Computing Matching Statistics on Repetitive Texts

Younan Gao

Faculty of Computer Science, Dalhousie University, Canada

The matching statistics MS of a pattern P[1..m] with respect to a text T[1..n] is an array of integers MS[1..m] such that the i-th entry MS[i] stores the length of the longest prefix of P[i..m] that occurs in T.

For example, given that T[1..8] = "aaabbbcc" and P[1..5] = "ccabb", the matching statistics $MS[1..5] = \{2, 1, 3, 2, 1\}$.

Space	Time	Reference
<i>O</i> (<i>n</i>)	$O(m \lg \sigma)$	Textbook
$(n \lg \sigma + o(n \lg \sigma))$ bits	$O(m \lg \sigma)$	Enno et al.
O(r+S(n))	$O(m \cdot f(n))$	Bannai et al.
O(z+S(n))	$O(m^2 \lg^{\epsilon} z + m \cdot f(n))$	New
$O(z \lg z + S(n))$	$O(m^2 + m \lg z \lg \lg z + m \cdot f(n))$	New
$O(z \lg z + \frac{z}{\log_{\sigma} n} \lg^{2\epsilon+1} z + S(n))$	$O(m^2 \lg \lg \sigma + m \cdot f(n))$	New
$O(z \lg z + S(n))$	$O(m^2 + m \cdot f(n))$	σ is constant

- *z* is the num of phrases in the Lempel-Ziv Parsing, while *r* is the num of runs in BWT.
- Assume that there is a data structure of S(n) words of space to support retrieving any substring T[i..i + ℓ] in O(f(n) + ℓ) time.
- $r = O(z \lg^2 n)$.

Text[1..16] = A|AB|ABB|B|ABA|ABAB|BB

Phrases	Phrases _{rev}	Suffixes
A	А	AB ABB B ABA ABAB BB
AB	BA	ABB B ABA ABAB BB
ABB	BBA	B ABA ABAB BB
В	В	ABA ABAB BB
ABA	ABA	ABAB BB
ABAB	BABA	BB

Preliminaries

 T_{rev} Α В В Α В В В А А В В Α А А А А в А В А В А А Α В В В В ABAABABBB ABABBB ABABBBABAABABBB ABBBABAABABBB BABAABABBB BB

5

Preliminaries: Induced Relationship

Preliminaries: Partner Finding

- Operation partner(v\u) can be implemented by 2D orthogonal range succ/prec queries.
- String ABAB appears in the text, AABABBBABA<u>ABAB</u>BB, but string ABABA does not;

Preliminaries: Partner Finding

- Operation partner(v\u) can be implemented by 2D orthogonal range succ/prec queries.
- String ABAB appears in the text, AABABBBABA<u>ABAB</u>BB, but string ABABA does not;

- Query pattern P[1..m] is split into m - 1 pairs of prefix and suffix pairs.
- Consider the *i*-th pair, *P*[1..*i*] and *P*[*i* + 1, *m*];
- For each ancestor, u, of loci₁(i), find partner(u\loci₂(i))
- Overall, we have $\sum_{i=1}^{m-1} i = O(m^2)$ partner (or LCP) queries.
- Query Time: $O(m^2 + mf(n) + m^2 \lg^{\epsilon} z).$
- Space Cost: O(z + S(n)) words of space.

- Query pattern P[1..m] is split into m - 1 pairs of prefix and suffix pairs.
- Consider the *i*-th pair, *P*[1..*i*] and *P*[*i* + 1, *m*];
- For each ancestor, u, of loci₁(i), find partner(u\loci₂(i))
- Overall, we have $\sum_{i=1}^{m-1} i = O(m^2)$ partner (or LCP) queries.
- Query Time: $O(m^2 + mf(n) + m^2 \lg^{\epsilon} z).$
- Space Cost: O(z + S(n)) words of space.

