Utilizing Automatic Coreference Resolution with the
Jellyfish Question Answering System

Chris Whidden

October 11, 2007

Abstract

The Dalhousie University NLP group has a Question Answering system
named Jellyfish. This is our fourth year of participating in the TREC QA
track, and it has brought many improvements. We have added GATE pro-
cessing and coreference resolution and used it to improve the target marking
of Jellyfish. Additionally, a new question relation marking phase was added
which identified synonyms and subtypes of question relations.

A thorough analysis of the previous year’s question set showed that many
errors were due to coreference, passage retrieval, matching, or category errors.
The analysis can be extended next year, and can be collaborative with its wiki.
This report details improvements to Jellyfish that focus on the coreference
and matching errors.

A GATE processing step was added to Jellyfish to provide coreference
resolution. The first use of this new information improved the target marking
phase of Jellyfish. Other uses of this information may be possible. These
improvements focus on the coreference errors identified in the analysis.

A question relation marking phase was also added to Jellyfish. This marks
relations that are found in a question involving one or more entities, since
they are likely to be found in an answer to the question. Synonyms and
subtypes of the question relation are also marked. The new question relation
marking provides more information for matching rules to find answers.

The results of the improvements are promising. Despite a large increase
in running time, adding coreference resolution to Jellyfish increased accuracy
from 7.5% to 9.6%, a 28% improvement. With qrel marking, as well, this
rose to an accuracy of 10.6%, a 41.3% improvement. The new target marking
worked very well with people, since it marks pronouns and last names. Events
and locations were not as well suited.

Future research should look into speeding up the GATE processing and
reducing the size of the processed passages. Pre-processing the entire corpus,
may be a useful idea. Using the processed passages for other improvements
should be explored.

Contents

1 Introduction
1.1 Question Answering
1.2 The Jellyfish Question Answering System
1.3 The General Architecture for Text Engineering (GATE)
1.4 The Text REtrieval Conference (TREC)
1.5 Related Work o

2 Analysis of 2006 Questions
2.1 Analysis Format
2.2 Anmalysis Wiki oo
2.3 Analysis Results L
2.3.1 Common Problems,
2.3.2 Possible Improvements oo

3 Jellyfish Improvements
3.1 GATE Processing o e
3.1.1 Benefits
3.1.2 Disadvantages oo
3.1.3 Alternatives
3.2 Target Marking Lo
3.2.1 Coreference Resolution Phase
3.2.2 Target Marking Phase
3.3 QREL Marking

W W N = =

S O UL U

S © O O w13

4 Results

5 Future Work

6 Conclusions and Recommendations
7 Acknowledgements

ii

12

13

14

List of Tables

1 Target Marking Comparison

List of Figures

1 Example Question Analysis

iii

1 Introduction

1.1 Question Answering

Question Answering is a field of Natural Language Processing that attempts to
answer questions stated in a natural language. Natural languages, such as English,
are very difficult to process because of ambiguity.

Open-Domain Question Answering aims to extract concise, complete answers
from large document collections to questions written in a natural language. Ques-
tion Answering in this report is restricted to Open-Domain Question Answering.

An important problem that occurs when answering a question is coreference
resolution, identifying multiple references to the same entity, Using coreference
resolution to identify multiple forms of a question’s target can greatly improve
the accuracy of question answering. Another important problem is identifying
synonyms and alternate forms of a question relation.

1.2 The Jellyfish Question Answering System

The Dalhousie University Natural Language Processing (DNLP) group has a Ques-
tion Answering system named Jellyfish [7]. This is our fourth year of participating
in the The Text REtrieval Conference (TREC) Question Answering track, and we
have made several improvements to Jellyfish.

Jellyfish consists of several phases, including passage retrieval, question pro-
cessing, target marking, question category marking, and matching. It is based
on the “mark and match” approach to question answering. This approach uses
regular expressions to mark features of a question that are located in passages.
Matching regular expressions use those marked features to locate answers [1].

Each news article that Jellyfish examines is one passage. Passages are selected
and ranked from the news article corpus, and the top 50 or 100 for each ques-
tion can be examined by Jellyfish. Passages can be retrieved using information
extraction techniques on a question’s target, or, for increased accuracy, on the full
question.

