
Computing Matching Statistics on Repetitive

Texts

Younan Gao

Faculty of Computer Science, Dalhousie University, Canada

Matching Statistics

The matching statistics MS of a pattern P[1..m] with respect to a text

T [1..n] is an array of integers MS [1..m] such that the i-th entry MS [i]

stores the length of the longest prefix of P[i ..m] that occurs in T .

For example, given that T [1..8] =“aaabbbcc” and P[1..5] =“ccabb”, the

matching statistics MS [1..5] = {2, 1, 3, 2, 1}.

2

Related Work

Space Time Reference

O(n) O(m lg σ) Textbook

(n lg σ + o(n lg σ)) bits O(m lg σ) Enno et al.

O(r + S(n)) O(m · f (n)) Bannai et al.

O(z + S(n)) O(m2 lgϵ z +m · f (n)) New

O(z lg z + S(n)) O(m2 +m lg z lg lg z +m · f (n)) New

O(z lg z + z
logσ n lg

2ϵ+1 z + S(n)) O(m2 lg lg σ +m · f (n)) New

O(z lg z + S(n)) O(m2 +m · f (n)) σ is constant

• z is the num of phrases in the Lempel-Ziv Parsing, while r is the

num of runs in BWT.

• Assume that there is a data structure of S(n) words of space to

support retrieving any substring T [i ..i + ℓ] in O(f (n) + ℓ) time.

• r = O(z lg2 n).

3

Preliminaries

Text[1..16] = A|AB|ABB|B|ABA|ABAB|BB

Phrases Phrasesrev Suffixes

A A |AB|ABB|B|ABA|ABAB|BB
AB BA |ABB|B|ABA|ABAB|BB

ABB BBA |B|ABA|ABAB|BB
B B |ABA|ABAB|BB

ABA ABA |ABAB|BB
ABAB BABA |BB

4

Preliminaries

A

A

B

A

B

A

A

B

A

B

A

B

BB

ABAABABBB

ABABBBABAABABBB

ABABBB

ABBBABAABABBB

BABAABABBB

BB

B

A B

A

A

B

A

B

A

B

A

B

B

A

B

B
A

B

A

A

A

B

A

A B

B

A

A

B

A

B

B

B

B
B
B

A

B

A

A
B

A

B

B

B

B
B
A
B
A
A

B
A

B
B

B

A

B
A

A

B

A

B

B

B

B

A

B

A

A

B

A

B

B

B

A

B

A

B

B

B

A

B

A

B

B

B

A

B

A

·

·

·

A

B

B

B

A

B

A

A

B

A

·

·

·

B

A

B

A

A

B

A

B

B

B

B

B

Trev Tsuf

5

Preliminaries: Induced Relationship

A

A

B

A

B

A

A

B

A

B

A

B

BB

ABAABABBB

ABABBBABAABABBB

ABABBB

ABBBABAABABBB

BABAABABBB

BB

B

A B

A

A

B

A

B

A

B

A

B

B

A

B

B
A

B

A

A

A

B

A

A B

B

A

A

B

A

B

B

B

B
B
B

A

B

A

A
B

A

B

B

B

B
B
A
B
A
A

B
A

B
B

B

A

B
A

A

B

A

B

B

B

B

A

B

A

A

B

A

B

B

B

A

B

A

B

B

B

A

B

A

B

B

B

A

B

A

·

·

·

A

B

B

B

A

B

A

A

B

A

·

·

·

B

A

B

A

A

B

A

B

B

B

B

B

Trev Tsuf
v

u

6

Preliminaries: Partner Finding

B

A B

A

A

B

A

B

A

B

A

B

B

A

B

B
A

B

A

A

A

B

A

Trev

v

• Operation partner(v\u) can be

implemented by 2D orthogonal

range succ/prec queries.

• String ABAB appears in the

text, AABABBBABAABABBB,

but string ABABA does not;

A B
B

A

A
B
A
B
B
B

BB
B

A
B
A
A
B
A
B
B
B

B
B
A
B
A
A
B
A
B
B
B

A
B
A
A
B
A
B
B
B

B

A
B
A
A
B
A
B
B
B

A
B
A
B
B
B

A
B
A
B
B
B
A
B
A
·
·
·

A
B
B
B
A
B
A
A
B
A
·
·
·

B
A
B
A
A
B
A
B
B
B

B
B

Tsuf u

partner(v\u)

7

Preliminaries: Partner Finding

B

A B

A

A

B

A

B

A

B

A

B

B

A

B

B
A

B

A

A

A

B

A

Trev

v

• Operation partner(v\u) can be

implemented by 2D orthogonal

range succ/prec queries.