- Query pattern P[1..m] is split into m - 1 pairs of prefix and suffix pairs.
- Consider the *i*-th pair, *P*[1..*i*] and *P*[*i* + 1, *m*];
- For each ancestor, u, of loci₁(i), find partner(u\loci₂(i))
- Overall, we have $\sum_{i=1}^{m-1} i = O(m^2)$ partner (or LCP) queries.
- Query Time: $O(m^2 + mf(n) + m^2 \lg^{\epsilon} z).$
- Space Cost: O(z + S(n)) words of space.

- Query pattern P[1..m] is split into m - 1 pairs of prefix and suffix pairs.
- Consider the *i*-th pair, *P*[1..*i*] and *P*[*i* + 1, *m*];
- For each ancestor, u, of loci₁(i), find partner(u\loci₂(i))
- Overall, we have $\sum_{i=1}^{m-1} i = O(m^2)$ partner (or LCP) queries.
- Query Time: $O(m^2 + mf(n) + m^2 \lg^{\epsilon} z).$
- Space Cost: O(z + S(n)) words of space.

- Query pattern P[1..m] is split into m - 1 pairs of prefix and suffix pairs.
- Consider the *i*-th pair, *P*[1..*i*] and *P*[*i* + 1, *m*];
- For each ancestor, u, of loci₁(i), find partner(u\loci₂(i))
- Overall, we have $\sum_{i=1}^{m-1} i = O(m^2)$ partner (or LCP) queries.
- Query Time: $O(m^2 + mf(n) + m^2 \lg^{\epsilon} z).$
- Space Cost: O(z + S(n)) words of space.

- Query pattern P[1..m] is split into m - 1 pairs of prefix and suffix pairs.
- Consider the *i*-th pair, *P*[1..*i*] and *P*[*i* + 1, *m*];
- For each ancestor, u, of loci₁(i), find partner(u\loci₂(i))
- Overall, we have $\sum_{i=1}^{m-1} i = O(m^2)$ partner (or LCP) queries.
- Query Time: $O(m^2 + mf(n) + m^2 \lg^{\epsilon} z).$
- Space Cost: O(z + S(n)) words of space.

- Query pattern P[1..m] is split into m - 1 pairs of prefix and suffix pairs.
- Consider the *i*-th pair, *P*[1..*i*] and *P*[*i* + 1, *m*];
- For each ancestor, u, of loci₁(i), find partner(u\loci₂(i))
- Overall, we have $\sum_{i=1}^{m-1} i = O(m^2)$ partner (or LCP) queries.
- Query Time: $O(m^2 + mf(n) + m^2 \lg^{\epsilon} z).$
- Space Cost: O(z + S(n)) words of space.

- Query pattern P[1..m] is split into m - 1 pairs of prefix and suffix pairs.
- Consider the *i*-th pair, *P*[1..*i*] and *P*[*i* + 1, *m*];
- For each ancestor, u, of loci₁(i), find partner(u\loci₂(i))
- Overall, we have $\sum_{i=1}^{m-1} i = O(m^2)$ partner (or LCP) queries.
- Query Time: $O(m^2 + mf(n) + m^2 \lg^{\epsilon} z).$
- Space Cost: O(z + S(n)) words of space.

- Query pattern P[1..m] is split into m - 1 pairs of prefix and suffix pairs.
- Consider the *i*-th pair, *P*[1..*i*] and *P*[*i* + 1, *m*];
- For each ancestor, u, of loci₁(i), find partner(u\loci₂(i))
- Overall, we have $\sum_{i=1}^{m-1} i = O(m^2)$ partner (or LCP) queries.
- Query Time: $O(m^2 + mf(n) + m^2 \lg^{\epsilon} z).$
- Space Cost: O(z + S(n)) words of space.

