Computing Matching Statistics on Repetitive Texts

Younan Gao

Faculty of Computer Science, Dalhousie University, Canada

Matching Statistics

The matching statistics $M S$ of a pattern $P[1 . . m]$ with respect to a text $T[1 . . n]$ is an array of integers $M S[1 . . m]$ such that the i-th entry $M S[i]$ stores the length of the longest prefix of $P[i . . m]$ that occurs in T.
For example, given that $T[1 . .8]=$ "aaabbbcc" and $P[1 . .5]=$ "ccabb", the matching statistics $M S[1 . .5]=\{2,1,3,2,1\}$.

Related Work

Space	Time	Reference
$O(n)$	$O(m \lg \sigma)$	Textbook
$(n \lg \sigma+o(n \lg \sigma))$ bits	$O(m \lg \sigma)$	Enno et al.
$O(r+S(n))$	$O(m \cdot f(n))$	Bannai et al.
$O(z+S(n))$	$O\left(m^{2} \lg ^{\epsilon} z+m \cdot f(n)\right)$	New
$O(z \lg z+S(n))$	$O\left(m^{2}+m \lg z \lg \lg z+m \cdot f(n)\right)$	New
$O\left(z \lg z+\frac{z}{\log _{\sigma} n} \lg ^{2 \epsilon+1} z+S(n)\right)$	$O\left(m^{2} \lg \lg \sigma+m \cdot f(n)\right)$	New
$O(z \lg z+S(n))$	$O\left(m^{2}+m \cdot f(n)\right)$	σ is constant

- z is the num of phrases in the Lempel-Ziv Parsing, while r is the num of runs in BWT.
- Assume that there is a data structure of $S(n)$ words of space to support retrieving any substring $T[i . . i+\ell]$ in $O(f(n)+\ell)$ time.
- $r=O\left(z \lg ^{2} n\right)$.

Preliminaries

$$
\operatorname{Text[1..16]}=A|A B| A B B|B| A B A|A B A B| B B
$$

Phrases	Phrases $_{\text {rev }}$	Suffixes
A	A	$\|A B\| A B B\|B\| A B A\|A B A B\| B B$
$A B$	BA	$\|A B B\| B\|A B A\| A B A B \mid B B$
$A B B$	BBA	$\|B\| A B A\|A B A B\| B B$
B	B	$\|A B A\| A B A B \mid B B$
$A B A$	ABA	$\|A B A B\| B B$
$A B A B$	BABA	$\mid B B$

Preliminaries

Preliminaries: Induced Relationship

Preliminaries: Partner Finding

- Operation partner $(v \backslash u)$ can be implemented by 2D orthogonal range succ/prec queries.
- String $A B A B$ appears in the text, $A A B A B B B A B A A B A B B B$, but string $A B A B A$ does not;

Preliminaries: Partner Finding

- Operation $\operatorname{partner}(v \backslash u)$ can be implemented by 2D orthogonal range succ/prec queries.
- String $A B A B$ appears in the text, AABABBBABAABABBB, but string $A B A B A$ does not;

Naive Method for Computing MS[1..m]

- Query pattern $P[1 . . m]$ is split into $m-1$ pairs of prefix and suffix pairs.
- Consider the i-th pair, $P[1 . . i]$ and $P[i+1, m]$;
- For each ancestor U, of loci $_{1}(i)$, find partner($\left.u \backslash \operatorname{loci}_{2}(i)\right)$
- Overall, we have $\sum_{i=1}^{m-1} i=O\left(m^{2}\right)$ partner (or LCP) queries.
- Query Time: $O\left(m^{2}+m f(n)+m^{2} \lg z\right)$
- Space Cost: $O(z+S(n))$ words of space.

Naive Method for Computing MS[1..m]

- Query pattern $P[1 . . m]$ is split into $m-1$ pairs of prefix and suffix pairs.
- Consider the i-th pair, $P[1 . . i]$ and $P[i+1, m]$;
- For each ancestor, u, of loci $_{1}(i)$, find partner $\left(u \backslash\right.$ loci $\left._{2}(i)\right)$
- Overall, we have

- Query Time: $O\left(m^{2}+m f(n)+m^{2} \lg z\right)$
- Space Cost: $O(z+S(n))$ words of space.