• String ABAB appears in the

text, AABABBBABAABABBB,

but string ABABA does not;

A B
B

A

A
B
A
B
B
B

BB
B

A
B
A
A
B
A
B
B
B

B
B
A
B
A
A
B
A
B
B
B

A
B
A
A
B
A
B
B
B

B

A
B
A
A
B
A
B
B
B

A
B
A
B
B
B

A
B
A
B
B
B
A
B
A
·
·
·

A
B
B
B
A
B
A
A
B
A
·
·
·

B
A
B
A
A
B
A
B
B
B

B
B

Tsuf u

partner(v\u)

7

Naive Method for Computing MS [1..m]

• Query pattern P[1..m] is split

into m − 1 pairs of prefix and

suffix pairs.

• Consider the i-th pair, P[1..i]

and P[i + 1,m];

• For each ancestor, u, of

loci1(i), find partner(u\loci2(i))
• Overall, we have∑m−1

i=1 i = O(m2) partner (or

LCP) queries.

• Query Time:

O(m2 +mf (n) +m2 lgϵ z).

• Space Cost: O(z + S(n)) words

of space. loci1(i)

loci2(i)

Trev Tsuf 8

Naive Method for Computing MS [1..m]

• Query pattern P[1..m] is split

into m − 1 pairs of prefix and

suffix pairs.

• Consider the i-th pair, P[1..i]

and P[i + 1,m];

• For each ancestor, u, of

loci1(i), find partner(u\loci2(i))
• Overall, we have∑m−1

i=1 i = O(m2) partner (or

LCP) queries.

• Query Time:

O(m2 +mf (n) +m2 lgϵ z).

• Space Cost: O(z + S(n)) words

of space. loci1(i)

loci2(i)

Trev Tsuf 8

Naive Method for Computing MS [1..m]

• Query pattern P[1..m] is split

into m − 1 pairs of prefix and

suffix pairs.

• Consider the i-th pair, P[1..i]

and P[i + 1,m];

• For each ancestor, u, of

loci1(i), find partner(u\loci2(i))
• Overall, we have∑m−1

i=1 i = O(m2) partner (or

LCP) queries.

• Query Time:

O(m2 +mf (n) +m2 lgϵ z).

• Space Cost: O(z + S(n)) words

of space. loci1(i)

loci2(i)

Trev Tsuf

Partner

8

Naive Method for Computing MS [1..m]

• Query pattern P[1..m] is split

into m − 1 pairs of prefix and

suffix pairs.

• Consider the i-th pair, P[1..i]

and P[i + 1,m];

• For each ancestor, u, of

loci1(i), find partner(u\loci2(i))
• Overall, we have∑m−1

i=1 i = O(m2) partner (or

LCP) queries.

• Query Time:

O(m2 +mf (n) +m2 lgϵ z).

• Space Cost: O(z + S(n)) words

of space. loci1(i)

loci2(i)

Trev Tsuf

Partner

8

Naive Method for Computing MS [1..m]

• Query pattern P[1..m] is split

into m − 1 pairs of prefix and

suffix pairs.

• Consider the i-th pair, P[1..i]

and P[i + 1,m];

• For each ancestor, u, of

loci1(i), find partner(u\loci2(i))
• Overall, we have∑m−1

i=1 i = O(m2) partner (or

LCP) queries.

• Query Time:

O(m2 +mf (n) +m2 lgϵ z).

• Space Cost: O(z + S(n)) words

of space. loci1(i)

loci2(i)

Trev Tsuf

Partner

8

Naive Method for Computing MS [1..m]

• Query pattern P[1..m] is split

into m − 1 pairs of prefix and

suffix pairs.

• Consider the i-th pair, P[1..i]

and P[i + 1,m];

• For each ancestor, u, of

loci1(i), find partner(u\loci2(i))
• Overall, we have∑m−1

i=1 i = O(m2) partner (or

LCP) queries.

• Query Time:

O(m2 +mf (n) +m2 lgϵ z).

• Space Cost: O(z + S(n)) words

of space. loci1(i)

loci2(i)

Trev Tsuf

Partner

8

Naive Method for Computing MS [1..m]

• Query pattern P[1..m] is split

into m − 1 pairs of prefix and

suffix pairs.

• Consider the i-th pair, P[1..i]

and P[i + 1,m];

• For each ancestor, u, of

loci1(i), find partner(u\loci2(i))
• Overall, we have∑m−1

i=1 i = O(m2) partner (or

LCP) queries.

