CSCI 3110 Tutorial 1

Reviewed May 17, 2019

1. Sort the following functions by increasing order of growth. For every pair of consecutive functions $\mathrm{f}(\mathrm{n})$ and $\mathrm{g}(\mathrm{n})$ in the sorted list, prove that $f(n)=\mathrm{o}(g(n))$.

$$
n^{3} \quad \lg n \quad n
$$

Hint: recall the limit rule for o (\cdot) :

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0 \Longleftrightarrow f(n)=\mathrm{o}(g(n))
$$

2. For each of the following functions $f(n)$, prove the stated claim by providing constants n_{0}, c_{1}, and c_{2} such that for all $n \geq n_{0}, c_{1} g(n) \leq f(n)$ or $f(n) \leq c_{2} g(n)$, and provide a calculation that shows that this inequality does indeed hold.
(a) $f(n)=n^{2}+2 n^{3}-100 n \lg n+10=O\left(n^{3}\right)=O(g(n))$
(b) $f(n)=n^{2}+2 n^{3}-100 n \lg n+10=\Omega\left(n^{3}\right)=\Omega(g(n))$
(c) $f(n)=n^{2}+2 n^{3}-100 n \lg n+10=\Theta\left(n^{3}\right)=\Theta(g(n))$
