CSCI 3110 Tutorial 1

Reviewed May 17, 2019

1. Sort the following functions by increasing order of growth. For every pair of consecutive functions f(n) and g(n) in the sorted list, prove that f(n) = o(g(n)).

$$n^3$$
 lg n n

Hint: recall the limit rule for $o(\cdot)$:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \iff f(n) = o(g(n))$$

- 2. For each of the following functions f(n), prove the stated claim by providing constants n_0 , c_1 , and c_2 such that for all $n \ge n_0$, $c_1g(n) \le f(n)$ or $f(n) \le c_2g(n)$, and provide a calculation that shows that this inequality does indeed hold.
 - (a) $f(n) = n^2 + 2n^3 100n \lg n + 10 = O(n^3) = O(g(n))$
 - (b) $f(n) = n^2 + 2n^3 100n \lg n + 10 = \Omega(n^3) = \Omega(g(n))$
 - (c) $f(n) = n^2 + 2n^3 100n \lg n + 10 = \Theta(n^3) = \Theta(g(n))$