Naive Method for Computing MS[1..m]

- Query pattern $P[1 . . m]$ is split into $m-1$ pairs of prefix and suffix pairs.
- Consider the i-th pair, $P[1 . . i]$ and $P[i+1, m]$;
- For each ancestor, u, of loci $_{1}(i)$, find partner $\left(u \backslash\right.$ loci $\left._{2}(i)\right)$
- Overall, we have
$\sum_{i=1}^{m-1} i=O\left(m^{2}\right)$ partner (or LCP) queries.
- Query Time:
$O\left(m^{2}+m f(n)+m^{2} \lg ^{\epsilon} z\right)$.
- Space Cost: $O(z+S(n))$ words of space

Naive Method for Computing MS[1..m]

- Query pattern $P[1 . . m]$ is split into $m-1$ pairs of prefix and suffix pairs.
- Consider the i-th pair, $P[1 . . i]$ and $P[i+1, m]$;
- For each ancestor, u, of loci $_{1}(i)$, find partner ($u \backslash$ loci $\left._{2}(i)\right)$
- Overall, we have

LCP) queries.

- Quen Time.
$O\left(m^{2}+m f(n)+m^{2} \lg ^{\epsilon} z\right)$.
- Space Cost: $O(z+S(n))$ words of space.

Naive Method for Computing MS [1..m]

- Query pattern $P[1 . . m]$ is split into $m-1$ pairs of prefix and suffix pairs.
- Consider the i-th pair, $P[1 . . i]$ and $P[i+1, m]$;
- For each ancestor, u, of loci $_{1}(i)$, find partner ($u \backslash$ loci $\left._{2}(i)\right)$
- Overall, we have

LCP) queries.

- Query Time.
$O\left(m^{2}+m f(n)+m^{2} \lg ^{\epsilon} z\right)$.
- Space Cost: $O(z+S(n))$ words of space.

Naive Method for Computing MS[1..m]

- Query pattern $P[1 . . m]$ is split into $m-1$ pairs of prefix and suffix pairs.
- Consider the i-th pair, $P[1 . . i]$ and $P[i+1, m]$;
- For each ancestor, u, of loci $_{1}(i)$, find partner ($u \backslash$ loci $\left._{2}(i)\right)$
- Overall, we have

LCP) queries.

- Query Time.
$O\left(m^{2}+m f(n)+m^{2} \lg ^{\epsilon} z\right)$.
- Space Cost: $O(z+S(n))$ words of space.

Naive Method for Computing MS[1..m]

- Query pattern $P[1 . . m]$ is split into $m-1$ pairs of prefix and suffix pairs.
- Consider the i-th pair, $P[1 . . i]$ and $P[i+1, m]$;
- For each ancestor, u, of loci $_{1}(i)$, find partner ($u \backslash$ loci $\left._{2}(i)\right)$
- Overall, we have

LCP) queries.

- Query Time.
$O\left(m^{2}+m f(n)+m^{2} \lg ^{\epsilon} z\right)$.
- Space Cost: $O(z+S(n))$ words

Naive Method for Computing MS[1..m]

- Query pattern $P[1 . . m]$ is split into $m-1$ pairs of prefix and suffix pairs.
- Consider the i-th pair, $P[1 . . i]$ and $P[i+1, m]$;
- For each ancestor, u, of loci $_{1}(i)$, find partner $\left(u \backslash\right.$ loci $\left._{2}(i)\right)$
- Overall, we have

LCP) queries.

