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Abstract. While mobile computing domains have illustrated the usefulness of 

mobile semantic data, improvements in mobile hardware are paving the way for 

local semantic data access. To support this, a number of tools have been devel-

oped for storing, querying and reasoning over local semantic data. However, re-

cent benchmarks have shown that mobile hardware still imposes limitations on 

efficient local data querying. Additionally, mobile scenarios pose unique chal-

lenges due to their dynamic nature; making it difficult to replicate semantic data 

a priori for local querying. In this paper, we propose a graph-based query distri-

bution approach, which efficiently distributes query execution across configured 

remote datasets. Importantly, our approach aims to identify subqueries that can 

be outsourced to remote datasets, thus reducing local joining work.  
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1 Introduction 

As shown by the Linked Open Data cloud [1], a staggering number of online, ma-

chine-readable and interconnected Semantic Web datasets are currently available. Mul-

tiple tools and techniques have been developed to access this wealth of data. Local 

replication [2] involves replicating relevant parts of semantic datasets locally, allowing 

for robust and efficient access. Virtual data integration, or query distribution, distributes 

queries over the remote datasets themselves, integrating the results locally [3, 4].  

For some time now, mobile devices have met the hardware requirements for manag-

ing and querying Semantic Web data. Reflecting this evolution, various mobile com-

puting domains currently leverage semantic data, including augmented reality [5], rec-

ommender systems [6], location-aware [7] and context-aware systems [8], mobile tour-

ism [9] and m-Health [10]. Supporting these approaches, multiple tools have been de-

veloped for constructing, managing, querying and reasoning over local semantic data 

on mobile devices, including AndroJena [11], a port of the well-known Apache Jena 

framework [12], and Rdf On The Go [13], which was specifically developed for mobile 

systems. However, as shown by recent benchmarks [14, 15], mobile hardware limita-

tions regarding processing power, memory and battery capacity, limit the scale of 

purely local solutions. Many mobile scenarios also pose unique challenges due to their 



highly dynamic nature; e.g., cases where semantic data related to the user’s dynamic 

context needs to be continuously accessible. Such scenarios makes a priori, local repli-

cation of relevant data on the device problematic. Virtual data integration solutions by-

pass this issue by executing queries directly on remote datasets. Moreover, by leverag-

ing the capabilities of remote datasets, opportunities exist for dealing with mobile pro-

cessing and memory limitations.  

In particular, subqueries may be outsourced to relevant remote datasets, relieving the 

mobile client of join processing. We also note that server hardware hosting these da-

tasets are better equipped, both hardware-wise and regarding data access optimizations 

(e.g., join indices), to execute these subqueries to begin with. Moreover, less interme-

diate results are returned to the device, reducing bandwidth usage. To allow identifying 

subqueries that are resolvable by a particular dataset, we propose indexing graph pat-

terns (i.e., graph structure with only predicate edges) found in the dataset. For a given 

query and set of configured datasets, suitable subqueries are found by determining sub-

graph isomorphism between the query subgraphs and dataset graph patterns. Although 

subgraph checking is known to be an NP-hard problem, it has a reasonable execution 

time for many real-world scenarios and is often used in graph databases [16]. 

In this paper, we present a graph-based, semantic query distribution approach, which 

outsources suitable subqueries via graph pattern indexing and matching. We apply a 

custom, back-tracking subgraph isomorphism algorithm, which is able to identify 

subqueries suitable to be executed on a particular remote dataset. We present an evalu-

ation comparing our system to a predicate-based approach, using a real-world dataset.  

Section 2 discusses the indexing of dataset graph patterns. Section 3 presents our 

query distribution approach. Section 4 shows an initial evaluation of our approach, 

while Section 5 discusses related work. Section 6 presents conclusions and future work. 