The question processing phase was previously overhauled. [1] The main idea
of this phase is based on finding the syntactic structure of a question. Questions
with the same syntactic structure are processed with the same regular expressions
and that syntactic structure determines their characteristics. Their differences are
be handled by later processing.

Questions can have several characteristics, including a target, a category, one
or more entities, question relations, dates, and locations. The target of a question
is an entity that the question is generally about: the subject of the question. The
category of a question defines what kind of question it is, or the expected answer

type. A LOCATION question asks for a location, while a PERSON question asks
for a person’s name. The entities involved in a question and the relations between
them are also important. Often, one of these entities will be the question’s target.
Additional context information such as the date or location of the answer are also
useful.

The target marking phase marks the question’s target in each passage retrieved
for that question. Jellyfish previously used a simple full text match to mark
question targets. We have added a coreference resolution module to our question
processing system using the General Architecture for Text Engineering (GATE).
Our goal was to explore using more robust processing and advanced techniques to
improve Jellyfish. The first test of this coreference resolution module was updating
Jellyfish’s target marking.

Similar to target marking, question category marking involves marking possible
answers to the question. Regular expressions specific to a category are used to
mark these.

Another addition to the system is marking relations that are found in questions.
These relations, as well as their synonyms are likely to be found in an answer to
the question. The relations and synonyms are identified using WordNet, a lexical
reference system that is currently very popular in Question Answering [8].

Matching is the phase of Jellyfish that selects answers to the question. Regu-
lar expressions containing the marked elements identify those answers. Updated
patterns were created that use the marked relations.

1.3 The General Architecture for Text Engineering (GATE)

The General Architecture for Text Engineering (GATE) provides many com-
ponents for language processing tasks [2]. We used the information extraction
and coreference resolution modules to provide coreference resolution for Jellyfish.
GATE is simple to use, robust, and did not require a large amount of development
effort to implement coreference resolution. However, for the large amount of text
required in question answering, using coreference resolution with GATE can be
very slow.

GATE uses processing resources (PRs) to process text. Coreference resolution
and its required PRs are part of the ANNIE information extraction tools of GATE.
The coreference resolution PR is called OrthoMatcher and requires several other
PRs to be run on the text first. In order, they are the English Tokeniser which
breaks up the document into tokens; the Gazetteer which identifies currency, dates,
and other types; the Sentence Splitter which identifies sentences; the POS Tagger
which identifies parts of speech; and the NE Transducer which identifies named
entities such as people and organizations. We also run the Pronominal Corefer-

encer which resolves coreference from pronouns. This set of processing resources
is specified in a GATE gapp file that GATE can load.

GATE adds information about text in annotations. These annotations can con-
tain features in a feature map. For example, a Person annotation has a “matches”
feature that identifies annotations which corefer with it. A GATE PR creates,
reads, and edits annotations on the text.

1.4 The Text REtrieval Conference (TREC)

TREC is an annual conference that provides several tracks for the different areas of
text retrieval [3]. We are interested in the QA track. TREC question answering is
about giving a complete and concise answer to a question in a natural language [4].
Each year, TREC provides a document corpus, questions, and passages for those
questions.

Previously, TREC used the ACQUAINT corpus of news articles. This is the
first year that the ACQUAINT-2 corpus of news articles has been used. Addition-
ally, this year sees the introduction of a seperate blog corpus.

The main task of the TREC QA track is to answer a set of several hundred
questions. Questions are grouped by their target, which is given. Questions can
be FACTOID, LIST, or OTHER. FACTOID questions have one answer, LIST
questions have multiple answers, and OTHER questions require interesting facts
about the target that do not answer previous questions.

Also provided by TREC are the top results from the PRISE search engine, for
each target. This allows groups who do not wish to work on passage retrieval to
participate in the competition.

There is also often a sub task of the QA track. This year the sub tasks involved
complex relation questions, and had an optional interactive component. We chose
not to participate in the sub task, so that we could concentrate on the main task.

1.5 Related Work

Several groups used automatic coreference resolution for question answering in the
2006 TREC QA Track, including Fudan University [10], The Language Computer
Corporation [5], and MIT CSAIL [6].

Fudan University, similar to many systems, uses coreference resolution to find
references to the question target in the question. This does not require the sort
of deep processing that this report is about. Jellyfish previously handled this sort
of coreference resolution using regular expressions.

The Language Computer Corporation’s CHAUCER resolves pronominal and
nominal coreference within passages, similar to our system.

