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The Problem

e The input is a set P of n points on the grid. Each point is assigned
in some color, which is encoded by an integer € [1, C].



The Problem

e Given an orthogonal query range @, compute the number (denoted
by |C(QN P)]|) of distinct colors in @M P, which is 2 in this example.



The Problem

e Application in Database System: SELECT COUNT ( DISTINCT
country ) FROM athletes WHERE a < weight < b AND
¢ < height < d;
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e Not decomposable:
Given |C(P) N [a, b] X [c,40o0)| and |C(P) N [a, b] X (—o0, d]|,
|C(P) N [a, b] x [c,d]| cannot be computed in constant time;
e Reduce 2D colored counting to Boolean Matrix Multiplication:
No solution can simultaneously have preprocessing time better than Q(n3/2) and

query time better than Q(1/n), by purely combinatorial methods

e A solution with O(nlg* n) words and O(y/nlg® n) query time by
Kaplan et al 2008.



Model Query Time Space Usage in Words

Kaplan et al. PM o(X g n) O((£)?1g° n+ nlg* n)

Soll PM O(Ig® n+ X Ig° n) O((%)? Ig* n+ nlg> n)

RAM O(Ig4n+X|g2n|glgn) ((%)2 Ig*n+nlg® n)

Sol.2 RAM o(1g® n+ X 1g>™ n) O((£)1g" n+nlg” n)
Sol.3 RAM | O(A21g° nlog3 n+ X 1g>™ nXlog, n) O((%)?! g” nlogi n+ nlgnlogy n)




Model Query Time Space Usage in Words
Kaplan et al. PM o(X g n) O((£)?1g° n+ nlg* n)
Soll PM O(Ig® n+ X Ig° n) O((%)? Ig* n+ nlg> n)
RAM O(Ig4n+X|g2n|glgn) ((%)2 Ig*n+nlg® n)
Sol.2 RAM o(1g® n+ X 1g>™ n) O((£)1g" n+nlg” n)
Sol.3 RAM | O(A21g° nlog3 n+ X 1g>™ nXlog, n) o((%)? lg” nlog} n + nlg nlog, n)
Kaplan et al. PM O(+/nlg® n) O(nlg* n)
Sol 1 PM O(+y/nlg"”? n) O(nlg® n)
RAM O(v/nlg*? niglg n) O(nlg’ n)
Sol.2 RAM O(y/nlg* < n) O(nlg?n)
e RAM O(y/nlg**< n) O(n&%)
RAM O(nt/2t<) O(nlgn)




Model Query Time Space Usage in Words
Kaplan et al. PM o(X g n) O((£)?1g° n+ nlg* n)
Soll PM O(Ig® n+ X Ig° n) O((%)? Ig* n+ nlg> n)
RAM O(Ig4n+X|g2n|glgn) ((%)2 Ig*n+nlg® n)
Sol.2 RAM o(1g® n+ X 1g>™ n) O((£)1g" n+nlg” n)
Sol.3 RAM O(/\2 Ianlogin—o—XlgH‘ n\log, n) O((%)2 Igznlogxn—knlgnlogk n)
Kaplan et al. PM O(+/nlg® n) O(nlg* n)
Sol 1 PM O(+y/nlg"”? n) O(nlg® n)
RAM O(v/nlg*? niglg n) O(nlg’ n)
Sol.2 RAM O(y/nlg* < n) O(nlg?n)
e RAM O(y/nlg**< n) O(n&%)
RAM O(nt/2t<) O(nlgn)
Grossi and Vind | RAM O(n/ polylog(n)) O(n)
Kaplan et al. RAM O(n*/*1g° n) O(n)




Overview of the Techniques

e Techniques:
e Decomposing a 4-sided query range to two 3-sided subranges with a

range tree;
e Achieving new time-space tradeoffs when computing the number of

colors that exist in both subranges. (Main contribution)
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2D 3-Sided Colored Range Counting

3D 3-Sided Colored Range Counting

v’

3D Stabbing Queries over 3D 5-Sided Boxes v~



3D Dominance Colored Counting to 3D Stabbing Queries

Lemma (Kaplan et al.)

Given a set, P, of n points in three-dimensional space, we can assign points
of P into a set B(P) of O(n) pairwise disjoint 3D canonical boxes (i.e.,
each in the form of [xi, +00) X [y1,y2) X |21, 22)) such that a query point
q dominates some point in P iff q is contained in exactly one of the boxes
from B(P).
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Stabbing Queries over 3D 5-Sided Boxes

e |t is a two-layer segment tree structure;

e The first-layer is contructed upon the intervals of the boxes along
Z-axis;

e The second-layer is contructed upon the intervals of the boxes along
y-axis;

e A query accesses O(lg? n) bottom-layer node;
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Stabbing Queries over 3D 5-Sided Boxes

