# CSCI 3110 Tutorial 7 

Reviewed June 28, 2019

I suspect that everybody has played with dominoes before, not the
line-them-up-and-tip-them-over game, but the one where the numbers on the dominoes matter. Every domino is a pair of numbers $[x: y]$. Your goal is to form longer and longer sequences of dominoes by attaching new dominoes to either end of your sequence, given the constraint that, if you add domino $[x: y]$ after domino $[v: w]$, then $x$ must equal $w$. This leads us to the following definition: A domino sequence is a sequence

$$
\left(\left[x_{1}: y_{1}\right],\left[x_{2}: y_{2}\right], \ldots,\left[x_{n}: y_{n}\right]\right)
$$

such that, for $1 \leq i<n, y_{i}=x_{i+1}$. For real-life dominoes, all the $x_{i}$ and $y_{i}$ are integers between 1 and 6 . To make things interesting, let us allow them to be integers between 1 and $n$.
Here's the problem: Given a sequence

$$
\left(\left[x_{1}: y_{1}\right],\left[x_{2}: y_{2}\right], \ldots,\left[x_{n}: y_{n}\right]\right)
$$

that may or may not be a domino sequence, find the longest subsequence

$$
\left(\left[x_{i_{1}}: y_{i_{1}}\right],\left[x_{i_{2}}: y_{i_{2}}\right], \ldots,\left[x_{i_{m}}: y_{i_{m}}\right]\right)
$$

that is a domino sequence. Indices $i_{1}, i_{2}, \ldots, i_{m}$ have to be monotonically increasing, that is, $i_{1}<i_{2}<\cdots<i_{m}$; but these indices don't have to be consecutive, that is, it isn't necessarily the case that $i_{j+1}=i_{j}+1$, for any $j$.
a. Develop an algorithm that, given an arbitrary input sequence, $S$, of $n$ dominoes, finds the longest domino sequence contained in $S$. Argue that the algorithm is correct and analyze its running time.
b. Using appropriate data structures to maintain information as your algorithm constructs a solution, you will be able to reduce the running time of your algorithm to $\mathrm{O}(n \lg n)$. Explain which data structures are required and how the algorithm can use them to solve the problem in $\mathrm{O}(n \lg n)$ time.
c. Using the same idea, but using a different data structure to store intermediate information, the running time can be reduced to $\mathrm{O}(n)$ in the worst case. Develop such a linear-time algortihm instead of the $\mathrm{O}(n \lg n)$-time algorithm. (Hint: This would not work if the numbers on the dominoes were real numbers.)

