Fast Preprocessing for Optimal Orthogonal Range Reporting and Range Successor with Applications to Text Indexing

Younan Gao & Meng He

Dalhousie University Yakov Nekrich

Michigan Technological University

Three Orthogonal Range Searching Problems

Three orthogonal range searching problems are

- **Counting**: compute the number of points contained in $N \cap Q$;
- **Reporting**: report the points in $N \cap Q$;
- Successor: retrieve the point in *N* ∩ *Q* with the smallest *x* or *y*-coordinate;

Motivation

- Orthogonal range searching has many applications:
 - ◊ text indexing:

Mäkinen and Navarro LATIN'2006 Chien at al. Algorithmica'2015 Munro at al. CPM'2020

◊ Lempel-Ziv factorization

Belazzougui and Puglisi SODA'2016

◊ constructing Adam consensus tree

Jansson et al. STACS'2015

- Preprocessing time is often **neglected**, but it matters:
 - ♦ As a building block of an algorithm processing plain data;
 - ◊ As components of text indexes.

Breaking the O(n lg n) Bound on the Construction Time					
	Query Time	Space Cost			
Counting	$O(\frac{\lg n}{\lg \lg n})$	O(n) words			
Building Wavelet Tree	-	$O(n \lg \sigma)$ bits			
Successor	$O(\lg^{\epsilon} n)$	O(n) words			
	Construction Time	Citation			
Counting	$O(n\sqrt{\lg n})$	Chan and Pătraşcu SODA'2010			
Building Wavelet Tree	$O(\frac{n \lg \sigma}{\sqrt{\lg n}})$	Babenko et al. SODA'2015			
Successor	$O(n\sqrt{\lg n})$	Belazzougui and Puglisi SODA'2016			
Sorted reporting with <i>O</i> (<i>n</i> lg <i>n</i>) preprocessing time					
Query Time	Space Cost	Citation			
$O((occ+1)\lg\lg n)$	O(n lg lg n) words	Zhou Inf. Process. Lett.'2016			
$O(\lg \lg n + occ)$	$O(n \lg^{\epsilon} n)$	Nekrich and Navarro SWAT'2012			

Challenge: 2d orthogonal range reporting or range successor requires superlinear space.

Word Ram model:

- Word size $w = \Theta(\lg n)$ bits;
- Operations on words taking constant time;
- Nonstandard operations can be simulated by table lookup of o(n) bits

Packed Sequence $A \in [\sigma]^{n'}$:

- Space: $\lceil n' \lceil \lg \sigma \rceil / w \rceil$ words;
- Pre-processing Time: Improved from O(n') to O(n' lg σ/lg n) for rmq/rMq and succ/pred quereis.

Definition: A partial rank operation, *rank*'(*A*, *i*), computes the number of elements equal to *A*[*i*] in *A*[0..*i*].

i:	0	1	2	3	4	5	6	7	8	9	10	11
A:	а	а	b	С	d	d	С	b	а	b	b	С
rank '(A, i):	1	2	1	1	1	2	2	2	3	3	4	3

Our Result: For a packed sequence A[0..n' - 1] drawn from alphabet $[\sigma]$, where $n' \leq n$ and $\sigma = O(2^{O(\sqrt{\lg n})})$:

- Space: $n' \lceil \lg \sigma \rceil + o(n' \lg \sigma)$ extra bits;
- Pre-processing Time: $O(n' \lg^2 \sigma / \lg n + \sigma)$;
- O(1) time and O(1) accesses to elements of A;

Definition of the Ball Inheritance Structure

The *ball inheritance* problem is defined over a range tree *T* to support:

- *point*(*v*, *i*), which returns the point (*A*(*v*)[*i*], *I*(*v*)[*i*]) in *N* for an arbitrary node *v* in *T* and an integer *i*; and
- *noderange*(c, d, v), which, given a range [c, d] and a node v of T, finds the range [c_v, d_v] such that $I(v)[i] \in [c, d]$ iff $i \in [c_v, d_v]$.