e Boxes stored in the bottom-layer node are sorted by one-side
bounded x-coordinate;
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e Boxes stored in the bottom-layer node are sorted by one-side
bounded x-coordinate;
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Stabbing Queries over 3D 5-Sided Boxes

e Boxes stored in the bottom-layer node are sorted by one-side
bounded x-coordinate;

e Boxes stored in the same bottom-layer node are in distinct color;

e A query upon a bottom-layer node would return some prefix of the
box list (as reporting) or the size of the prefix list (as counting);

mtonﬂlaycr Node

[ oooooooo
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Stabbing Queries over 3D 5-Sided Boxes

e The data structure uses O(nlg? n) words of space;
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Stabbing Queries over 3D 5-Sided Boxes

e The data structure uses O(nlg? n) words of space;

e Each counting/reporting query takes O(lg” n)/O(lg® n + k) time;
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The First Solution

e Construct a binary range tree T upon y-coordinates of points.

[0000 e0 00 0000 0000 |

\ (000 o] (o000 ]
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Points at leaf level are sorted by y-coordinates

[e00ccc e e |
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The First Solution

e Construct a binary range tree T upon y-coordinates of points.

e Construct and store S(v;) and S(v,) for 2D 3-sided colored counting
upon P(v;) and P(v,) at node v.

e Construct and store E(v;) and E(v,) for 2D colored emptiness
queries upon P(v;) and P(v,) at node v.
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The First Solution

e Construct a binary range tree T upon y-coordinates of points.

e Construct and store S(v;) and S(v,) for 2D 3-sided colored counting
upon P(v;) and P(v,) at node v.

e Construct and store E(v;) and E(v,) for 2D colored emptiness
queries upon P(v;) and P(v,) at node v.

(0000 e0 00 coce 0000 |
Q = [a,b] X [¢, d]
w= LCM v S(v;) and S(vy)

E(v;) and E(vy)

%%%WA%%ﬁ

»

Points at leaf level are sorted by y-coordinates

e By the exclusion-inclusion principle, we know that
|Co(u)| = [Co(u)] + [Colur)| — [Colur) N Co(ur)l. 12



Computing the Intersection

e We denote Dg and Ug to be the sets of the O(lg® n) prefix lists on
the accessed bottom-layer nodes of S(u;) and S(u,), respectively.
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Computing the Intersection

e We denote Dg and Ug to be the sets of the O(lg® n) prefix lists on
the accessed bottom-layer nodes of S(u;) and S(u,), respectively.

e In the preprocessing, each list stored at the bottom-layer node is
divided into blocks of size X;

SN
SE i é?ﬁ?m ]

s Dg ‘

| RS P D

waﬁw———+w~\‘ ———a—T i

e We have C(sp) U C(s;) = C(s) and C(t,) U C(t;) = C(t); and

C(sp) N C(s)) = C(tn) N C(t) = 0 also holds;
13



|Co(u) N Co(u,)| can be computed in O(lg* n + X Ig? nlglg n) time.
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|Co(u) N Co(u,)| can be computed in O(Ig* n + X Ig? nlglg n) time.
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seDqg,telUq
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seDgq,tcUq

® D seng,eeup |C(s1) N C(1)] = [(Usep, C(s1)) N Colur)| can be
computed in O(X x Ig% n x Iglgn) = O(X Ig? nlglg n) time;
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S |G N (8]

seDq,teUq

= Y [(C(s)/C(s))nC(tr)

s€Dq,teUq
=|(Usepo €(5)) N (Ueeu, C(11))| — [(Usepe C(s1)) N (Vreu, C(11))]
=|Ca(ur) N (Ureue C(1))] = [(Usepg C(s1)) N (Ve C (1))
=|Co(ur) N (Uteue C(11))| — |(Useng C(s1)) N (Vreuo C(11))]

o |Co(u) N (Uteuy C(t))| can be computed in
O(X x Ig?n x Iglgn) = O(X Ig® n - Iglg n) time;
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|Co(u) N Co(u,)| can be computed in O(Ig* n + X Ig? nlglg n) time.

S |G N (8]

seDq,teUq

Y. l(C(s)/Clsn)nc(n)

s€Dq,teUq
=|(Usepo €(5)) N (Ueeu, C(11))| — [(Usepe C(s1)) N (Vreu, C(11))]
=|Ca(ur) N (Ureue C(1))] = [(Usepg C(s1)) N (Ve C (1))

=[Co(ur) N (Uteuo C(11))| — (Usepg C(s1)) N (Ureu, C(1))

e Since colors are encoded in integers, |(Uscp, C(s1)) N (Ureu, C(t1))]
can be computed in O(X x Ig% n x Iglgn) = O(X g n-Iglg n) time
by sorting;
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e We store a matrix M(v) at each internal node v of T.