- Quen Time.
$O\left(m^{2}+m f(n)+m^{2} \lg ^{\epsilon} z\right)$.
- Space Cost: $O(z+S(n))$ words

Naive Method for Computing MS[1..m]

- Query pattern $P[1 . . m]$ is split into $m-1$ pairs of prefix and suffix pairs.
- Consider the i-th pair, $P[1 . . i]$ and $P[i+1, m]$;
- For each ancestor, u, of loci $_{1}(i)$, find partner $\left(u \backslash\right.$ loci $\left._{2}(i)\right)$
- Overall, we have
$\sum_{i=1}^{m-1} i=O\left(m^{2}\right)$ partner (or
$\mathrm{LCP})$ queries.
- Query Time:
\square
- Snace Cost: $O(z+S(n))$ words

Naive Method for Computing MS[1..m]

- Query pattern $P[1 . . m]$ is split into $m-1$ pairs of prefix and suffix pairs.
- Consider the i-th pair, $P[1 . . i]$ and $P[i+1, m]$;
- For each ancestor, u, of loci $_{1}(i)$, find partner $\left(u \backslash\right.$ loci $\left._{2}(i)\right)$
- Overall, we have
$\sum_{i=1}^{m-1} i=O\left(m^{2}\right)$ partner (or
LCP) queries.
- Query Time:

$$
O\left(m^{2}+m f(n)+m^{2} \lg ^{\epsilon} z\right)
$$

- Space Cost: $O(z+S(n))$ words

Naive Method for Computing MS[1..m]

- Query pattern $P[1 . . m]$ is split into $m-1$ pairs of prefix and suffix pairs.
- Consider the i-th pair, $P[1 . . i]$ and $P[i+1, m]$;
- For each ancestor, u, of loci $_{1}(i)$, find partner $\left(u \backslash\right.$ loci $\left._{2}(i)\right)$
- Overall, we have
$\sum_{i=1}^{m-1} i=O\left(m^{2}\right)$ partner (or
LCP) queries.
- Query Time:

$$
O\left(m^{2}+m f(n)+m^{2} \lg ^{\epsilon} z\right)
$$

- Space Cost: $O(z+S(n))$ words of space.

Second Method: LPMEM

$$
\begin{array}{r}
P[1 . . i]=a b w w z \\
\operatorname{loci}_{1}(i)
\end{array}
$$

$$
\begin{aligned}
P[i+1 . . m]= & x y y c d \cdots \\
& \operatorname{loci}_{2}(i)
\end{aligned}
$$

Second Method: LPMEM

$$
P[1 . . i]=a b w w z
$$

Second Method: LPMEM

$$
P[1 . . i]=a b w w z
$$

- The number, occ, of LPMEMs for $P[1 . . m]$ is at most $\binom{m}{2}$.

Second Method: LPMEM

$$
P[1 . . i]=a b w w z
$$

- The number, occ, of LPMEMs for $P[1 . . m]$ is at most $\binom{m}{2}$.
- MS can be computed in $O(m+o c c)$ time -Algorithm 2.

Second Method: Query Algorithms

- Apply heavy path decomposition on $T_{\text {suf }}$.
- For each $1 \leq f \leq k=O(\lg z)$, set $\alpha_{f}=\operatorname{partner}\left(t_{f} \backslash\right.$ loci $\left._{1}(i)\right)$ and $\beta_{f}=\operatorname{partner}\left(w_{f} \backslash \operatorname{loci}_{1}(i)\right)$;
- α_{f} and partner $\left(\alpha_{f} \backslash \operatorname{loci}_{2}(i)\right)$ induce a LPMEM; so do β_{f} and partner $\left(\beta_{f} \backslash\right.$ loci $\left._{2}(i)\right)$: Lemma 6 ;
- If u and v are induced together, and if v stavs hetmeen w/f and t_{f}, then u stays between α_{f} and β_{f} : Lemma 7.

Second Method: Query Algorithms

- Apply heavy path decomposition on $T_{\text {suf }}$.
- For each $1 \leq f \leq k=O(\lg z)$, set $\alpha_{f}=\operatorname{partner}\left(t_{f} \backslash\right.$ loci $\left.i_{1}(i)\right)$ and $\beta_{f}=\operatorname{partner}\left(w_{f} \backslash \operatorname{loci}_{1}(i)\right)$;
- α_{f} and partner $\left(\alpha_{f} \backslash \operatorname{loci}_{2}(i)\right)$ induce a LPMEM; so do β_{f} and partner $\left(\beta_{f} \backslash\right.$ loci $\left._{2}(i)\right)$: Lemma $6 ;$
- If u and v are induced together, and if v stavs hetween w_{f} and t_{f}, then u stays between α_{f} and β_{f} : Lemma 7.