Improvements on building ball inheritance structures

Input: A sequence A[0..n' - 1] drawn from $[\sigma]$;

Output: A *d*-ary wavelet tree augmented with ball inheritance data structure

Previous Results: Chan et al. SoCG'2011

Space Cost	point	noderange	Preprocessing
$O(n' \lg n')$ $O(n'(\lg n') \lg \lg \sigma)$	$O(\lg^{\epsilon} \sigma) \\ O(\lg \lg \sigma)$	$O(\lg \lg n' + \lg^{\epsilon} \sigma)$ $O(\lg \lg n' + \lg \lg \sigma)$	$O(n' \lg n')$
$O(n'(\lg n') \lg^{\epsilon} \sigma)$	O(1)	$O(\lg \lg n')$	

Our Improvements: when $\sigma = O(2^{O(\sqrt{\lg n})})$ and $n' = O(\sigma^{O(1)})$

Space Cost	point	noderange	Preprocessing
$O(n' \lg \sigma \lg \lg \sigma + \sigma W)$	$O(\lg \lg \sigma)$	$O(\lg \lg \sigma)$	$O(n' \lg^2 \sigma / \lg n +$
$O(n' \lg \sigma \log_d^{\epsilon} \sigma + \sigma W)$	<i>O</i> (1)	$O(\lg \lg \sigma)$	$\sigma \log_d \sigma)$

The Framework of Orthogonal Range Reporting

- A $2^{\sqrt{\lg n}}$ -ary wavelet tree built over x-coordinates of points;
- The tree height is $O(\sqrt{\lg n})$;
- Nodes: M = lca(leaf_a, leaf_b), L/R = child(M) on the path from M to leaf_a/leaf_b

Range Reporting over the Middle Part

- Each 2²√^{Ig n} consecutive points along Y-axis are assigned into a chunk:
- The query range $[\hat{a} + 1, \hat{b} 1] \times [c_M, d_M]$ is divided into three non-overlapping parts: **Bottom, Center and Top**;
- Bottom/Top: 4-sided range reporting in a $2^{\sqrt{\lg n}} \times 2^{2\sqrt{\lg n}}$ grid:
 - The fast-built ball inheritance structure under the special conditions can apply;
 - ◊ *rmq*/*rMq* queries over packed sequences

Range Reporting over the Center Part

- Sampled Points: Sampling any point from each of the $2^{\sqrt{\lg n}} \times |N(M)|/2^{2\sqrt{\lg n}} = |N(M)|/2^{\sqrt{\lg n}}$ cells;
- Structure: 4-sided reporting over selected points with $O(|N(M)|/2^{\sqrt{\lg n}} \lg^{O(1)} n) = o(|N(M)|)$ pre-processing time;
- An observation: If a sampled point *p* is in the query range, all points in the same cell that *p* belongs to are also in the query range.

10

	Query Time	Space Cost (words)	Construction Time
Reporting	$O(\lg \lg n + occ)$	$O(n \lg^{\epsilon} n)$	$O(n\sqrt{\lg n})$
Successor	$O(\lg \lg n)$	O(n lg lg n)	$O(n\sqrt{\lg n})$
Sorted Reporting	$O(\lg \lg n + occ)$	$O(n \lg^{\epsilon} n)$	$O(n\sqrt{\lg n})$

- For *n* points in 2d rank space;
- More levels of reductions are required for orthogonal range successor and sorted range reporting;

Text Indexing and Searching in Sublinear Time

Definition: Preprocessing a text string $T \in [\sigma]^n$, such that, given a pattern string P[0..p - 1],

- Listing Queries: one can report all these occurrences in T;
- **Position-Restricted Substring Searches (PRSS):** one can report all these occurrences in *T*[*l*..*r*], where *l* and *r* are two indices.

Listing Queries					
Query	$O(p/\log_{\sigma} n + \log_{\sigma} n \lg \lg n + occ)$				
Space	$O(n \lg \sigma \lg^{\epsilon} n)$ bits				
	Munro at al. 2020 New				
Preprocessing	$O(n \lg \sigma \lg^{\epsilon} n)$	$O(n \lg \sigma / \sqrt{\lg n})$			
Position-Restricted Substring Searches					
Space	$O(n \lg^{1+\epsilon} n)$ bits				
	Bille and Gørtz 2014	New			
Preprocessing	O(n lg n) expected	$O(n\sqrt{\lg n})$			
Query	O(p + occ)	$O(p/\log_{\sigma} n + \lg p +$			
		$\lg \lg \sigma + \textit{occ})$			

Conclusion

- Fast Pre-processing for 2-d orthogonal range search problems:
 - ◊ Orthogonal range reporting;
 - ◊ Orthogonal range successor;
 - ◊ Orthogonal sorted range reporting;
- The same space costs and query time of the previous best tradeoffs;
- Improvements on Text indexing
 - ◊ Listing queries;
 - Position-restricted substring searches;
- Other contributions of *rank'*, *rmq*/*rMq*, and *succ*/*pred* queries may be of general interest.

Thank you!