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Matching Statistics

The matching statistics MS of a pattern P[1..m] with respect to a text

T [1..n] is an array of integers MS [1..m] such that the i-th entry MS [i ]

stores the length of the longest prefix of P[i ..m] that occurs in T .

For example, given that T [1..8] =“aaabbbcc” and P[1..5] =“ccabb”, the

matching statistics MS [1..5] = {2, 1, 3, 2, 1}.
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Related Work

Space Time Reference

O(n) O(m lg σ) Textbook

(n lg σ + o(n lg σ)) bits O(m lg σ) Enno et al.

O(r + S(n)) O(m · f (n)) Bannai et al.

O(z + S(n)) O(m2 lgϵ z +m · f (n)) New

O(z lg z + S(n)) O(m2 +m lg z lg lg z +m · f (n)) New

O(z lg z + z
logσ n lg

2ϵ+1 z + S(n)) O(m2 lg lg σ +m · f (n)) New

O(z lg z + S(n)) O(m2 +m · f (n)) σ is constant

• z is the num of phrases in the Lempel-Ziv Parsing, while r is the

num of runs in BWT.

• Assume that there is a data structure of S(n) words of space to

support retrieving any substring T [i ..i + ℓ] in O(f (n) + ℓ) time.

• r = O(z lg2 n).

3



Preliminaries

Text[1..16] = A|AB|ABB|B|ABA|ABAB|BB

Phrases Phrasesrev Suffixes

A A |AB|ABB|B|ABA|ABAB|BB
AB BA |ABB|B|ABA|ABAB|BB

ABB BBA |B|ABA|ABAB|BB
B B |ABA|ABAB|BB

ABA ABA |ABAB|BB
ABAB BABA |BB
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Preliminaries: Induced Relationship
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Preliminaries: Partner Finding
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range succ/prec queries.

• String ABAB appears in the

text, AABABBBABAABABBB,

but string ABABA does not;

A B
B

A

A
B
A
B
B
B

BB
B

A
B
A
A
B
A
B
B
B

B
B
A
B
A
A
B
A
B
B
B

A
B
A
A
B
A
B
B
B

B

A
B
A
A
B
A
B
B
B

A
B
A
B
B
B

A
B
A
B
B
B
A
B
A
·
·
·

A
B
B
B
A
B
A
A
B
A
·
·
·

B
A
B
A
A
B
A
B
B
B

B
B

Tsuf u

partner(v\u)

7



Preliminaries: Partner Finding
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Naive Method for Computing MS [1..m]

• Query pattern P[1..m] is split

into m − 1 pairs of prefix and

suffix pairs.

• Consider the i-th pair, P[1..i ]

and P[i + 1,m];

• For each ancestor, u, of

loci1(i), find partner(u\loci2(i))
• Overall, we have∑m−1

i=1 i = O(m2) partner (or

LCP) queries.

• Query Time:

O(m2 +mf (n) +m2 lgϵ z).

• Space Cost: O(z + S(n)) words

of space. loci1(i)

loci2(i)

Trev Tsuf 8
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Second Method: LPMEM

P [1..i] = abwwz P [i+ 1..m] = xyycd · · ·

loci1(i) loci2(i)

• The number, occ, of LPMEMs for P[1..m] is at most
(
m
2

)
.

• MS can be computed in O(m + occ) time —Algorithm 2.
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Second Method: Query Algorithms

• Apply heavy path

decomposition on Tsuf .

• For each 1 ≤ f ≤ k = O(lg z),

set αf = partner(tf \loci1(i))
and βf = partner(wf \loci1(i));

• αf and partner(αf \loci2(i))
induce a LPMEM; so do βf and

partner(βf \loci2(i)): Lemma

6;

• If u and v are induced together,

and if v stays between wf and

tf , then u stays between αf

and βf : Lemma 7. loci1(i)

loci2(i)

Trev Tsuf

w1

t1
w2

..

.

wf

tf

hp leaf(w1)

wf+1
..
.

wk

hp leaf(wf )
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Second Method: Preprocessing

• wf and hp leaf (wf ) are known

during the preprocessing stage;

• tf and loci2(i) are unknown,

but partner(u\loci2(i)) =
partner(u\hp leaf (wf )) =

partner(u\tf ): Lemma 8;

• αf and βf are unknown, but we

can use the induced subtree

Trev (wf ).

loci1(i)

loci2(i)

Trev Tsuf
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Second Method: Induced Subtree Tref (wf )

hp leaf(wf )
a e c b

g
j h f d i

wf

Tsuf

h i b f a e c d j g

Trev(wf )

• Leaves in Trev that are induced with wf are called special leaves.

• Trev (wf ) contains the special leaves and their LCAs (special nodes).

•
∑

wf
|special(wf )| = O(z lg z).

• The left endpoint of a LPMEM always stays at a special internal

node: Lemma 9.
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Second Method: Induced Subtree Tref (wf )

hp leaf(wf )
a e c b

g
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′/L′/R′
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Trev(wf )

X

U

V

G

O Q

V ′/X ′/U ′/O′

G′

L R

• Each special internal node U in Trev (wf ) stores a pointer, e2,

pointing to U ′ = partner(U/hp leaf (wf )) in Tsuf .

• Each special internal node U stores another pointer, e0:

• Given a pair of parent and child nodes, O and L, if L does not induce

with O ′, then pointer e0 of L points to O.

• Otherwise, its e0 points to the same node as of its lowest ancestor

that has a valid e0.
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Second Method & Open Problems

• The second method:

• Query Time: O(m2 +mf (n) +m lg z lg lg z).

• Space Cost: O(z lg z + S(n)) words of space.

• Open Problems:

• Query Time: O(m · f (n))
• Space: O(z lg z + S(n)) or even O(z + S(n))?
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