Likewise, MIT’s START question answering system handles coreference reso-
lution using information about several language features.

2 Analysis of 2006 Questions

To determine the possible improvements that could be made to Jellyfish for this
year’s set of TREC questions, we performed an in-depth analysis of how Jellyfish
handled the factoid questions from last year’s set.

The first part of the analysis was a complete Jellyfish run of the 2006 question
set using the passages provided by TREC from the PRISE information retrieval
engine. The format for this year’s question set is unchanged, so this should provide
a good comparison. We limited the analysis to the PRISE passage set to focus on
the system and not on passage retrieval.

From this complete run we created a script that would print out data about
the question as well as possible answers for the question. The possible answers
were manually inspected to remove sentences which did not answer the question.
In addition, errors in Jellyfish’s handling of the question were noted. The analysis
was then placed on an internal wiki, to allow collaborative editing and viewing.
After the analysis was finished, we determined that many errors were due to
coreference issues and that adding a coreference resolution module to Jellyfish
could potentially improve the accuracy of our Question Answering system.

2.1 Analysis Format

The analysis follows a simple format for each question. First, there is the question
number and the question. This is followed by the question category and answer as
determined by Jellyfish. The answer is marked as CORRECT, INCORRECT, or
INEXACT. Patterns for a correct answer are next. These are followed by manually
entered errors that Jellyfish made in processing the question. The last part of the
analysis is a list of sentences that matched the answer patterns from the passages
that Jellyfish examined. An example analysis can be found in Figure 1.

The possible processing errors were coreference, category, and other. A coref-
erence error indicates that the target of the question was not properly identified, a
category error indicates that an incorrect category has been assigned to the ques-
tion, and any other errors are identified as other. In Figure 1, the target, Warren
Moon, is present in the question as “Moon” but is not identified as the target
by Jellyfish. This is a coreference error. Also, Jellyfish has assigned the category
LOCATION to a question asking for a position, which is a category error.

The list of potential answers were manually examined. Only sentences that
could reasonably be expected to answer the question were retained. The criteria

Figure 1: Example Question Analysis

141.1 What position did Moon play in professional football?

* Category: LOCATION

* Answer: Cleveland INCORRECT

* Patterns:
* quarterback

* Processing Errors:
* Coreference: Moon
* Category: position

* Passages:
* Warren Moon can threaten to retire, but the veteran
quarterback can’t force the Seahawks to budge from their
position on renegotiating his contract.

for retaining a sentence included containing the question target, being of the right
category, and supporting other parts of the question such as a date or location. To
limit the size of the analysis, only five answer passages were kept for each question.

2.2 Analysis Wiki

To allow for collaborative editing and viewing, the results of the analysis were
placed on an internal wiki. A wiki is a web page that allows any user with the
appropriate permissions to edit the page. Members of the Dalhousie Natural
Language Processing Group working on Jellyfish can use this data to determine
how well Jellyfish is currently working, areas to focus interest on, make changes
to the analysis, and make comments on the analysis.

2.3 Analysis Results

Results were obtained for 386 factoid questions from the 2006 TREC question set.
Since there were 403 factoid questions in total, it is uncertain what happened with
the missing 17 questions. Because of this, all results of the analysis will be with
respect to those 386 questions.

The analysis showed 140 (36%) coreference errors, 82 (21%) category errors,
334 (86%) found categories, and 2 (< 1%) other errors (strange question process-
ing). Also, 59 (15%) questions did not have any answer in the passages Jellyfish
examined.

2.3.1 Common Problems

Aside from the processing errors, there were several common reasons that Jelly-
fish arrived at the wrong answer: coreference errors, no answer in the provided
passages, matching errors, and difficulty identifying members of a category.

Aside from the coreference problems in processing the question, Jellyfish must
also deal with coreferences in the article passages. An entity can be referred to by
its name, by a pronoun, by its type, or by shorter versions of each. For example,
Albert Einstein could be referred to by “Albert Einstein”, “He”, “the scientist”, or
even simply “Einstein”. Each of these could be found in an answer to a question
about that target.

Many answers were not located in the set of passages that was used for this
analysis. The PRISE passages provided by TREC are the top documents contain-
ing the question target. They do not use the questions to provide more contex, so
the answer to a question may sometimes only be found by using custom informa-
tion retrieval on the full document collection.

