1. We are given a directed graph $G = (V, E)$ on which each edge $(u, v) \in E$ has an associated value $r(u, v)$, which is a real number in the range $0 \leq r(u, v) \leq 1$ that represents the reliability of a communication channel from vertex u to vertex v. We interpret $r(u, v)$ as the probability that the channel from u to v will not fail, and we assume these probabilities are independent. Give an efficient algorithm to find the most reliable path between two given vertices.

2. A server has n customers waiting to be served. The service time required by each customer is known in advance: it is t_i minutes for customer i. So if, for example, the customers are served in order of increasing i, then the ith customer has to wait $\sum_{j=1}^{i} t_j$ minutes.

We wish to minimize the total waiting time

$$T = \sum_{i=1}^{n} (\text{time spent waiting by customer } i).$$

Describe an efficient algorithm for computing the optimal order in which to process the customers and give a brief justification of its running time and correctness.