CSCI 3110 Tutorial 5

Reviewed June 14, 2019

- 1. Consider the task of sorting an unsorted array A[1...n]: a task we can perform by merge sort in time $O(n \lg n)$. Show that any algorithm that accesses the array only via comparisons (that is, by asking questions of the form "is $A[i] \leq z$?"), must take $\Omega(n \lg n)$ steps.
- 2. Given a sequence of real numbers, X = (x₁, x₂,..., x_n), an exchanged pair in X is a pair (x_i, x_j) such that i < j and x_i > x_j. Note that an element x_i can be part of up to n − 1 exchanged pairs. In particular, the maximal possible number of exchanged pairs in X is ⁿ⁽ⁿ⁻¹⁾/₂, which is achieved if the array is sorted in descending order. Assume that the sequence X is stored in an array of size n. Develop a divide-and-conquer algorithm that counts the exchanged pairs in X. (Your algorithm should take O (n lg n) time.) Prove that your algorithm is correct. Argue briefly why your algorithm takes O (n lg n) time.