- Query pattern P[1..m] is split into m - 1 pairs of prefix and suffix pairs.
- Consider the *i*-th pair, *P*[1..*i*] and *P*[*i* + 1, *m*];
- For each ancestor, u, of loci₁(i), find partner(u\loci₂(i))
- Overall, we have $\sum_{i=1}^{m-1} i = O(m^2)$ partner (or LCP) queries.
- Query Time: $O(m^2 + mf(n) + m^2 \lg^{\epsilon} z).$
- Space Cost: O(z + S(n)) words of space.

- Query pattern P[1..m] is split into m - 1 pairs of prefix and suffix pairs.
- Consider the *i*-th pair, *P*[1..*i*] and *P*[*i* + 1, *m*];
- For each ancestor, u, of loci₁(i), find partner(u\loci₂(i))
- Overall, we have $\sum_{i=1}^{m-1} i = O(m^2)$ partner (or LCP) queries.
- Query Time: $O(m^2 + mf(n) + m^2 \lg^{\epsilon} z).$
- Space Cost: O(z + S(n)) words of space.

$$P[1..i] = abwwz$$

$$P[i+1..m] = xyycd \cdots$$

$$loci_{1}(i)$$

$$loci_{2}(i)$$

Second Method: LPMEM

• The number, occ, of LPMEMs for P[1..m] is at most $\binom{m}{2}$.

Second Method: LPMEM

- The number, occ, of LPMEMs for P[1..m] is at most $\binom{m}{2}$.
- MS can be computed in O(m + occ) time —Algorithm 2.

- Apply heavy path decomposition on T_{suf} .
- For each $1 \le f \le k = O(\lg z)$, set $\alpha_f = partner(t_f \setminus loci_1(i))$ and $\beta_f = partner(w_f \setminus loci_1(i))$;
- α_f and partner(α_f\loci₂(i)) induce a LPMEM; so do β_f and partner(β_f\loci₂(i)): Lemma 6;
- If u and v are induced together, and if v stays between w_f and t_f, then u stays between α_f and β_f: Lemma 7.

- Apply heavy path decomposition on *T_{suf}*.
- For each 1 ≤ f ≤ k = O(lg z), set α_f = partner(t_f \loci₁(i)) and β_f = partner(w_f \loci₁(i));
- α_f and partner(α_f \loci₂(i)) induce a LPMEM; so do β_f and partner(β_f \loci₂(i)): Lemma 6;
- If u and v are induced together, and if v stays between w_f and t_f, then u stays between α_f and β_f: Lemma 7.

- Apply heavy path decomposition on *T_{suf}*.
- For each 1 ≤ f ≤ k = O(lg z), set α_f = partner(t_f \loci₁(i)) and β_f = partner(w_f \loci₁(i));
- α_f and partner(α_f \loci₂(i)) induce a LPMEM; so do β_f and partner(β_f \loci₂(i)): Lemma 6;
- If u and v are induced together, and if v stays between w_f and t_f, then u stays between α_f and β_f: Lemma 7.

- Apply heavy path decomposition on *T_{suf}*.
- For each 1 ≤ f ≤ k = O(lg z), set α_f = partner(t_f \loci₁(i)) and β_f = partner(w_f \loci₁(i));
- α_f and partner(α_f \loci₂(i)) induce a LPMEM; so do β_f and partner(β_f \loci₂(i)): Lemma 6;
- If u and v are induced together, and if v stays between w_f and t_f, then u stays between α_f and β_f: Lemma 7.

Second Method: Preprocessing

- w_f and hp_leaf(w_f) are known during the preprocessing stage;
- t_f and loci₂(i) are unknown, but partner(u\loci₂(i)) = partner(u\hp_leaf(w_f)) = partner(u\t_f): Lemma 8;
- α_f and β_f are unknown, but we can use the induced subtree $T_{rev}(w_f)$.

Second Method: Preprocessing

- w_f and hp_leaf(w_f) are known during the preprocessing stage;
- t_f and loci₂(i) are unknown, but partner(u\loci₂(i)) = partner(u\hp_leaf(w_f)) = partner(u\t_f): Lemma 8;
- α_f and β_f are unknown, but we can use the induced subtree $T_{rev}(w_f)$.