Second Method: Query Algorithms

- Apply heavy path decomposition on $T_{\text {suf }}$.
- For each $1 \leq f \leq k=O(\lg z)$, set $\alpha_{f}=\operatorname{partner}\left(t_{f} \backslash\right.$ loci $\left.i_{1}(i)\right)$ and $\beta_{f}=\operatorname{partner}\left(w_{f} \backslash \operatorname{loci}_{1}(i)\right)$;
- α_{f} and $\operatorname{partner}\left(\alpha_{f} \backslash\right.$ loci $\left._{2}(i)\right)$ induce a LPMEM; so do β_{f} and $\operatorname{partner}\left(\beta_{f} \backslash\right.$ loci $\left._{2}(i)\right)$: Lemma 6;
- If u and v are induced together, and if v stays between w_{f} and t_{f} then u stavs hetween w_{f} and β_{f} : Lemma 7.

Second Method: Query Algorithms

- Apply heavy path decomposition on $T_{\text {suf }}$.
- For each $1 \leq f \leq k=O(\lg z)$, set $\alpha_{f}=\operatorname{partner}\left(t_{f} \backslash \operatorname{loci}_{1}(i)\right)$ and $\beta_{f}=\operatorname{partner}\left(w_{f} \backslash \operatorname{loci}_{1}(i)\right)$;
- α_{f} and $\operatorname{partner}\left(\alpha_{f} \backslash\right.$ loci $\left._{2}(i)\right)$ induce a LPMEM; so do β_{f} and $\operatorname{partner}\left(\beta_{f} \backslash\right.$ loci $\left._{2}(i)\right)$: Lemma 6;
- If u and v are induced together, and if v stays between w_{f} and t_{f}, then u stays between α_{f} and β_{f} : Lemma 7.

Second Method: Preprocessing

- w_{f} and $h p _l e a f\left(w_{f}\right)$ are known during the preprocessing stage;
- t_{f} and $\operatorname{loci}_{2}(i)$ are unknown, but partner $\left(u \backslash\right.$ loci $\left._{2}(i)\right)=$ $\operatorname{partner}\left(u \backslash h p_{-} l e a f\left(w_{f}\right)\right)=$ partner $\left(u \backslash t_{f}\right)$: Lemma 8; - α_{f} and β_{f} are unknown, but we can use the induced subtree $T_{\text {rev }}\left(w_{f}\right)$.

Second Method: Preprocessing

- w_{f} and $h p _l e a f\left(w_{f}\right)$ are known during the preprocessing stage;
- t_{f} and $\operatorname{loci}_{2}(i)$ are unknown, but partner $\left(u \backslash\right.$ loci $\left._{2}(i)\right)=$ $\operatorname{partner}\left(u \backslash h p_{-} l e a f\left(w_{f}\right)\right)=$ $\operatorname{partner}\left(u \backslash t_{f}\right)$: Lemma 8;
- α_{f} and β_{f} are unknown, but we can use the induced subtree

Second Method: Preprocessing

- w_{f} and $h p _l e a f\left(w_{f}\right)$ are known during the preprocessing stage;
- t_{f} and loci2(i) are unknown, but partner $\left(u \backslash\right.$ loci $\left._{2}(i)\right)=$ $\operatorname{partner}\left(u \backslash h p_{-} l e a f\left(w_{f}\right)\right)=$ $\operatorname{partner}\left(u \backslash t_{f}\right)$: Lemma 8;
- α_{f} and β_{f} are unknown, but we can use the induced subtree $T_{\text {rev }}\left(w_{f}\right)$.

Second Method: Induced Subtree $T_{r e f}\left(w_{f}\right)$

- Leaves in $T_{\text {rev }}$ that are induced with w_{f} are called special leaves.
- $T_{\text {rev }}\left(w_{f}\right)$ contains the special leaves and their LCAs (special nodes)
- $\sum_{w_{f}}\left|\operatorname{special}\left(w_{f}\right)\right|=O(z \lg z)$
- The left endpoint of a LPMEM a lways stays at a special internal node: Lemma 9

Second Method: Induced Subtree $T_{r e f}\left(w_{f}\right)$

- Leaves in $T_{\text {rev }}$ that are induced with w_{f} are called special leaves.
- $T_{r e v}\left(w_{f}\right)$ contains the special leaves and their LCAs (special nodes).
- $\sum_{w_{f}} \mid$ special $\left(w_{f}\right) \mid=O(z \lg z)$
- The left endpoint of a LPMEM always stays at a special internal node: Lemma 9.