Some answers are missed simply because of incorrect matching expressions in
Jellyfish. Also, many answers returned by Jellyfish are incorrect because it is diffi-
cult to distinguish which answer is correct from multiple passages that contain the
question target, a suitable match for the question category, and some supporting
context from the question.

Some categories are currently not handled by Jellyfish such as position in the
above example. If special cases such as these are not specifically handled, it is
difficult to answer the question correctly. However, it is also difficult to specify
many categories automatically.

2.3.2 Possible Improvements

Each of the common problems can be improved upon. A coreference resolution
module can be added to Jellyfish to determine what references are to the same
entity. A document retrieval engine can be used to provide better passages. Match-
ing expressions can be improved. Category matching can also be improved.

Since there are many cases where coreference problems were encountered by
Jellyfish, we chose to add a coreference resolution module to Jellyfish. The bulk
of this report will focus on that. I will also detail matching improvements using
relations found in questions.

However, we are also improving on the other areas. Other DNLP members are
experimenting with document retrieval, matching improvements, and category
improvements.

3 Jellyfish Improvements

Based on the analysis of the previous year’s questions, we decided that adding a
coreference resolution module to Jellyfish could lead to a large improvement in
accuracy. Of several alternatives, we chose to use the University of Sheflield’s
GATE to provide coreference resolution [2]. As a first step in using coreference
resolution, we updated Jellyfish’s target marking component to utilize coreference
resolution. One additional area of improvement extends the mark and match
approach of Jellyfish to mark relations that are found in questions.

3.1 GATE Processing

The General Architecture for Text Engineering (GATE) provides many com-
ponents for language processing tasks [2]. We used the information extraction
and coreference resolution modules to provide coreference resolution for Jellyfish.
GATE is simple to use, robust, and did not require a large amount of develop-
ment effort to implement coreference resolution. However, for the large amount
of text required in question answering, using coreference resolution with GATE
can be very slow. We examined several alternatives, including creating our own
coreference resolution module, and using the coreference resolution provided with
OpenNLP.

3.1.1 Benefits

GATE came highly recommended and has been used by several substantial projects
Additionally, GATE is actively maintained and developed since GATE is open
source under the Lesser GNU Public License (LGPL). Since GATE provides a
coreference resolution module, we did not have to spend a significant amount of
time examining typical methods of coreference resolution and implementing our
own. Although that could have been a useful research effort, it was not the fo-
cus of our project. GATE also provides a graphical user interface for testing and
development, although we used it primarily for trying out GATE. Finally, since
GATE provides many other language processing components, the effort used to
integrate GATE with Jellyfish may also allow us to add other features to Jellyfish
more easily and quickly in the future.

3.1.2 Disadvantages

Unfortunately, like any other system, those benefits come with a few tradeoffs.
GATE is written in Java and provides Java APIs for its components. Jellyfish
is written in Perl, so we were required to develop seperate Java programs to use

GATE and integrate Jellyfish with them. This is not a major problem, but clearly
it would be difficult to maintain many interrelated components which were all
written in different languages.

Question Answering requires examining a large amount of text, and heavy
processing such as coreference resolution can be very computationally expensive.
Jellyfish examines 50-100 news articles for each question, and processing them
with GATE requires a great deal of time. Our new coreference resolution phase
required approximately one day to process the previous year’s set of questions with
50 passages per question. However, this year’s set of questions with 100 passages
per question required almost a week. Passages are processed independently, so we
are currently uncertain of the reason for the increase to be more than the two days
that we expected. This year’s TREC uses a new document collection, so possibly
the average article size is larger or some strange construct that GATE takes some
time in processing is present more often. Since the PRISE passage set does not
differ among the questions for a target, this running time can be improved greatly
when using the PRISE passages. We can achieve better performance by using our
own information retrieval, however, which requires processing passages for each
question.

One other disadvantage of adding GATE processing is the space required for
the processed passages. GATE provides two output formats. One format is a
specialized GATE format that stores a full graph of annotations. This format
increased the size of a passage by an average of 229x. The other format is an
inline xml file which stores annotations as tags. This format increased the passage
size by an average of 40x. The more compact inline format is easier to use with
other programs, but cannot handle cycles and overlapping tags. Since we are not
interested in overlapping tags and the inline format gave a space improvement of
5.7x, we chose to use that format. GATE also allows database backed datastores,
but there was insufficient time to test one. Both formats store information that
is currently redundant to Jellyfish, but may be useful in the future. Removing
some of this extraneous information could potentially reduce the space requirement
greatly.