• Query Time:

O(m2 +mf (n) +m2 lgϵ z).

• Space Cost: O(z + S(n)) words

of space. loci1(i)

loci2(i)

Trev Tsuf

Partner

8

Naive Method for Computing MS [1..m]

• Query pattern P[1..m] is split

into m − 1 pairs of prefix and

suffix pairs.

• Consider the i-th pair, P[1..i]

and P[i + 1,m];

• For each ancestor, u, of

loci1(i), find partner(u\loci2(i))
• Overall, we have∑m−1

i=1 i = O(m2) partner (or

LCP) queries.

• Query Time:

O(m2 +mf (n) +m2 lgϵ z).

• Space Cost: O(z + S(n)) words

of space. loci1(i)

loci2(i)

Trev Tsuf

Partner

8

Naive Method for Computing MS [1..m]

• Query pattern P[1..m] is split

into m − 1 pairs of prefix and

suffix pairs.

• Consider the i-th pair, P[1..i]

and P[i + 1,m];

• For each ancestor, u, of

loci1(i), find partner(u\loci2(i))
• Overall, we have∑m−1

i=1 i = O(m2) partner (or

LCP) queries.

• Query Time:

O(m2 +mf (n) +m2 lgϵ z).

• Space Cost: O(z + S(n)) words

of space. loci1(i)

loci2(i)

Trev Tsuf

Partner

8

Naive Method for Computing MS [1..m]

• Query pattern P[1..m] is split

into m − 1 pairs of prefix and

suffix pairs.

• Consider the i-th pair, P[1..i]

and P[i + 1,m];

• For each ancestor, u, of

loci1(i), find partner(u\loci2(i))
• Overall, we have∑m−1

i=1 i = O(m2) partner (or

LCP) queries.

• Query Time:

O(m2 +mf (n) +m2 lgϵ z).

• Space Cost: O(z + S(n)) words

of space. loci1(i)

loci2(i)

Trev Tsuf

Partner

8

Naive Method for Computing MS [1..m]

• Query pattern P[1..m] is split

into m − 1 pairs of prefix and

suffix pairs.

• Consider the i-th pair, P[1..i]

and P[i + 1,m];

• For each ancestor, u, of

loci1(i), find partner(u\loci2(i))
• Overall, we have∑m−1

i=1 i = O(m2) partner (or

LCP) queries.

• Query Time:

O(m2 +mf (n) +m2 lgϵ z).

• Space Cost: O(z + S(n)) words

of space. loci1(i)

loci2(i)

Trev Tsuf

Partner

8

Second Method: LPMEM

P [1..i] = abwwz P [i+ 1..m] = xyycd · · ·

loci1(i) loci2(i)

• The number, occ, of LPMEMs for P[1..m] is at most
(
m
2

)
.

• MS can be computed in O(m + occ) time —Algorithm 2.

9

Second Method: LPMEM

P [1..i] = abwwz P [i+ 1..m] = xyycd · · ·

loci1(i) loci2(i)

TEXT = · · · ewwzxyyf · · ·

LPMEM

• The number, occ, of LPMEMs for P[1..m] is at most
(
m
2

)
.

• MS can be computed in O(m + occ) time —Algorithm 2.

9

Second Method: LPMEM

P [1..i] = abwwz P [i+ 1..m] = xyycd · · ·

loci1(i) loci2(i)

TEXT = · · · ewwzxyyf · · ·

LPMEM

z
w
w

x
y
y

b e c f
...

Trev Tsuf

starting ending

• The number, occ, of LPMEMs for P[1..m] is at most
(
m
2

)
.

• MS can be computed in O(m + occ) time —Algorithm 2.

9

Second Method: LPMEM

P [1..i] = abwwz P [i+ 1..m] = xyycd · · ·

loci1(i) loci2(i)

TEXT = · · · ewwzxyyf · · ·

LPMEM

z
w
w

x
y
y

b e c f
...

Trev Tsuf

starting ending

• The number, occ, of LPMEMs for P[1..m] is at most
(
m
2

)
.

• MS can be computed in O(m + occ) time —Algorithm 2.

9

Second Method: Query Algorithms

• Apply heavy path

decomposition on Tsuf .

