
Average-Case Analysis and Randomization

Textbook Reading

Chapter 7 & Sections 8.4, 9.2



Overview

Design principle
• Do the easy thing and hope it works for most inputs
• Make random choices and hope they’re good

Problems
• Sorting (Quick Sort)
• Permuting
• Selection
• Game tree evaluation



Quick Sort Revisited

The problem with deterministic Quick Sort:

The running time is in O(n lg n), but the algorithm for finding the pivot is non-trivial
(and slow).



Quick Sort Revisited

Remedy:

Blindly use the last element as pivot.

The problem with deterministic Quick Sort:

The running time is in O(n lg n), but the algorithm for finding the pivot is non-trivial
(and slow).

SimpleQuickSort(A, `, r)

1 if r ≤ `
2 then return
3 m = Partition(A, `, r)
4 SimpleQuickSort(A, `, m – 1)
5 SimpleQuickSort(A, m + 1, r)

Partition(A, `, r)

1 i = ` – 1
2 for j = ` to r – 1
3 do if A[j] ≤ A[r]
4 then i = i + 1
5 swap A[i] and A[j]
6 swap A[i + 1] and A[r]
7 return i + 1
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Average-Case Analysis of Simple Quick Sort

Lemma: The average-case running time of SimpleQuickSort is in O(n lg n).

We defined the average-case running time of an algorithm as the average of its
running time over all possible inputs of size n.

Problem: There are infinitely many di�erent inputs of size n!

Observation: Simple Quick Sort behaves the same on all inputs whose elements have
the same relative order.

12 3 4178 5 43

⇒ The input to SimpleQuickSort is a permutation π of the sorted output sequence
〈x1, x2, . . . , xn〉 we expect as the output.

⇒ The average-case running time of SimpleQuickSort is the same as its expected
running time on a uniformly random input permutation.
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Partitioning Maintains Uniformity

Lemma: If A[` . . r] is a uniform random permutation of the elements in A[` . . r], then
the two subarrays A[` . . m – 1] and A[m + 1 . . r] produced by Partition(A, `, r) are also
uniform random permutations of the elements they contain.

+––– p+ –+

6431 58 27

The behaviour of Partition depends only
on the sequence of –s and +s!

The –s are exactly the elements that end
up in A[` . . m – 1], the +s end up in
A[m + 1 . . r].

In a uniformly random permutation, any
permutation of the –s or +s is equally
likely.

Each such permutation produces a
di�erent permutation of A[` . . m – 1] or
A[m + 1 . . r].

⇒ A[` . . m – 1] and A[m + 1 . . r] are
uniform random permutations.
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⇒ It su�ces to prove that E[C] ∈ O(n lg n).

Observation: The running time of SimpleQuickSort is in O(n + C), where C is the
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Observation: Two elements xi and xj are compared if and only if xi or xj is the first
element in {xi, xi+1, . . . , xj} chosen as a pivot.
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2

j – i + 1
.
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Hn =
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1
i
= nth Harmonic Number
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⇒ E[C] ≤ 2(n – 1)Hn ∈ O(n lg n)

ln(n + 1) =
∫ n+1

1

d x
x

<
n∑
i=1

1
i
< 1 +

∫ n

1

d x
x

= 1 + ln n

1
2

1
3
1
4

1



Interpretation of Average-Case Analysis

Algorithms that are fast in the worst case are the gold standard but are di�cult to
design and often have higher constant factors than algorithms that are e�cient on
average.



Interpretation of Average-Case Analysis

Algorithms that are fast in the worst case are the gold standard but are di�cult to
design and often have higher constant factors than algorithms that are e�cient on
average.

Worst-case e�ciency is desirable if we need performance guarantees every single
time we run the algorithm.



Interpretation of Average-Case Analysis

Algorithms that are fast in the worst case are the gold standard but are di�cult to
design and often have higher constant factors than algorithms that are e�cient on
average.

Worst-case e�ciency is desirable if we need performance guarantees every single
time we run the algorithm.

Algorithms that are fast on average are often simpler and on average faster than
worst-case e�cient algorithms.



Interpretation of Average-Case Analysis

Algorithms that are fast in the worst case are the gold standard but are di�cult to
design and often have higher constant factors than algorithms that are e�cient on
average.

Worst-case e�ciency is desirable if we need performance guarantees every single
time we run the algorithm.

Algorithms that are fast on average are often simpler and on average faster than
worst-case e�cient algorithms.

They are a good choice when we want good performance most of the time and
possibly averaged over running the algorithm many times.
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Interpretation of Average-Case Analysis

This assumption may not be true in some applications, invalidating the performance
prediction we obtain using average-case analysis!

Example:

SimpleQuickSort takes Θ(n2) time on almost sorted inputs.

There are applications where the inputs to be sorted are all almost sorted.

SimpleQuickSort is a poor choice of a sorting algorithm in such applications.

“The average-case running time of algorithm A is T(n).”