3.1.3 Alternatives

The other alternatives that we examined were creating our own coreference resolu-
tion module and using the one provided by the OpenNLP project [9]. We quickly
decided against creating our own coreference resolution module, due to the time
and effort required in development and maintenance. Both of our choices are open
source and provide many useful features.

OpenNLP is currently used in the question processing component of Jelly-

fish [1], so it is already familiar to us and would not have required as much inte-
gration work. However, it does not seem to be as actively developed as GATE is,
since its newest release was in November of 2005. Additionally, GATE was rec-
ommended to us and is used in several larger projects, so we chose to use GATE
to provide coreference resolution for Jellyfish.

3.2 Target Marking

As a first test in using coreference resolution with Jellyfish, we chose to update
Jellyfish’s target marking. The target of a question is provided with the question
and is usually a person, organization, or event. Jellyfish marks each location
in passages where the target is located. These marked targets are then used in
matching expressions to find potential answers to the question.

The previous method of target marking only used an exact match for the
target. This meant that any references to the target by last name, type, or via
pronouns were ignored by Jellyfish. Our aim was to process passages with GATE
and mark coreferences with the target. We split this into two phases, a Coreference
Resolution Phase and a Target Marking Phase, so that the coreference data can
potentially be used in other areas of Jellyfish.

3.2.1 Coreference Resolution Phase

The Coreference Resolution Phase processes passages with GATE and stores them
for later use. Jellyfish stores the passages for each question one per line in a file.
We tested running GATE coreference resolution on these files, but this resulted in
poor accuracy and performance. Each passage is thus processed individually with
GATE and then they are assembled back into a single file per question.

The Coreference Resolution Phase initializes GATE, loads processing resources
from a gapp file, process each passage for each question, and outputs the results
to a new file for each question. A gapp file uses an xml-based format that specifies
the processing resources and their options. They can be manually created or saved
from a GATE GUI session.

3.2.2 Target Marking Phase

The Target Marking Phase is our first application of the GATE coreference res-
olution data. This phase intializes GATE, loads the processing resources from
the gapp file, processes the target, loads the GATE processed passages from the
previous phase, finds and marks each token that corefers to the target for each
question and passage, and outputs each of those passages to a file per question
with only the new target markings.

As previously mentioned, targets can be a person, organization, or event. Some
targets, especially event targets, may never appear in the passages exactly. Ad-
ditionally, GATE’s coreference resolution only works when an entity is identified
as a person or organization. Thus, our Target Marking phase processes targets
to identify a substring of the target that contains a person or organization, using
GATE.

To find entities that corefer with the processed target, we search GATE’s
listing of “annotations”, GATE’s version of tags, for ones that match the processed
target exactly. The coreference resolution phase of GATE added a “feature” to
the annotation called “matches”. This feature contains a colon seperated list of ID
numbers which correspond to annotations that corefer with the annotation. We
maintain a list of targets, to which these matching annotations are added, unless
it already contains them. Exactly matching annotations are also checked against
the list. When finished, we have a list of target annotations. The passage is then
output with each of the target annotations marked.

3.3 QREL Marking

Jellyfish marks several things to use for matching, including the question target
and strings of the question category. One thing it does not mark is question
relations. A question relation is a relation involving one or more entities in the
question, usually the target. For example, the question “How did Beethoven die?”
has the relation die involving Beethoven. The question processing component of
Jellyfish identifies these relations, and the matching component includes rules to
match them. However, only exact matches of the question relation were previously
found. Different tenses and synonyms for “die” such as “died” or “was killed” were
ignored.

The QREL Marking component of Jellyfish uses WordNet [8] to identify syn-
onyms of question relations. First the question relation is reduced to a base form
by wordnet. Then each word of the question passages is examined to see if it has
the same base form, is a synonym, or has a subtype of the same base form. If so,
it is marked as a QREL.

The matching expressions were then updated to use these marked QRELs.