• For each 1 ≤ f ≤ k = O(lg z),

set αf = partner(tf \loci1(i))
and βf = partner(wf \loci1(i));

• αf and partner(αf \loci2(i))
induce a LPMEM; so do βf and

partner(βf \loci2(i)): Lemma

6;

• If u and v are induced together,

and if v stays between wf and

tf , then u stays between αf

and βf : Lemma 7. loci1(i)

loci2(i)

Trev Tsuf

w1

t1
w2

..

.

wf

tf

hp leaf(w1)

wf+1
..
.

wk

hp leaf(wf)

10

Second Method: Query Algorithms

• Apply heavy path

decomposition on Tsuf .

• For each 1 ≤ f ≤ k = O(lg z),

set αf = partner(tf \loci1(i))
and βf = partner(wf \loci1(i));

• αf and partner(αf \loci2(i))
induce a LPMEM; so do βf and

partner(βf \loci2(i)): Lemma

6;

• If u and v are induced together,

and if v stays between wf and

tf , then u stays between αf

and βf : Lemma 7. loci1(i)

loci2(i)

Trev Tsuf

w1

t1
w2

..

.

wf

tf

hp leaf(w1)

wf+1
..
.

wk

hp leaf(wf)

β1

αk

βf

αf

10

Second Method: Query Algorithms

• Apply heavy path

decomposition on Tsuf .

• For each 1 ≤ f ≤ k = O(lg z),

set αf = partner(tf \loci1(i))
and βf = partner(wf \loci1(i));

• αf and partner(αf \loci2(i))
induce a LPMEM; so do βf and

partner(βf \loci2(i)): Lemma

6;

• If u and v are induced together,

and if v stays between wf and

tf , then u stays between αf

and βf : Lemma 7. loci1(i)

loci2(i)

Trev Tsuf

w1

t1
w2

..

.

wf

tf

hp leaf(w1)

wf+1
..
.

wk

hp leaf(wf)

β1

αk

βf

αf

10

Second Method: Query Algorithms

• Apply heavy path

decomposition on Tsuf .

• For each 1 ≤ f ≤ k = O(lg z),

set αf = partner(tf \loci1(i))
and βf = partner(wf \loci1(i));

• αf and partner(αf \loci2(i))
induce a LPMEM; so do βf and

partner(βf \loci2(i)): Lemma

6;

• If u and v are induced together,

and if v stays between wf and

tf , then u stays between αf

and βf : Lemma 7. loci1(i)

loci2(i)

Trev Tsuf

w1

t1
w2

..

.

wf

tf

hp leaf(w1)

wf+1
..
.

wk

hp leaf(wf)

β1

αk

βf

αf

v

u

10

Second Method: Preprocessing

• wf and hp leaf (wf) are known

during the preprocessing stage;

• tf and loci2(i) are unknown,

but partner(u\loci2(i)) =
partner(u\hp leaf (wf)) =

partner(u\tf): Lemma 8;

• αf and βf are unknown, but we

can use the induced subtree

Trev (wf).

loci1(i)

loci2(i)

Trev Tsuf

w1

t1
w2

..

.

wf

tf

wf+1
..
.

wk

hp leaf(wf)

β1

αk

βf

αf

v

u

11

Second Method: Preprocessing

• wf and hp leaf (wf) are known

during the preprocessing stage;

• tf and loci2(i) are unknown,

but partner(u\loci2(i)) =
partner(u\hp leaf (wf)) =

partner(u\tf): Lemma 8;

• αf and βf are unknown, but we

can use the induced subtree

Trev (wf).

loci1(i)

loci2(i)

Trev Tsuf

w1

t1
w2

..

.

wf

tf

wf+1
..
.

wk

hp leaf(wf)

β1

αk

βf

αf

v

u

11

Second Method: Preprocessing

• wf and hp leaf (wf) are known

during the preprocessing stage;

• tf and loci2(i) are unknown,

but partner(u\loci2(i)) =
partner(u\hp leaf (wf)) =

partner(u\tf): Lemma 8;

• αf and βf are unknown, but we

can use the induced subtree

Trev (wf).

loci1(i)

loci2(i)

Trev Tsuf

w1

t1
w2

..

.

wf

tf

wf+1
..
.

wk

hp leaf(wf)

β1

αk

βf

αf

v

u

11

Second Method: Induced Subtree Tref (wf)

hp leaf(wf)
a e c b

g
j h f d i

wf

Tsuf

h i b f a e c d j g

Trev(wf)

• Leaves in Trev that are induced with wf are called special leaves.

• Trev (wf) contains the special leaves and their LCAs (special nodes).

•
∑

wf
|special(wf)| = O(z lg z).

• The left endpoint of a LPMEM always stays at a special internal

node: Lemma 9.

