s_h) \cap C(t_h)) \cup (C(s_h) \cap C(t_l)) \cup (C(s_l) \cap C(t)|)) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_l)) \cup (C(s_l) \cap C(t_l)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_l)) \cup (C(s_l) \cap C(t_l)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_l)) \cup (C(s_l) \cap C(t_l)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_l)) \cup (C(s_l) \cap C(t_l)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_l)) \cup (C(s_l) \cap C(t_l)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_l)) \cup (C(s_l) \cap C(t_l)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_l)) \cup (C(s_l) \cap C(t_l)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_l)) \cup (C(s_l) \cap C(t_l)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_l)) \cup (C(s_l) \cap C(t_l)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_l)) \cup (C(s_l) \cap C(t_l)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_l)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_l)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_l)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \cup (C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|) \\ &= \sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)$$

$$=\sum_{s\in D_Q,t\in U_Q}(|C(s_h)\cap C(t_h)|+|C(s_h)\cap C(t_l)|+|C(s_l)\cap C(t)|)$$

• $\sum_{s \in D_Q, t \in U_Q} (|C(s_h) \cap C(t_h)|$ can be computed in $O(\lg^2(n) \times \lg^2(n)) = O(\lg^4 n)$ time;

$$|C_Q(u_l) \cap C_Q(u_r)| = \sum_{s \in D_Q, t \in U_Q} |C(s) \cap C(t)|$$

=
$$\sum_{s \in D_Q, t \in U_Q} (|(C(s_h) \cup C(s_l)) \cap (C(t_h) \cup C(t_l))|$$

=
$$\sum_{s \in D_Q, t \in U_Q} (|(C(s_h) \cap C(t_h)) \cup (C(s_h) \cap C(t_l)) \cup (C(s_l) \cap C(t)|))$$

$$=\sum_{s\in D_Q,t\in U_Q}(|C(s_h)\cap C(t_h)|+|C(s_h)\cap C(t_l)|+|C(s_l)\cap C(t)|)$$

• $\sum_{s \in D_Q, t \in U_Q} |C(s_l) \cap C(t)| = |(\bigcup_{s \in D_Q} C(s_l)) \cap C_Q(u_r)|$ can be computed in $O(X \times \lg^2 n \times \lg \lg n) = O(X \lg^2 n \lg \lg n)$ time;

$$\sum_{s\in D_Q,t\in U_Q} |C(s_h)\cap C(t_l)|$$

$$\sum_{s \in D_Q, t \in U_Q} |C(s_h) \cap C(t_l)|$$

=
$$\sum_{s \in D_Q, t \in U_Q} |(C(s)/C(s_l)) \cap C(t_l)|$$

$$\sum_{s \in D_Q, t \in U_Q} |C(s_h) \cap C(t_l)|$$

=
$$\sum_{s \in D_Q, t \in U_Q} |(C(s)/C(s_l)) \cap C(t_l)|$$

= $|(\bigcup_{s \in D_Q} C(s)) \cap (\bigcup_{t \in U_Q} C(t_l))| - |(\bigcup_{s \in D_Q} C(s_l)) \cap (\bigcup_{t \in U_Q} C(t_l))|$

14

$$\sum_{s \in D_Q, t \in U_Q} |C(s_h) \cap C(t_l)|$$

=
$$\sum_{s \in D_Q, t \in U_Q} |(C(s)/C(s_l)) \cap C(t_l)|$$

=
$$|(\cup_{s \in D_Q} C(s)) \cap (\cup_{t \in U_Q} C(t_l))| - |(\cup_{s \in D_Q} C(s_l)) \cap (\cup_{t \in U_Q} C(t_l))|$$