4 Results

Adding coreference resolution to Jellyfish showed a marked improvement at the
expense of running time. As previously mentioned, coreference resolution is com-
putationally expensive. The new Coreference Resolution phase required approx-
imately one day to process the previous year’s set of questions with 50 passages

10

Question | Target Coreference Total Marked Correct Accuracy Recall
141 Warren Moon YES 11 10 10 100% 91%
153 Alfred Hitchcock YES 11 9 9 100% 81%
167 the Millennium Wheel YES 8 0 0 100% 0%
196 Adoption of the Euro YES 2 1 1 100% 50%
213 Meg Ryan YES 33 31 31 100% 94%
Total YES 65 51 51 100% 63%
Average YES 13 10.2 10.2 100% 78%
141 Warren Moon NO 11 2 2 100% 18%
153 Alfred Hitchcock NO 11 9 9 100% 81%
167 the Millennium Wheel NO 8 0 0 100% 0%
196 Adoption of the Euro NO 2 0 0 100% 0%
213 Meg Ryan NO 33 7 7 100% 21%
Total NO 65 18 18 100% 28%
Average YES 13 3.6 3.6 100% 24%

Table 1: Target Marking Comparison

per question However, this year’s set of questions with 100 passages per question
required almost a week, even though passages are processed independently.

With no improvements, Jellyfish had an accuracy of 7.5% on the previous year’s
question set. With coreference-based target marking, Jellyfish had an accuracy of
9.6%, a 28% improvement. With qrel marking, Jellyfish had an accuracy of 8.5%,
a 13% improvement. With coreference-based target marking and qrel marking,
Jellyfish had an accuracy of 10.6%, a 41.3% improvement. Clearly both new
features provide a significant improvement to the system.

It is difficult to characterize the recall or performance of the new coreference-
based target marking. Since any exact match of the target is found, similar to the
previous target marking, as well as coreference matches, the recall must necessarily
increase. The accuracy of a target match likely decreases, since errors may be made
with the coreference resolution.

To provide some idea of the recall and performance, we randomly chose five
passages, each from different questions to manually compare the target marking.
Table 1 shows the Question Number, the Question Target, the system type, the
total number of coreferences, the number of coreferences marked by a system, the
number of correct coreferences marked by a system, the accuracy, and the recall.

From that comparison, we can see that the new target marking works very well
with people, such as Warren Moon, Alfred Hitchcock, or Meg Ryan, since it marks

11

pronouns and last names. Events and Locations such as the Millenium Wheel or
the Adoption of the Euro are not as well suited. Both systems showed 100%
accuracy for this small sample. However, the previous target-marking method
had an overall 28% recall and a per-question average of 24% recall, while the new
target-marking improved this to an overall 78% recall and a per-question average
of 63%. This simple comparison showed a good improvement in recall without a
drop in accuracy.

5 Future Work

There are several areas of the new improvements that call for future research,
including analyzing this year’s question set, speeding up the GATE processing,
reducing the size of the processed, passages, pre-processing the entire corpus,
prioritizing targets, and using the processed passages for other improvements.

The question analysis should be extended for next year. This will show what
should be improved for next year’s TREC, and give a better idea of how much
the system has improved this year. One area to look into is allowing a question
analysis to be updated to reflect the current system. Since a question analysis is
created automatically and then updated manually, it can not be updated with the
current system’s answers easily.

Due to the large amount of time required for the coreference resolution pro-
cessing, methods should be explored to reduce its running time. Since the newer
passages required a disproportionate increase in time compared to their increase in
number, one area to examine is the difference between the two passage collections.
Perhaps they are much larger on average or more often contain constructs that
slow the processing.

Additionally, the large amount of space required to store the processed passages
should be examined. Redundant or irrelevant data may be removable. The use
of database backed datastores should be examined, as well as the advantages and
disadvantages of compression.

One method to greatly increase the online speed and simplicity of the target
marking, as well as future improvements that use the processed passages, would
be to pre-process the entire data collection. This may, however, require a lot of
time and space if the previous two areas are not improved. The time would only
be required once, so this would provide a tradeoff in upfront time for later speed.

Currently target marking is a binary process; a target is either marked or not
marked. There could potentially be an improvement in accuracy if targets were
ranked. For example, exact matches could be ranked higher than partial matches,
or targets that are marked more often could be ranked higher. This would add

12

complexity, but may be useful.

The final avenue to explore is utilizing the coreference-processed passages for
other improvements. Other than target marking, coreferences could be used to
mark possible answers. Other uses for the processed passages should be researched.

