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The Problem

• The input is a set P of n points on the grid. Each point is assigned

in some color, which is encoded by an integer ∈ [1,C ].
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The Problem

• Given an orthogonal query range Q, compute the number (denoted

by |C (Q ∩P)|) of distinct colors in Q ∩P, which is 2 in this example.
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The Problem

• Application in Database System: SELECT COUNT ( DISTINCT

country ) FROM athletes WHERE a ≤ weight ≤ b AND

c ≤ height ≤ d ;
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Related Work

Space Query Time

Non-Color Version O(n) O( lg n
lg lg n )

Color Version O(n2 lg n
lg lg n ) O(( lg n

lg lg n )2)

Why is it hard?

• Not decomposable:

Given |C(P) ∩ [a, b]× [c,+∞)| and |C(P) ∩ [a, b]× (−∞, d ]|,

|C(P) ∩ [a, b]× [c, d ]| cannot be computed in constant time;

• Reduce 2D colored counting to Boolean Matrix Multiplication:

No solution can simultaneously have preprocessing time better than Ω(n3/2) and

query time better than Ω(
√
n), by purely combinatorial methods

• A solution with O(n lg4 n) words and O(
√
n lg8 n) query time by

Kaplan et al 2008.
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Model Query Time Space Usage in Words

Kaplan et al. PM O(X lg7 n) O(( n
X )2 lg6 n + n lg4 n)

Sol.1
PM O(lg5 n + X lg3 n) O(( n

X )2 lg4 n + n lg3 n)

RAM O(lg4 n + X lg2 n lg lg n) O(( n
X )2 lg4 n + n lg3 n)

Sol.2 RAM O(lg6 n + X lg3+ε n) O(( n
X )2 lg4 n + n lg2 n)

Sol.3 RAM O(λ2 lg6 n log2
λ n + X lg3+ε nλ logλ n) O(( n

X )2 lg2 n log2
λ n + n lg n logλ n)

Kaplan et al. PM O(
√
n lg8 n) O(n lg4 n)

Sol.1
PM O(

√
n lg7/2 n) O(n lg3 n)

RAM O(
√
n lg5/2 n lg lg n) O(n lg3 n)

Sol.2 RAM O(
√
n lg4+ε n) O(n lg2 n)

Sol.3
RAM O(

√
n lg5+ε n) O(n lg2 n

lg lg n )

RAM O(n1/2+ε) O(n lg n)

Grossi and Vind RAM O(n/ polylog(n)) O(n)

Kaplan et al. RAM O(n3/4 lgε n) O(n)
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Overview of the Techniques

• Techniques:

• Decomposing a 4-sided query range to two 3-sided subranges with a

range tree;

• Achieving new time-space tradeoffs when computing the number of

colors that exist in both subranges. (Main contribution)
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Preliminaries

2D 3-Sided Colored Range Countingy
3D 3-Sided Colored Range Counting

y
3D Stabbing Queries over 3D 5-Sided Boxes
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3D Dominance Colored Counting to 3D Stabbing Queries

Lemma (Kaplan et al.)

Given a set, P, of n points in three-dimensional space, we can assign points

of P into a set B(P) of O(n) pairwise disjoint 3D canonical boxes (i.e.,

each in the form of [x1,+∞)× [y1, y2)× [z1, z2)) such that a query point

q dominates some point in P iff q is contained in exactly one of the boxes

from B(P).
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• Stabbing Queries is to report/count the number of canonical boxes

containing the query point q;

• In total O(n) boxes will be built over all colors;

• Within each color, at most one box contains the query point;

• The number of colors of the points dominated by q is the same as

the number of boxes containing q;
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Stabbing Queries over 3D 5-Sided Boxes

• It is a two-layer segment tree structure;

• The first-layer is contructed upon the intervals of the boxes along

z-axis;

• The second-layer is contructed upon the intervals of the boxes along

y -axis;

• A query accesses O(lg2 n) bottom-layer node;
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Stabbing Queries over 3D 5-Sided Boxes

• Boxes stored in the bottom-layer node are sorted by one-side

bounded x-coordinate;

• Boxes stored in the same bottom-layer node are in distinct color;

• A query upon a bottom-layer node would return some prefix of the

box list (as reporting) or the size of the prefix list (as counting);

• The data structure uses O(n lg2 n) words of space;

• Each counting/reporting query takes O(lg2 n)/O(lg2 n + k) time;

Bottom-layer Node
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The First Solution

• Construct a binary range tree T upon y -coordinates of points.

• Construct and store S(vl) and S(vr ) for 2D 3-sided colored counting

upon P(vl) and P(vr ) at node v .