=
$$|C_Q(u_l) \cap (\cup_{t \in U_Q} C(t_l))| - |(\cup_{s \in D_Q} C(s_l)) \cap (\cup_{t \in U_Q} C(t_l))|$$

$$\sum_{s \in D_Q, t \in U_Q} |C(s_h) \cap C(t_l)|$$

= $\sum_{s \in D_Q, t \in U_Q} |(C(s)/C(s_l)) \cap C(t_l)|$
= $|(\bigcup_{s \in D_Q} C(s)) \cap (\bigcup_{t \in U_Q} C(t_l))| - |(\bigcup_{s \in D_Q} C(s_l)) \cap (\bigcup_{t \in U_Q} C(t_l))|$
= $|C_Q(u_l) \cap (\bigcup_{t \in U_Q} C(t_l))| - |(\bigcup_{s \in D_Q} C(s_l)) \cap (\bigcup_{t \in U_Q} C(t_l))|$
= $|C_Q(u_l) \cap (\bigcup_{t \in U_Q} C(t_l))| - |(\bigcup_{s \in D_Q} C(s_l)) \cap (\bigcup_{t \in U_Q} C(t_l))|$

• $|C_Q(u_I) \cap (\bigcup_{t \in U_Q} C(t_I))|$ can be computed in $O(X \times \lg^2 n \times \lg \lg n) = O(X \lg^2 n \cdot \lg \lg n)$ time;

$$\sum_{s \in D_Q, t \in U_Q} |C(s_h) \cap C(t_l)|$$

= $\sum_{s \in D_Q, t \in U_Q} |(C(s)/C(s_l)) \cap C(t_l)|$
= $|(\bigcup_{s \in D_Q} C(s)) \cap (\bigcup_{t \in U_Q} C(t_l))| - |(\bigcup_{s \in D_Q} C(s_l)) \cap (\bigcup_{t \in U_Q} C(t_l))|$
= $|C_Q(u_l) \cap (\bigcup_{t \in U_Q} C(t_l))| - |(\bigcup_{s \in D_Q} C(s_l)) \cap (\bigcup_{t \in U_Q} C(t_l))|$

$$= |C_Q(u_l) \cap (\cup_{t \in U_Q} C(t_l))| - |(\cup_{s \in D_Q} C(s_l)) \cap (\cup_{t \in U_Q} C(t_l))|$$

Since colors are encoded in integers, |(∪_{s∈DQ} C(s_l)) ∩ (∪_{t∈UQ} C(t_l))| can be computed in O(X × lg² n × lg lg n) = O(X lg² n · lg lg n) time by sorting;

Matrixes for storing all pairs of $|s_h \cap t_h|$

• We store a matrix M(v) at each internal node v of T.

Matrixes for storing all pairs of $|s_h \cap t_h|$

- We store a matrix M(v) at each internal node v of T.
- Within M(v), there are $O(\frac{|P(v_i)| \lg^2 n}{X})$ rows and $O(\frac{|P(v_r)| \lg^2 n}{X})$ columns.

Matrixes for storing all pairs of $|s_h \cap t_h|$

- We store a matrix M(v) at each internal node v of T.
- Within M(v), there are $O(\frac{|P(v_i)| \lg^2 n}{X})$ rows and $O(\frac{|P(v_r)| \lg^2 n}{X})$ columns.
- M(v) uses $O((\frac{|P(v)| |g^2 n}{X})^2)$ words of space.

• All $E(v_l)$ and $E(v_r)$ at the same tree level use $O(n \lg \lg n)$ words of space.

- All $E(v_l)$ and $E(v_r)$ at the same tree level use $O(n \lg \lg n)$ words of space.
- All $S(v_l)$ and $S(v_r)$ at the same tree level use $O(n \lg^2 n)$ words of space.

- All $E(v_l)$ and $E(v_r)$ at the same tree level use $O(n \lg \lg n)$ words of space.
- All $S(v_l)$ and $S(v_r)$ at the same tree level use $O(n \lg^2 n)$ words of space.
- All M(v) at the same tree level use $O((\frac{n \lg^2 n}{\chi})^2)$ words of space.

- All $E(v_l)$ and $E(v_r)$ at the same tree level use $O(n \lg \lg n)$ words of space.
- All $S(v_l)$ and $S(v_r)$ at the same tree level use $O(n \lg^2 n)$ words of space.
- All M(v) at the same tree level use $O((\frac{n \lg^2 n}{\chi})^2)$ words of space.
- The binary range tree T has $O(\lg n)$ tree levels.