2 Indexing dataset graph patterns 

To identify dataset graph patterns, our system first collects instance RDF graphs. Du-

plicate instance graphs and subgraphs are hereby ruled out by applying subgraph checks 

on the collected instance graphs, leaving only distinct graph patterns. Below, we show 

the pseudocode for this indexing step: 

1. 𝑞 ← SELECT ∗ WHERE { ? s ? p ? o . } 
2. 𝑟𝑒𝑠𝑢𝑙𝑡 ← execute(q, dataset) 

3.  𝑔𝑟𝑎𝑝ℎ𝑠 ← ∅ 

4.  𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑡1𝐢𝐧 𝑟𝑒𝑠𝑢𝑙𝑡 

5. 𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑡1    

6.  𝑔𝑟𝑎𝑝ℎ1 ← ∅ 

7.  𝑡𝑟𝑖𝑝𝑙𝑒𝑠 ←  [ 𝑡1] 
8.  𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑐𝑢𝑟𝑇 𝐢𝐧 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 

9. 𝑔𝑟𝑎𝑝ℎ1  ← 𝑔𝑟𝑎𝑝ℎ1 + 𝑐𝑢𝑟𝑇 

10.  𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑡2𝐢𝐧 𝑟𝑒𝑠𝑢𝑙𝑡  

11. 𝐢𝐟 𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑐𝑢𝑟𝑇, 𝑡2) 𝐭𝐡𝐞𝐧  

12. 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 − 𝑡2 

13. 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 ← 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 + 𝑡2 

14.  𝐞𝐧𝐝 𝐢𝐟  

15.  𝐞𝐧𝐝 𝐟𝐨𝐫  

16. 𝐞𝐧𝐝 𝐟𝐨𝐫 

17. 𝐞𝐧𝐝 𝐟𝐨𝐫 

18. 𝑒𝑥𝑖𝑠𝑡𝑠 ← 𝑓𝑎𝑙𝑠𝑒 

19. 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑔𝑟𝑎𝑝ℎ2 𝐢𝐧 𝑔𝑟𝑎𝑝ℎ𝑠 

20. 𝐢𝐟 𝑖𝑠_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑔𝑟𝑎𝑝ℎ1, 𝑔𝑟𝑎𝑝ℎ2) 𝐭𝐡𝐞𝐧 

21. 𝑒𝑥𝑖𝑠𝑡𝑠 ← 𝑡𝑟𝑢𝑒 

22. 𝐛𝐫𝐞𝐚𝐤 

23. 𝐞𝐥𝐬𝐞 𝐢𝐟 𝑖𝑠_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑔𝑟𝑎𝑝ℎ2, 𝑔𝑟𝑎𝑝ℎ1) 𝐭𝐡𝐞𝐧 

24. 𝑔𝑟𝑎𝑝ℎ𝑠 ← 𝑔𝑟𝑎𝑝ℎ𝑠 − 𝑔𝑟𝑎𝑝ℎ2 

25.  𝐞𝐧𝐝 𝐟𝐨𝐫 

26. 𝐢𝐟 ! 𝑒𝑥𝑖𝑠𝑡𝑠  

27. 𝑔𝑟𝑎𝑝ℎ𝑠 ← 𝑔𝑟𝑎𝑝ℎ𝑠 + 𝑔𝑟𝑎𝑝ℎ1 

Code 1. Algorithm for extracting dataset graph patterns. 



Lines 1-2 obtain all triples from the dataset. For each distinct result triple (lines 4-5), 

a new graph pattern is created (line 6), as well as a list of candidates for expansion, 

initially containing the result triple (line 7). Each candidate for expansion is added to 

the graph pattern (lines 8-9), and other triples linking to the current candidate (lines 10-

11) are themselves added as candidates for expansion (line 13). This process continues 

until no more new expansion candidates are found, meaning a disjoint instance RDF 

graph has been identified.   

Subsequently, the algorithm checks whether the collected graph is a subgraph of an-

other, previously identified graph, or vice versa (lines 18-27). In case it is found to be 

a (non-proper) subgraph, the newly found graph is ignored (lines 20-22). In case a pre-

viously indexed graph is a subgraph of the new graph, the previous is removed & the 

new graph is added to the index (lines 24-25, 26-27). Else, the new graph is added to 

the index as a new graph pattern (lines 26-27). 

In Section 3, we elaborate on the implementation of the is_subgraph function. We 

note that the matches function only considers certain types of links, to maximize the re-

use of extracted graph patterns. Overall, the function may consider 4 links to extend an 

instance graph, as illustrated in Figure 1: 

 

Figure 1. Potential links followed during indexing. 