• Construct and store E (vl) and E (vr ) for 2D colored emptiness

queries upon P(vl) and P(vr ) at node v .

Points at leaf level are sorted by y-coordinates

• By the exclusion-inclusion principle, we know that

|CQ(u)| = |CQ(ul)|+ |CQ(ur )| − |CQ(ul) ∩ CQ(ur )|.
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Computing the Intersection

• We denote DQ and UQ to be the sets of the O(lg2 n) prefix lists on

the accessed bottom-layer nodes of S(ul) and S(ur ), respectively.

• In the preprocessing, each list stored at the bottom-layer node is

divided into blocks of size X ;

S(ul)

S(ur)

• We have C (sh) ∪ C (sl) = C (s) and C (th) ∪ C (tl) = C (t); and

C (sh) ∩ C (sl) = C (th) ∩ C (tl) = ∅ also holds;
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|CQ(ul) ∩ CQ(ur )| can be computed in O(lg4 n + X lg2 n lg lg n) time.

|CQ(ul) ∩ CQ(ur )| =
∑

s∈DQ ,t∈UQ

|C (s) ∩ C (t)|

=
∑

s∈DQ ,t∈UQ

(|(C (sh) ∪ C (sl)) ∩ (C (th) ∪ C (tl))|

=
∑

s∈DQ ,t∈UQ

(|(C (sh) ∩ C (th)) ∪ (C (sh) ∩ C (tl)) ∪ (C (sl) ∩ C (t)|))

=
∑

s∈DQ ,t∈UQ

(|C (sh) ∩ C (th)|+ |C (sh) ∩ C (tl)|+ |C (sl) ∩ C (t)|)

=
∑

s∈DQ ,t∈UQ

(|C (sh) ∩ C (th)|+ |C (sh) ∩ C (tl)|+ |C (sl) ∩ C (t)|)
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Matrixes for storing all pairs of |sh ∩ th|

• We store a matrix M(v) at each internal node v of T .

• Within M(v), there are O( |P(vl )| lg2 n
X ) rows and O( |P(vr )| lg2 n

X )

columns.

• M(v) uses O(( |P(v)| lg2 n
X )2) words of space.

· · · · · ·

i i+ 1
i+ 2

j
j + 1

j + 2

Some bottom-layer node from S(vl) Some bottom-layer node from S(vr)

M(v) · · · j j+1 · · ·
· · · · · · · · · · · · · · ·

i · · · 2 4 · · ·
i+1 · · · 3 6 · · ·
· · · · · · · · · · · · · · ·
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Summary of the First Solution

• All E (vl) and E (vr ) at the same tree level use O(n lg lg n) words of

space.

• All S(vl) and S(vr ) at the same tree level use O(n lg2 n) words of

space.

• All M(v) at the same tree level use O(( n lg2 n
X )2) words of space.

• The binary range tree T has O(lg n) tree levels.

• The space cost is O(( n
X )2 lg4 n + n lg3 n) words, and its query time is

O(lg4 n + X lg2 n lg lg n).
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The Second Method

Stabbing queries over 3D 5-Sided Boxes

ySegment

Tree

Stabbing queries over 2D 3-Sided BoxesyInterval

Tree

2D Dominance Range Searching

• The space cost of 3D stabbing

query structure is O(n lg n)

words;

• The second solution uses

O(( n
X )2 lg4 n + n lg2 n) words

of space and achieves

O(lg6 n+X lg3+ε n) query time

for any constant ε ∈ (0, 1);

• Setting X =
√
n lg n achieves

O(n lg2 n) space and

O(
√
n lg4+ε n) query time;
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The Third Method

Stabbing queries over 3D 5-Sided Boxes

yInterval

Tree

Stabbing queries over 3D 4-Sided BoxesyInterval

Tree

3D Dominance Range Searching

• The space cost of 3D stabbing

query structure is O(n logλ n)

words;

• The third solution uses

O(( n
X )2 lg2 n · log2

λ n + n lg n ·
logλ n) space and achieves

O(λ2 · lg6 n · log2
λ n + X ·

lg3+ε n · λ logλ n) query time

for an integer parameter

λ ∈ [2, n];

• Setting X =
√
n lg n and

λ = nε/5 achieves O(n lg n)

space and O(n1/2+ε) query

time.

18
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Open Problem

• The most space-efficient solution we achieved uses O(n lg n) words

of space and its query time is O(n1/2+ε);

• The most efficient query time using a linear space data strucure

requires O(n3/4 lgε n) time;

• Open Problem: Can we build a linear space data structure

supporting 2D colored range counting in o(n3/4) time?
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Questions?
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