- All $E(v_l)$ and $E(v_r)$ at the same tree level use $O(n \lg \lg n)$ words of space.
- All $S(v_l)$ and $S(v_r)$ at the same tree level use $O(n \lg^2 n)$ words of space.
- All M(v) at the same tree level use $O((\frac{n \lg^2 n}{\chi})^2)$ words of space.
- The binary range tree T has $O(\lg n)$ tree levels.
- The space cost is $O((\frac{n}{X})^2 \lg^4 n + n \lg^3 n)$ words, and its query time is $O(\lg^4 n + X \lg^2 n \lg \lg n)$.

Stabbing queries over 3D 5-Sided Boxes

 The space cost of 3D stabbing query structure is O(n lg n) words;

- The space cost of 3D stabbing query structure is O(n lg n) words;
- The second solution uses $O((\frac{n}{X})^2 \lg^4 n + n \lg^2 n) \text{ words}$ of space and achieves $O(\lg^6 n + X \lg^{3+\epsilon} n) \text{ query time}$ for any constant $\epsilon \in (0, 1)$;

- The space cost of 3D stabbing query structure is O(n lg n) words;
- The second solution uses $O((\frac{n}{X})^2 \lg^4 n + n \lg^2 n) \text{ words}$ of space and achieves $O(\lg^6 n + X \lg^{3+\epsilon} n) \text{ query time}$ for any constant $\epsilon \in (0, 1)$;
- Setting $X = \sqrt{n} \lg n$ achieves $O(n \lg^2 n)$ space and $O(\sqrt{n} \lg^{4+\epsilon} n)$ query time;

Stabbing queries over 3D 5-Sided Boxes

```
Stabbing queries over 3D 5-Sided Boxes
Interval
Tree
```

Stabbing queries over 3D 4-Sided Boxes

 The space cost of 3D stabbing query structure is O(n log_λ n) words;
The Third Method

- The space cost of 3D stabbing query structure is O(n log_λ n) words;
- The third solution uses $O((\frac{n}{X})^2 \lg^2 n \cdot \log_{\lambda}^2 n + n \lg n \cdot \log_{\lambda} n)$ space and achieves $O(\lambda^2 \cdot \lg^6 n \cdot \log_{\lambda}^2 n + X \cdot \log^{3+\epsilon} n \cdot \lambda \log_{\lambda} n)$ query time for an integer parameter $\lambda \in [2, n];$

The Third Method

- The space cost of 3D stabbing query structure is O(n log_λ n) words;
- The third solution uses $O((\frac{n}{X})^2 \lg^2 n \cdot \log_{\lambda}^2 n + n \lg n \cdot \log_{\lambda} n)$ space and achieves $O(\lambda^2 \cdot \lg^6 n \cdot \log_{\lambda}^2 n + X \cdot \log^{3+\epsilon} n \cdot \lambda \log_{\lambda} n)$ ultiply time for an integer parameter $\lambda \in [2, n];$
- Setting $X = \sqrt{n \lg n}$ and $\lambda = n^{\epsilon/5}$ achieves $O(n \lg n)$ space and $O(n^{1/2+\epsilon})$ query time.

 The most space-efficient solution we achieved uses O(n lg n) words of space and its query time is O(n^{1/2+ε});

- The most space-efficient solution we achieved uses O(n lg n) words of space and its query time is O(n^{1/2+ε});
- The most efficient query time using a linear space data strucure requires O(n^{3/4} lg^ε n) time;

- The most space-efficient solution we achieved uses O(n lg n) words of space and its query time is O(n^{1/2+ε});
- The most efficient query time using a linear space data strucure requires O(n^{3/4} lg^ε n) time;
- **Open Problem:** Can we build a linear space data structure supporting 2D colored range counting in $o(n^{3/4})$ time?

Questions?