CSCI 3110 Tutorial 3

Reviewed May 31, 2019

- 1. Consider the interval scheduling problem discussed in class. Suppose that instead of always selecting the interval that ends first, we instead select:
 - i) A compatible interval uniformly at random,
 - ii) The median interval by start time (break ties by earliest end time),
 - iii) The shortest interval compatible with all previously selected intervals,
 - iv) The compatible interval that overlaps the fewest other remaining intervals, or
 - v) The compatible remaining interval which ends last.

Provide a counterexample showing that these algorithms do not always yield an optimal solution.

2. Consider an undirected graph G = (V, E) with distinct nonnegative edge weights $w_e \ge 0$. Suppose that you have computed a minimum spanning tree of G, and that you have also computed shortest paths to all nodes from a particular node $s \in V$.

Now suppose each edge weight is doubled: the new weights are $w'_e = 2w_e$.

- (a) (10 pts) Does the minimum spanning tree change? Give an example where it changes or prove it cannot change.
- (b) (10 pts) Do the shortest paths change? Give an example where they change or prove they cannot change.