Some bottom-layer node from S(v;)

Some bottom-layer node from S(v,)

Matrixes for storing all pairs of |s, N t|

— i+2 — PN J+2—
e e I T | ==+ |
‘- L I l L[] l. L] Il ‘I L[] L[ ] l- L[] ll L[ ] l ‘
\ \ \ \ \ \
M(v) j+1
i 4
i+1 6
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e We store a matrix M(v) at each internal node v of T.

e Within M(v), there are O(%) rows and O(%)

columns.

Some bottom-layer node from S(v;)

Some bottom-layer node from S(v;.)

Matrixes for storing all pairs of |s, N t|

._ﬁwl" 1‘,+2~\ .-— ‘ 41— j+27‘
h— i —
‘I.I l‘ [ ] l‘. ] Il‘ ‘I- -!ll Il‘ n ! ‘
. P(v,)| g% n
M(v) 1 Fl cac o(%)
1
i 4
i+1 6

O( |P(v/))<\ Ig? n)
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Matrixes for storing all pairs of |s, N t|

e We store a matrix M(v) at each internal node v of T.
e Within M(v), there are O(%) rows and O(w)

columns.

e M(v) uses O((%)Q) words of space.

Some bottom-layer node from S(v;) Some bottom-layer node from S(v,)
i +2 — j + 2
=it~ T | =g+ T
! | | | e=—f—x] | |
‘I.I l u l. u Il ‘ ‘-- Illl ll L] l ‘
I I I I I I
i i |P(v,)| lg? n
MG 1§ e o(RegEn
i 2 4
i+1 3 6

O( |P(v/))<\ Ig? n)
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Summary of the First Solution

e All E(v;) and E(v,) at the same tree level use O(nlglg n) words of
space.

16



Summary of the First Solution

e All E(v;) and E(v,) at the same tree level use O(nlglg n) words of
space.

e All S(v;) and S(v,) at the same tree level use O(nlg? n) words of
space.

16



Summary of the First Solution

e All E(v;) and E(v,) at the same tree level use O(nlglg n) words of
space.

e All S(v;) and S(v,) at the same tree level use O(nlg? n) words of
space.

e All M(v) at the same tree level use O((%Z”Y) words of space.

16



Summary of the First Solution

e All E(v;) and E(v,) at the same tree level use O(nlglg n) words of
space.

e All S(v;) and S(v,) at the same tree level use O(nlg? n) words of
space.

e All M(v) at the same tree level use O((%Z”Y) words of space.

e The binary range tree T has O(Ig n) tree levels.

16



Summary of the First Solution

e All E(v;) and E(v,) at the same tree level use O(nlglg n) words of
space.

e All S(v;) and S(v,) at the same tree level use O(nlg? n) words of
space.

e All M(v) at the same tree level use O((%Z”Y) words of space.
e The binary range tree T has O(Ig n) tree levels.

e The space cost is O(()? lg* n+ nlg® n) words, and its query time is
O(lg* n+ X 1g® niglg n).
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Stabbing queries over 3D 5-Sided Boxes e The space cost of 3D Stabbing
query structure is O(nlg n)
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words;
Tree

e The second solution uses
O((£)?1g* n+ nlg® n) words

Intérval of space and achieves

Tlee O(Ig® n+ X 1g>*¢ n) query time
for any constant € € (0, 1);

e Setting X = /nlg n achieves
O(nlg? n) space and
O(y/nlg*™ n) query time;

Stabbing queries over 2D 3-Sided Boxes

2D Dominance Range Searching
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The Third Method

Stabbing queries over 3D 5-Sided Boxes e The space cost of 3D Stabbing
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Interval
Tree

Stabbing queries over 3D 4-Sided Boxes

Interval
Tree

3D Dominance Range Searching

e The space cost of 3D stabbing

query structure is O(nlog, n)
words;

The third solution uses
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log, n) space and achieves
O(N2-1g°n-login+ X -
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n- Xlogy n) query time

18



The Third Method

Stabbing queries over 3D 5-Sided Boxes e The space cost of 3D Stabbing
query structure is O(nlog, n)
Interval
words;
Tree

e The third solution uses

Stabbing queries over 3D 4-Sided Boxes 2 2
O((%)?lg°n-logxn+nlgn-

Interval log, n) space and achieves
Tree O(N2-1g°n-login+ X -
3D Dominance Range Searching |g3+6 n- Alog, n) query time
for an integer parameter
A€ [2,n];

e Setting X = \/nlgn and
A = n°/5 achieves O(nlg n)
space and O(n'/?*€) query
time.
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Open Problem

e The most space-efficient solution we achieved uses O(nlg n) words
of space and its query time is O(n1/2+6);
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Open Problem

e The most space-efficient solution we achieved uses O(nlg n) words
of space and its query time is O(n1/2+6);

e The most efficient query time using a linear space data strucure
requires O(n>/*Ig® n) time;

e Open Problem: Can we build a linear space data structure
supporting 2D colored range counting in o(n3/4) time?
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Questions?