Two triples may be considered part of the same instance graph in case they represent 

a path (links (1) and (3), and if they share the same subject (link (2)) or object (link (4)). 

In practice however, we found that considering link (4) typically leads to cases where 

only a single (huge) graph pattern can be extracted (i.e., about the same size as the 

dataset). For instance, most resources will often be typed with owl:Thing, resulting in 

only one instance graph. Currently, we follow a pragmatic solution to this problem, by 

simply ruling out link (4); thus maximizing re-use of dataset graph patterns, and signif-

icantly reducing the size of extracted graph patterns. On the other hand, we note that 

this will lead to problems if the shared object itself is involved in other triples as subject. 

Tackling this issue more effectively is considered future work. 

After extracting the graph patterns, they are added to an index keeping the graph pat-

terns for each dataset. Ideally, the resource-intensive indexing process occurs on the 

dataset server, ruling out the need to communicate the entire dataset to another location. 

Subsequently, indexed graph patterns are communicated to the mobile systems, and 

updated each time significant changes occur that alter the previously indexed patterns. 



3 Graph-based Query Distribution 

Based on the dataset graph pattern index (see Section 2), query execution will be 

distributed across matching datasets. To cope with mobile device limitations, our main 

goal is to distribute coherent subqueries to relevant datasets, thus outsourcing the re-

source-intensive join work to database systems better equipped to execute the work, 

both hardware-wise and regarding internal optimizations (e.g., join indices). 

We apply a graph-based approach to identify subqueries resolvable by remote da-

tasets. To that end, we developed a custom subgraph isomorphism algorithm, discussed 

in Section 3.1. Next, we present our query distribution algorithm (Section 3.2). 

3.1 Backtracking subgraph-isomorphism 

A subgraph isomorphism algorithm checks whether graph g1 is isomorphic to a (non-

proper) subgraph of graph g2. To suit our purposes, we developed a slightly modified 

algorithm, which is able to identify the largest (non-proper) subgraph of g1 that is iso-

morphic to a (non-proper) subgraph of g2. In doing so, our system can identify which 

subqueries, or query subgraphs, are resolvable by dataset subgraphs.  

For this purpose, a listener traces the algorithm execution, and tracks the most suc-

cessful comparison. Furthermore, certain optimizations, applicable when only checking 

for subgraph isomorphism, need to be dropped (indicated by (†))1. Below, we show the 

pseudocode for this algorithm: 

1. 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝑖𝑠_𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑔1, 𝑔2) 

2.  𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 node 𝑛1 𝐢𝐧 graph 𝑔1  

3.  𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 node 𝑛2 𝐢𝐧 graph 𝑔2 

4. 𝑚𝑎𝑝(𝑛1, 𝑛2) 

5. 𝐢𝐟 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑛1, 𝑛2) 𝐭𝐡𝐞𝐧 

6. 𝐢𝐟 𝑚𝑎𝑝𝑝𝑖𝑛𝑔_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒( ) 

7. 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 ∷ 𝑑𝑜𝑛𝑒() 

8. 𝐫𝐞𝐭𝐮𝐫𝐧 true  

9. 𝐞𝐥𝐬𝐞 𝐭𝐡𝐞𝐧 

10. 𝑚𝑎𝑝𝑝𝑖𝑛𝑔_𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘( ) 

11. 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 ∷ 𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝑓𝑎𝑖𝑙() 

12. 𝐞𝐧𝐝 𝐢𝐟  

13. 𝐞𝐥𝐬𝐞 𝐭𝐡𝐞𝐧  
14. 𝑐𝑙𝑒𝑎𝑟_𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑛1) 

15. 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 ∷ 𝑐𝑜𝑚𝑝𝑎𝑟𝑒_𝑓𝑎𝑖𝑙() 

16. 𝐞𝐧𝐝 𝐢𝐟 

17. 𝐞𝐧𝐝 𝐟𝐨𝐫 (†) 

18. 𝐞𝐧𝐝 𝐟𝐨𝐫 

19. 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 ∷ 𝑑𝑜𝑛𝑒() 