Second Method: Preprocessing

- w_f and hp_leaf(w_f) are known during the preprocessing stage;
- t_f and loci₂(i) are unknown, but partner(u\loci₂(i)) = partner(u\hp_leaf(w_f)) = partner(u\t_f): Lemma 8;
- α_f and β_f are unknown, but we can use the induced subtree $T_{rev}(w_f)$.

- Leaves in T_{rev} that are induced with w_f are called special leaves.
- $T_{rev}(w_f)$ contains the special leaves and their LCAs (special nodes).
- $\sum_{w_f} |special(w_f)| = O(z \lg z).$
- The left endpoint of a LPMEM always stays at a special internal node: Lemma 9.

- Leaves in T_{rev} that are induced with w_f are called special leaves.
- $T_{rev}(w_f)$ contains the special leaves and their LCAs (special nodes).
- $\sum_{w_f} |special(w_f)| = O(z \lg z).$
- The left endpoint of a LPMEM always stays at a special internal node: Lemma 9.

- Leaves in T_{rev} that are induced with w_f are called special leaves.
- $T_{rev}(w_f)$ contains the special leaves and their LCAs (special nodes).

•
$$\sum_{w_f} |special(w_f)| = O(z \lg z)$$

 The left endpoint of a LPMEM always stays at a special internal node: Lemma 9.

- Leaves in T_{rev} that are induced with w_f are called special leaves.
- $T_{rev}(w_f)$ contains the special leaves and their LCAs (special nodes).
- $\sum_{w_f} |special(w_f)| = O(z \lg z).$
- The left endpoint of a LPMEM always stays at a special internal node: Lemma 9.

- Each special internal node U in T_{rev}(w_f) stores a pointer, e₂, pointing to U' = partner(U/hp_leaf(w_f)) in T_{suf}.
- Each special internal node U stores another pointer, e₀:
 - Given a pair of parent and child nodes, O and L, if L does not induce with O', then pointer e₀ of L points to O.
 - Otherwise, its e₀ points to the same node as of its lowest ancestor that has a valid e₀.

- Each special internal node U in T_{rev}(w_f) stores a pointer, e₂, pointing to U' = partner(U/hp_leaf(w_f)) in T_{suf}.
- Each special internal node U stores another pointer, e_0 :
 - Given a pair of parent and child nodes, *O* and *L*, if *L* does not induce with *O'*, then pointer *e*₀ of *L* points to *O*.
 - Otherwise, its e₀ points to the same node as of its lowest ancestor that has a valid e₀.

- Each special internal node U in T_{rev}(w_f) stores a pointer, e₂, pointing to U' = partner(U/hp_leaf(w_f)) in T_{suf}.
- Each special internal node U stores another pointer, e_0 :
 - Given a pair of parent and child nodes, *O* and *L*, if *L* does not induce with *O'*, then pointer *e*₀ of *L* points to *O*.
 - Otherwise, its e₀ points to the same node as of its lowest ancestor that has a valid e₀.

- Each special internal node U in T_{rev}(w_f) stores a pointer, e₂, pointing to U' = partner(U/hp_leaf(w_f)) in T_{suf}.
- Each special internal node U stores another pointer, e_0 :
 - Given a pair of parent and child nodes, *O* and *L*, if *L* does not induce with *O'*, then pointer *e*₀ of *L* points to *O*.
 - Otherwise, its e₀ points to the same node as of its lowest ancestor that has a valid e₀.

- The second method:
 - Query Time: $O(m^2 + mf(n) + m \lg z \lg \lg z)$.
 - Space Cost: $O(z \lg z + S(n))$ words of space.
- Open Problems:
 - Query Time: $O(m \cdot f(n))$
 - Space: $O(z \lg z + S(n))$ or even O(z + S(n))?