6 Conclusions and Recommendations

The Dalhousie University NLP group has a Question Answering system named
Jellyfish. This is our fourth year of participating in the TREC QA track, and it has
brought many improvements. We have added GATE processing and coreference
resolution and used it to improve the target marking of Jellyfish. Additionally,
a new question relation marking phase was added which identified synonyms and
subtypes of question relations.

A thorough analysis of the previous year’s question set is vital to understand
possible improvements that can be made to the system. Our analysis can be
extended for next year, and can be collaborative with its wiki. The analysis
showed that areas to focus on were coreferences, passage retrieval, matching, or
category errors.

Adding coreference resolution to Jellyfish showed a marked improvement at
the expense of running time. Its accuracy increased from 7.5% to 9.6%, a 28%
improvement. With qrel marking, as well, this rose to an accuracy of 10.6%, a
41.3% improvement. Clearly both new features provide a significant improvement
to the system.

From our simple comparison of the new target marking to the old, we saw that
the new target marking works very well with people, since it marks pronouns and
last names. Events and Locations were not as well suited. This simple comparison
showed a good improvement in recall without a drop in accuracy. Both systems
had 100% accuracy. The new target-marking improved recall from 24% to 63%.

Adding coreference resolution to a question answering system can bring a large
improvement. The increase in running time and space can be dramatic, however.
Provided that these issues can be mitigated, I recommend adding a coreference
resolution phase to question answering systems.

Marking question relations, their synonyms and their subtypes can also im-
prove a question answering system that uses matching rules on marked character-
istics. Since this improvement provides a significant benefit for a small increase in
running time, I recommend using it in compatible systems.

Finally, new methods should be explored to speed up the GATE processing and
reduce the size of the processed passages. Pre-processing the entire corpus, pri-
oritizing targets, and using the processed passages for other improvements should

13

be the subject of future research. This year’s question set should be thoroughly
analyzed when TREC results are available.

7

Acknowledgements

This work was supported by an NSERC USRA

References

1]

T. Abou-Assaleh, N. Cercone, J. Doyle, V. Keselj, and C. Whidden, DalTREC
2005 QA system Jellyfish: Mark-and-match approach to question answering.,
The Fourteenth Text REtrieval Conference (TREC 2005) Proceedings, 2005.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan, GATE: A frame-
work and graphical development environment for robust NLP tools and appli-
cations, Proceedings of the 40th Anniversary Meeting of the Association for
Computational Linguistics, 2002.

E. M. Voorhees, Overview of TREC 2005, The Fourteenth Text REtrieval
Conference (TREC 2005) Proceedings, 2005.

H.T. Dang E. M. Voorhees, Overview of the TREC 2005 question answering
track, The Fourteenth Text REtrieval Conference (TREC 2005) Proceedings,
2005.

Andrew Hickl, John Williams, Jeremy Bensley, Kirk Roberts, Ying Shi, , and
Bryan Rink, Question answering with LCC’s Chaucer at TREC 2006, The
Fifteenth Text REtrieval Conference (TREC 2006) Proceedings (Gaithers-
burg, USA), 2006.

B. Katz, G. Marton, S. Felshin, D. Loreto, B. Lu, F. Mora, . Uzuner,
M. McGraw-Herdeg, N. Cheung, A. Radul, Y. Shen, and G. Zaccak, Question

answering experiments and resources, The Fifteenth Text REtrieval Confer-
ence (TREC 2006) Proceedings (Gaithersburg, USA), 2006.

Vlado Keselj, DalTREC - Dalhousie TREC project, Dalhousie University,
http://flame.cs.dal.ca/~trecacct/, 2005.

George A. Milleri, Richard Beckwith, Christiane Fellbaum, Derek Gross,
K. Miller, and Randee Tengi, Five papers on WordNet, Available online
at ftp://ftp.cogsci.princeton.edu/pub/wordnet/5papers.pdf, August
1993.

14

[9] openNLP, openNLP tools, http://opennlp.sourceforge.net, 2005.

[10] Lide Wu, Xuanjing Huang, Junkuo Cao, Xiafeng Yuan, and Yaqian Zhou,
FDUQA on TREC2006 QA track, The Fifteenth Text REtrieval Conference
(TREC 2006) Proceedings (Gaithersburg, USA), 2006.

15