20. 𝐫𝐞𝐭𝐮𝐫𝐧 false 

 

21.  𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑛1, 𝑛2) 

22.  𝑚𝑎𝑡𝑐ℎ𝑒𝑠 ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑚𝑎𝑡𝑐ℎ𝑒𝑠(𝑛1, 𝑛2) 

23. 𝐢𝐟 ! 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 𝐭𝐡𝐞𝐧 

24. 𝐫𝐞𝐭𝐮𝐫𝐧 false 

25. 𝐞𝐧𝐝 𝐢𝐟 

26.  𝑙1: 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑚𝑎𝑡𝑐ℎ𝑖 𝐢𝐧 𝑚𝑎𝑡𝑐ℎ𝑒𝑠 

27. 𝑒1 ← 𝑚𝑎𝑡𝑐ℎ𝑖  .  𝑒1 

28. 𝑙2: 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑒2 𝐢𝐧 𝑚𝑎𝑡𝑐ℎ𝑖  . 𝑒2𝑠  

29. 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 ∷ 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔(𝑒1, 𝑒2) 

30.  𝑚𝑎𝑝 ← 𝑔𝑒𝑡_𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑒1 .  𝑡𝑜𝑁𝑜𝑑𝑒) 

31.  𝐢𝐟 𝑚𝑎𝑝 = NULL 

32. 𝑚𝑎𝑝(𝑒1 . 𝑡𝑜𝑁𝑜𝑑𝑒, 𝑒2 . 𝑡𝑜𝑁𝑜𝑑𝑒) 

33. 𝐢𝐟 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑒1. 𝑡𝑜𝑁𝑜𝑑𝑒, 𝑒2. 𝑡𝑜𝑁𝑜𝑑𝑒) 

34. 𝐛𝐫𝐞𝐚𝐤 l2 

35. 𝐞𝐥𝐬𝐞 𝑐𝑙𝑒𝑎𝑟_𝑚𝑎𝑝𝑝𝑖𝑛𝑔(𝑒1 . 𝑡𝑜𝑁𝑜𝑑𝑒) 

36. 𝐞𝐧𝐝 𝐢𝐟 

37. 𝐞𝐥𝐬𝐞 𝐢𝐟 𝑚𝑎𝑝 = 𝑒2 . 𝑡𝑜𝑁𝑜𝑑𝑒 

38. 𝐛𝐫𝐞𝐚𝐤 𝑙2 

39. 𝐞𝐧𝐝 𝐢𝐟 

40. 𝐞𝐧𝐝 𝐟𝐨𝐫   (†) 

41. 𝐞𝐧𝐝 𝐟𝐨𝐫 

42. 𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟 ∷ 𝑑𝑜𝑛𝑒_𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔(𝑛1, 𝑛2) 

43. 𝐫𝐞𝐭𝐮𝐫𝐧 true 

Code 2. Custom, back-tracking subgraph isomorphism algorithm. 

                                                           
1 These optimizations are enabled while building the dataset graph pattern index. 



In the is_subgraph function, lines 2-5 check whether the g1 graph is subgraph-iso-

morphic to graph g2. In particular, for each combination of nodes n1 and n2, the code 

checks whether the graph reachable from n1 is a subgraph of the n2 graph, using the 

compare function. In case the n1 subgraph was compared successfully to g2 (line 5), 

and all g1 nodes were mapped (line 6), g1 is a subgraph of g2. Else, previous mappings 

are undone (lines 10, 14) and another node combination is tried. If no complete match 

was found in any comparison, g1 is not a subgraph of g2 (line 20). We note that, in case 

no n2 nodes were found that even partially match n1 (line 13-16), g1 cannot be a sub-

graph of g2; and false could be returned (at line 17). However, a partial subgraph match, 

involving a subgraph of g1, may still occur; so this code is left out.  