Second Method: Induced Subtree $T_{r e f}\left(w_{f}\right)$

- Leaves in $T_{\text {rev }}$ that are induced with w_{f} are called special leaves.
- $T_{\text {rev }}\left(w_{f}\right)$ contains the special leaves and their LCAs (special nodes).
- $\sum_{w_{f}} \mid$ special $\left(w_{f}\right) \mid=O(z \lg z)$.
- The left endpoint of a LPMEM always stays at a special internal node: Lemma 9

Second Method: Induced Subtree $T_{r e f}\left(w_{f}\right)$

- Leaves in $T_{\text {rev }}$ that are induced with w_{f} are called special leaves.
- $T_{r e v}\left(w_{f}\right)$ contains the special leaves and their LCAs (special nodes).
- $\sum_{w_{f}} \mid$ special $\left(w_{f}\right) \mid=O(z \lg z)$.
- The left endpoint of a LPMEM always stays at a special internal node: Lemma 9.

Second Method: Induced Subtree $T_{r e f}\left(w_{f}\right)$

- Each special internal node U in $T_{\text {rev }}\left(w_{f}\right)$ stores a pointer, e_{2}, pointing to $U^{\prime}=\operatorname{partner}\left(U / h p_{-} l e a f\left(w_{f}\right)\right)$ in $T_{\text {suf }}$.
- Each special internal node U stores another pointer, e_{0} :

Second Method: Induced Subtree $T_{r e f}\left(w_{f}\right)$

- Each special internal node U in $T_{r e v}\left(w_{f}\right)$ stores a pointer, e_{2}, pointing to $U^{\prime}=\operatorname{partner}\left(U / h p _l e a f\left(w_{f}\right)\right)$ in $T_{\text {suf }}$.
- Each special internal node U stores another pointer, e_{0} :

[^0]
Second Method: Induced Subtree $T_{r e f}\left(w_{f}\right)$

- Each special internal node U in $T_{r e v}\left(w_{f}\right)$ stores a pointer, e_{2}, pointing to $U^{\prime}=\operatorname{partner}\left(U / h p _l e a f\left(w_{f}\right)\right)$ in $T_{\text {suf }}$.
- Each special internal node U stores another pointer, e_{0} :
- Given a pair of parent and child nodes, O and L, if L does not induce with O^{\prime}, then pointer e_{0} of L points to O.
- Otherwise, its eo points to the same node as of its lowest ancestor that has a valid eo

Second Method: Induced Subtree $T_{r e f}\left(w_{f}\right)$

- Each special internal node U in $T_{r e v}\left(w_{f}\right)$ stores a pointer, e_{2}, pointing to $U^{\prime}=\operatorname{partner}\left(U / h p _l e a f\left(w_{f}\right)\right)$ in $T_{\text {suf }}$.
- Each special internal node U stores another pointer, e_{0} :
- Given a pair of parent and child nodes, O and L, if L does not induce with O^{\prime}, then pointer e_{0} of L points to O.
- Otherwise, its e_{0} points to the same node as of its lowest ancestor that has a valid e_{0}.

Second Method \& Open Problems

- The second method:
- Query Time: $O\left(m^{2}+m f(n)+m \lg z \lg \lg z\right)$.
- Space Cost: $O(z \lg z+S(n))$ words of space.
- Open Problems:
- Query Time: $O(m \cdot f(n))$
- Space: $O(z \lg z+S(n))$ or even $O(z+S(n))$?

[^0]: - Given a pair of parent and child nodes, O and L, if L does not induce with O^{\prime}, then pointer e_{0} of L points to O
 - Otherwise, its eo points to the same node as of its lowest ancestor that has a valid eo