12

Second Method: Induced Subtree Tref (wf)

hp leaf(wf)
a e c b

g
j h f d i

wf

Tsuf

h i b f a e c d j g

Trev(wf)

• Leaves in Trev that are induced with wf are called special leaves.

• Trev (wf) contains the special leaves and their LCAs (special nodes).

•
∑

wf
|special(wf)| = O(z lg z).

• The left endpoint of a LPMEM always stays at a special internal

node: Lemma 9.

12

Second Method: Induced Subtree Tref (wf)

hp leaf(wf)
a e c b

g
j h f d i

wf

Tsuf

h i b f a e c d j g

Trev(wf)

• Leaves in Trev that are induced with wf are called special leaves.

• Trev (wf) contains the special leaves and their LCAs (special nodes).

•
∑

wf
|special(wf)| = O(z lg z).

• The left endpoint of a LPMEM always stays at a special internal

node: Lemma 9.

12

Second Method: Induced Subtree Tref (wf)

hp leaf(wf)
a e c b

g
j h f d i

wf

Tsuf

h i b f a e c d j g

Trev(wf)

• Leaves in Trev that are induced with wf are called special leaves.

• Trev (wf) contains the special leaves and their LCAs (special nodes).

•
∑

wf
|special(wf)| = O(z lg z).

• The left endpoint of a LPMEM always stays at a special internal

node: Lemma 9.

12

Second Method: Induced Subtree Tref (wf)

hp leaf(wf)
a e c b

g
j h f d i

wf/Q
′/L′/R′

Tsuf

h i b f a e c d j g

Trev(wf)

X

U

V

G

O Q

V ′/X ′/U ′/O′

G′

L R

• Each special internal node U in Trev (wf) stores a pointer, e2,

pointing to U ′ = partner(U/hp leaf (wf)) in Tsuf .

• Each special internal node U stores another pointer, e0:

• Given a pair of parent and child nodes, O and L, if L does not induce

with O ′, then pointer e0 of L points to O.

• Otherwise, its e0 points to the same node as of its lowest ancestor

that has a valid e0.

13

Second Method: Induced Subtree Tref (wf)

hp leaf(wf)
a e c b

g
j h f d i

wf/Q
′/L′/R′

Tsuf

h i b f a e c d j g

Trev(wf)

X

U

V

G

O Q

V ′/X ′/U ′/O′

G′

L R

• Each special internal node U in Trev (wf) stores a pointer, e2,

pointing to U ′ = partner(U/hp leaf (wf)) in Tsuf .

• Each special internal node U stores another pointer, e0:

• Given a pair of parent and child nodes, O and L, if L does not induce

with O ′, then pointer e0 of L points to O.

• Otherwise, its e0 points to the same node as of its lowest ancestor

that has a valid e0.

13

Second Method: Induced Subtree Tref (wf)

hp leaf(wf)
a e c b

g
j h f d i

wf/Q
′/L′/R′

Tsuf

h i b f a e c d j g

Trev(wf)

X

U

V

G

O Q

V ′/X ′/U ′/O′

G′

L R

• Each special internal node U in Trev (wf) stores a pointer, e2,

pointing to U ′ = partner(U/hp leaf (wf)) in Tsuf .

• Each special internal node U stores another pointer, e0:

• Given a pair of parent and child nodes, O and L, if L does not induce

with O ′, then pointer e0 of L points to O.

• Otherwise, its e0 points to the same node as of its lowest ancestor

that has a valid e0.

13

Second Method: Induced Subtree Tref (wf)

hp leaf(wf)
a e c b

g
j h f d i

wf/Q
′/L′/R′

Tsuf

h i b f a e c d j g

Trev(wf)

X

U

V

G

O Q

V ′/X ′/U ′/O′

G′

L R

• Each special internal node U in Trev (wf) stores a pointer, e2,

pointing to U ′ = partner(U/hp leaf (wf)) in Tsuf .

• Each special internal node U stores another pointer, e0:

• Given a pair of parent and child nodes, O and L, if L does not induce

with O ′, then pointer e0 of L points to O.

• Otherwise, its e0 points to the same node as of its lowest ancestor

that has a valid e0.

13

Second Method & Open Problems

• The second method:

• Query Time: O(m2 +mf (n) +m lg z lg lg z).

• Space Cost: O(z lg z + S(n)) words of space.

• Open Problems:

• Query Time: O(m · f (n))
• Space: O(z lg z + S(n)) or even O(z + S(n))?

14