The compare function starts by checking for overlaps between the outgoing edges 

of n1 and n2 (neighbor_matches; line 22). In case n1 is not a leaf node and no overlaps 

are found, false is returned (lines 23-25). For each overlap, the function checks whether 

the e1 to-node is already mapped to a g2 node (line 30; to avoid infinite loops). If so, 

and if it was already mapped to the e2 to-node, edge e2 matches e1 (lines 37-38). If not, 

the e1 to-node is mapped to the e2 to-node (line 32), and the function recursively com-

pares these two to-nodes (line 33). E.g., in case no overlapping edges are found, this 

call will return false; if n1 turns out to be a leaf node, it will return true. In case n1 and 

n2 recursively match, edge e2 matches e1 (line 33-34). If not, the previously assigned 

mapping is removed (line 35) and another edge e2 (if any) is tried2. Again, at this point, 

the algorithm could return false if no matches are found for e1 (at line 40), since all e1 

edges need to be matched for a subgraph match. However, to allow identifying partial 

matches (i.e., involving a subgraph of g1), all e1 edges need to be tried; even if some 

have already failed.  

The neighbor_matches function returns true in case n1 is a leaf node; since this means 

the n1 subgraph has been checked completely. Else, it collects the overlaps between the 

outgoing edges of e1 and e2: whereby two edges match in case both of them have the 

same label; either of them represents a variable; or the e1 label represents a subproperty 

of e2. If no matches are found for any edge e1, the function returns false; else, it returns 

the overlapping edges.  

To track the largest matching subgraph of g1, a listener is notified when two edges 

are being compared (line 29), when two nodes are finished comparing (line 42), when 

a g1 node comparison failed (lines 11, 15) and when comparison is done (lines 7, 19). 

Upon finishing the subgraph comparison, the listener records the match by assigning 

dataset associated with the dataset edge to its matching query edge; together with an ID 

uniquely identifying the subgraph comparison3. 

3.2 Query Distribution 

To achieve virtual data integration, query execution is distributed across the config-

ured datasets, and the results integrated locally. In its simplest form , this involves 

splitting up a query into its smallest units (i.e., triple patterns), executing them on each 

individual dataset, and combining the results. In doing so, a query distribution system 

ensures that all results are returned, even for queries that are not resolvable by any 

                                                           
2 Multiple e2 matches for e1 are possible, and vice-versa (e2 is only matched to one e1 at a time). 
3 This unique ID is required by the query distribution algorithm (see Section 3.2). 



single dataset. Initially, such a Query Distribution Plan (QDP) consists of nm query 

sets, each representing a particular result integration:  

𝑄𝐷𝑃 = [{ 𝑡1 → 𝐷𝑥, … , 𝑡𝑖 → 𝐷𝑦 , … , 𝑡𝑚 → 𝐷𝑧 }, … ] 

𝑛 = 𝑠𝑖𝑧𝑒(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠), 𝑚 = 𝑠𝑖𝑧𝑒(𝑞𝑢𝑒𝑟𝑦), 0 < 𝑖 < 𝑚, 0 < 𝑥, 𝑦, 𝑧 < 𝑛 

Formula 1. Query Distribution Plan (QDP) 

Where 𝑡𝑖 → 𝐷𝑥 stands for an atomic subquery, i.e., executing a single triple pattern  

𝑡𝑖 on dataset 𝐷𝑥; a set of subqueries between accolades forms a query set, standing for 

a particular integration of results; and the set of query sets make up the QDP, standing 

for all possible result integrations.  

In our query distribution approach, graph patterns from an incoming query are com-

pared to the set of dataset graph patterns (see Section 2), using subgraph isomorphism 

checks. After these checks, matching datasets are assigned to the query graph edges 

(see Section 3.1, last paragraph), indicating which query triples (each corresponding to 

an edge) are collectively resolvable by particular datasets. Based on these results, given 

a query set, multiple ti matched to the same Dy (during the same subgraph check) can 

be grouped into the same subquery: 

𝑞𝑢𝑒𝑟𝑦 𝑠𝑒𝑡 = {𝑡1 → 𝐷𝑥, … 𝑡𝑖,𝑗,𝑘 → 𝐷𝑦, … , 𝑡𝑚 → 𝐷𝑧} 

𝑛 = 𝑠𝑖𝑧𝑒(𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠), 𝑚 = 𝑠𝑖𝑧𝑒(𝑞𝑢𝑒𝑟𝑦), 0 < 𝑖, 𝑗, 𝑘 < 𝑚, 0 < 𝑥, 𝑦, 𝑧 < 𝑛 

Formula 2. Grouping subqueries in query sets based on their shared dataset.  

In the query shown in Figure 3, subqueries 𝑡1, 𝑡2, 𝑡3 → 𝐴, 𝑡2, 𝑡4 → 𝐵, 𝑡1 → 𝐶  and 

𝑡5 → 𝐷 can be distinguished into their respective query sets.  

  
Figure 3. Example query matched to the configured datasets. 

In this process, it is important to consider the particular subgraph check in which the 

matching dataset was found. For instance, consider the following cases: 

 

Figure 4. Distinct graph matches when constructing subqueries. 

In case (a), part of the query (t1, t3) was matched to a particular graph pattern (1) 

from A during one subgraph check, while the remainder (t2) was matched to a different 



graph (2) from A during another check. However, these two dataset graph patterns are 

disjoint; no single instance graph exists that covers both graph patterns4. As such, this 

particular query set will never yield any results, and need to be removed from the QDP. 

Case (b) illustrates that this reasoning is only valid when considering connected query 

triples (i.e., with shared variables). Here, an intermediate query triple t2 is executed on 

dataset B, which may yield results that connect t1 with t3 ; in other words, an instance 

graph, integrated from both datasets, may exist that connects all 3 query triples.  

Further, we note that triple patterns executed on the same dataset, but not sharing 

any variables, should ideally be kept separate. Putting these into the same subquery will 

lead to a Cartesian product, resulting in a huge number of results returned by the remote 

dataset; whereas the associated local computational work is comparatively low. 

Below, we show the pseudocode for post-processing the QDP, based on subgraph 

matches: 

1.  𝑙1: 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑞𝑢𝑒𝑟𝑦 𝑠𝑒𝑡 𝐢𝐧 𝑞𝑑𝑝 

2. 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑖𝑒𝑠 ← 𝑔𝑟𝑜𝑢𝑝 𝑜𝑛 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑎𝑛𝑑 𝑠ℎ𝑎𝑟𝑒𝑑 𝑣𝑎𝑟𝑠 (𝑞𝑢𝑒𝑟𝑦 𝑠𝑒𝑡) 

3. 𝐟𝐨𝐫 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 𝐢𝐧 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑖𝑒𝑠 

4. 𝑙2: 𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝑡1 𝐢𝐧 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 

5.  𝐟𝐨𝐫 𝐞𝐚𝐜𝐡 𝐨𝐭𝐡𝐞𝐫 𝑡2 𝐢𝐧 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 

6. 𝐢𝐟 𝑡1 . 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 . 𝑖𝑑 ≠ 𝑡2 . 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 . 𝑖𝑑 𝐭𝐡𝐞𝐧  
7. 𝐫𝐞𝐦𝐨𝐯𝐞 𝑞𝑢𝑒𝑟𝑦 𝑠𝑒𝑡 𝐟𝐫𝐨𝐦 𝑞𝑑𝑝 

8. 𝐛𝐫𝐞𝐚𝐤 𝑙2 

9. 𝐞𝐧𝐝 𝐢𝐟 

10. 𝐞𝐧𝐝 𝐟𝐨𝐫 

11. 𝐞𝐧𝐝 𝐟𝐨𝐫 

Code 5. Processing the QDP based on subgraph matching results. 

For each query set, query triples are grouped into subqueries based on assigned da-

taset and shared variables (lines 1-2). If one of these subqueries involves two query 

triples, assigned to the same dataset but associated with a different dataset graph pattern 

(lines 4-6), the query set is removed from the QDP (lines 7-8).  

After generating a QDP, it is passed to the execution engine. For each subquery, the 

engine creates and executes a SPARQL query on the associated remote dataset. To in-

tegrate subquery results from a single query set, we apply a hash join. Results from 

multiple query sets are combined via a union operation. Since the same subquery-on-

dataset combination will occur in multiple query sets (see Formula 1), the engine caches 

previous results for later re-use.  

4 Evaluation 

This section presents a preliminary evaluation of our query distribution approach. In 

our evaluation, a client app poses a query that requires data from two datasets to be 

integrated. To illustrate the usefulness of graph-based query distribution, we compare 

our approach to a straightforward predicate-based approach, which distributes incom-

ing queries solely based on query predicates and indexed dataset predicates. For each 

                                                           
4 Else, they would have been combined during the graph extraction process (see Section 2). 



query triple, the approach checks which datasets contain its concrete predicate; and then 

executes the query triple (potentially grouped in a subquery) on the found datasets.  

Below, we elaborate on the evaluation setup, including current implementation com-

ponents. Then, we discuss the results of each query distribution approach. 

4.1 Setup 

We ran all experiments 10 times, and took the average of the performance times. 

Below, we elaborate on other relevant aspects: 

- Dataset & query 

 Dataset 

Using interlinks made available by DBPedia5, we extracted two small datasets from 

DBPedia (3846 triples; 487 Kb) and Geonames (1210 triples; 157 Kb). Both datasets 

supply different data on the same resources; whereby the extracted Geonames dataset 

uses DBPedia resource URIs to allow for data integration. Both datasets can be found 

online [19]. Although these datasets are relatively small, we will show that these a) 

already result in non-trivial execution times and b) indicate significant differences in 

performance between the evaluated approaches. Respectively, 7 and 2 distinct graph 

patterns were found in the extracted DBPedia and Geonames datasets. 

 Query 

Our evaluation executes the following query, selecting the label, type, coordinates and 

website of geographic entities (namespaces omitted for brevity): 

1.  SELECT ∗ WHERE { 
2.  ? 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝑟𝑑𝑓𝑠: 𝑙𝑎𝑏𝑒𝑙 ? 𝐥𝐚𝐛𝐞𝐥 .  
3.  ? 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒 ? 𝐭𝐲𝐩𝐞 .  
4. ? 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝑤𝑔𝑠: 𝑙𝑎𝑡 ? 𝐥𝐚𝐭 .  
5. ? 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝑤𝑔𝑠: 𝑙𝑜𝑛𝑔 ? 𝐥𝐨𝐧𝐠 . 
6. ? 𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝑑𝑏𝑝: 𝑤𝑒𝑏𝑠𝑖𝑡𝑒 ? 𝐰𝐞𝐛𝐬𝐢𝐭𝐞 . } 

Code 6. Evaluation query. 

This query returns 51 results on the integrated dataset. 

- Hardware 

 Dataset 

Both datasets were made accessible using the Apache Fuseki [17] SPARQL server, 

deployed on a Dell PowerEdge 2950 Server running Windows Server 32-bit, with (2) 

Intel Xeon 2.33 GHz and 64 Gb RAM. The datasets were indexed on a Lenovo Think-

pad, running Windows 7 64-bit, with Intel Core i7-3520M 2.90 Ghz and 8Gb RAM.  

 Mobile 

We used a LG Nexus 5 (model LG-D820) running Android 5.1.1 (Lollipop), with 2.26 

GHz Quad-Core Processor, 2Gb RAM and 32Gb storage. The mobile device connects 

to the SPARQL server over an Internet connection6 (using WiFi).  

                                                           
5 Such interlinks indicate resource equivalence with other major datasets. 
6 To mimic real-life conditions, the SPARQL endpoint was not hosted on the same local network. 



- Libraries: to index datasets, we utilize Apache Jena 2.11.0 [12]. For performing 

query distribution on mobile systems, we rely on AndroJena 0.5 [18]. 

4.2 Results 

Figure 5 shows the evaluation query graph after matching to indexed graph patterns, 

together with the resulting query sets. Although the DBPedia dataset (DB) contains 

individual triples matching all query triples, no single connected instance graph con-

nects all 5 query triples (see DB.1 and DB.2 graph matches). Therefore, resolving this 

query requires data integration with the Geonames dataset (GN). Based on the graph 

matches shown in the query graph, two query sets are generated, each with a coherent 

subquery assigned to one of the datasets.  

 
Figure 5. Query graph & subqueries for evaluation query. 

For the predicate-based approach, we consider two configurations: a configuration 

where joins are not outsourced (no-outsource); and a configuration where, per query 

set, query triples assigned to the same dataset are grouped into the same subquery (out-

source). In Table 1, we indicate the number of query sets, remote query executions and 

total number of individual query results to be joined. 

 graph-based 
predicate-based 

no-outsource outsource 

# query sets 2 8 8 

# query exec. 4 8 15 

# indiv. results 151 1030 451 

Table 1. Number of query sets and remote query executions. 

The overall number of query executions is relatively low, since an internal cache is 

kept to avoid re-sending the same subquery (see discussion after Code 5). We also note 



that, when outsourcing queries, additional subqueries will be constructed. Therefore, 

the potential for re-using cached results is reduced, and the overall number of query 

executions is comparatively increased (see predicate-based > outsource column). At 

the same time however, the local join work is reduced, as illustrated by the total number 

of individual query results.  

Table 2 shows the performance results, where ID stands for identifying relevant da-

tasets and QDP for constructing the dataset (see Code 5): 

 graph-based 
predicate-based 

no-outsource outsource 

parse query 8 

ID 4 0.1 0 

QDP 40 0 0.7 

execute 529 2065 1856 

join 16 1654 19 

total 597 3728 1883 

Table 2. Performance results (ms). 

Since less queries are sent to the datasets, executing queries takes much less time for 

graph-based. Since pred-based > outsource and graph-based both outsource join work 

to the remote dataset, locally joining results is much faster as well. Despite its extra 

overhead when identifying relevant datasets and constructing the QDP, our graph-based 

query distribution approach outperforms either predicate-based approach.  

Creating the graph index and predicate index takes ca. 4431ms and 80ms, respec-

tively. We note that that the graph creation process only needs to be applied in case the 

dataset contents are updated significantly, causing a change in its graph patterns. 

Related work 

The Distributed ARQ (DARQ) [3] and Semantic Web Integrator and Query Engine 

(SemWIQ) [4] systems keep an index with summary dataset info. DARQ keeps so-

called service descriptions, including found predicates, constraints on subjects and ob-

jects occurring with these predicates, and statistical data. The SemWIQ system main-

tains a catalog per data source, which keeps a list of classes and their number of in-

stances, as well as a list of properties and their number of occurrences. Given a posed 

query, these indices are used to determine which triple patterns should be sent to which 

datasets. As such, these works do consider join outsourcing; which has the potential for 

large performance gains, as shown by our evaluation. 

The approach in [20] resembles our work, as it focuses on indexing found predicate 

sequences or paths. This allows identifying datasets that can handle particular query 

predicate paths, with the goal of reducing local join work. In contrast, our approach 

supports outsourcing any kind of subquery, and is not just limited to path-based queries. 



5 Conclusions & Future work 

In this paper, we presented a graph-based query distribution approach, focusing on 

outsourcing subqueries to relevant remote datasets. We presented a mechanism for in-

dexing graph patterns in remote datasets; a custom, backtracking subgraph isomor-

phism algorithm; and our graph-based query distribution mechanism. Our evaluation 

shows that our approach has the potential to significantly reduce the number of queries 

to be sent to remote datasets, as well as minimize the resulting local join work.  

Many avenues for future work exist. By keeping summary data on graph pattern 

nodes (cfr. [3]), the “joinability” between graph patterns of different datasets can also 

be considered when ruling out query sets (see Figure 4 (b)). Edges in extracted graph 

patterns can be annotated with the number of associated instance graphs, to guide join 

optimizations. Currently, extracted graph patterns are kept per dataset. By keeping a 

single index, equivalent graph patterns from multiple datasets can be merged, thus re-

ducing the number of subgraph isomorphism checks. 

To allow identifying partial subgraph matches, our subgraph checking algorithm 

drops a number of optimizations that may result in serious performance gains. Studying 

other methods of efficiently determining partial query matches is future work. Further-

more, although subgraph isomorphism checking is known to be an NP-hard problem, 

many algorithms have been proposed over the years that solve it in a reasonable time 

[16]. In case our straightforward, custom algorithm leads to problematic performance 

for larger datasets, future work may involve studying and re-using other algorithms.  
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