What exactly is the meaning of the following statement?

“If every input is equally likely, then we expect to see a running time of T(n) on
average.”
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Randomization

The expected running time of a randomized algorithm is an expectation over the
random choices the algorithm makes.

⇒ No more assumptions about the probability distribution. We know the distribution
of the choices the algorithm makes.

A randomized algorithm makes no assumptions about the input and ensures
randomness by making random choices.

Average-case analysis is applied to a deterministic algorithm and assumes
randomness in the input.

Since a randomized algorithm behaves di�erently every time it runs, there is no way to
force it to exhibit its worst-case running time!
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Randomized Quick Sort, Take 1

RandomPermutationQuickSort(A)

1 RandomPermute(A)
2 SimpleQuickSort(A, 1, n)

The expected running time of SimpleQuickSort on a uniform random permutation is in
O(n lg n).

So why don’t we just ensure the input is a uniform random permutation?

We can compute a uniform random permutation in O(n) time in the worst case.

Corollary: The expected running time of RandomPermutationQuickSort is in O(n lg n).
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Randomized Quick Sort, Take 2

So why don’t we make sure we choose a uniform random pivot, no ma�er the input
permutation?

RandomPivotQuickSort(A, `, r)

1 if r ≤ `
2 then return
3 p = RandomNumber(`, r)
4 swap A[p] and A[r]
5 m = Partition(A, `, r)
6 RandomPivotQuickSort(A, `, m – 1)
7 RandomPivotQuickSort(A, m + 1, r)
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Randomized Quick Sort, Take 2

So why don’t we make sure we choose a uniform random pivot, no ma�er the input
permutation?

RandomPivotQuickSort(A, `, r)

1 if r ≤ `
2 then return
3 p = RandomNumber(`, r)
4 swap A[p] and A[r]
5 m = Partition(A, `, r)
6 RandomPivotQuickSort(A, `, m – 1)
7 RandomPivotQuickSort(A, m + 1, r)

Lemma: The expected running time of RandomPivotQuickSort is in O(n lg n).

The analysis is 100% identical to that of SimpleQuickSort!

The key to the analysis of SimpleQuickSort:

If the input is a uniform random permutation, then any element is equally likely to be
chosen as pivot.
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2 for j = n downto 2
3 do i = RandomNumber(1, j)
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RandomPermute(A)
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2 for j = n downto 2
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RandomPermute(A)
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Uniform Random Permutation In Linear Time

RandomPermute(A)

1 n = |A|
2 for j = n downto 2
3 do i = RandomNumber(1, j)
4 swap A[i] and A[j]

Observation: RandomPermute takes O(n) time.

Lemma: RandomPermute produces each permutation of the input array A with

probability
1
n!
.

If n > 1, then to produce the permutation 〈x1, x2, . . . , xn〉 (event E), we need to

• Place xn into A[n] (event E1) and
• Place x1, x2, . . . , xn–1 into A[1 . . n – 1] (event E2).

So P[E] = P[E1 ∩ E2] = P[E1] · P[E2|E1] =
1
n
· 1
(n – 1)!

=
1
n!
.



Randomized Selection

RandomizedSelection(A, `, r, k)

1 if r ≤ `
2 then return A[`]
3 p = RandomNumber(`, r)
4 swap A[p] and A[r]
5 m = Partition(A, `, r)
6 if m – ` = k – 1
7 then return A[m]
8 else if m – ` ≥ k
9 then RandomizedSelection(A, `, m – 1, k)
10 else RandomizedSelection(A, m + 1, r, k – (m + 1 – `))
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RandomizedSelection(A, `, r, k)

1 if r ≤ `
2 then return A[`]
3 p = RandomNumber(`, r)
4 swap A[p] and A[r]
5 m = Partition(A, `, r)
6 if m – ` = k – 1
7 then return A[m]
8 else if m – ` ≥ k
9 then RandomizedSelection(A, `, m – 1, k)
10 else RandomizedSelection(A, m + 1, r, k – (m + 1 – `))

Lemma: The expected running time of RandomizedSelection is in O(n).
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Observation: If we choose the ith smallest element as pivot, then

E[T(n)] ≤ O(n) + E[T(max(n – i, i – 1))].

Corollary: E[T(n)] ≤ O(n) +
1
n

n∑
i=1

E[T(max(n – i, i – 1))].

Claim: E[T(n)] ≤ cn, for some c > 0.

Base case: 1 ≤ n < 4.

T(n) ≤ c ≤ cn.
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Inductive step: n ≥ 4.

E[T(n)] ≤ an +
1
n

n∑
i=1

E[T(max(i – 1, n – i))]

≤ an +
c
n

[
n(n – 1) –

(n
2
– 1
)(n

2
– 2
)]

= an +
c
n

(
3n2

4
+
n
2

)
=
(
a +

3c
4

+
c
2n

)
n

≤ cn ∀c ≥ 8a.
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Sorting in Linear Time?

Using comparisons only, as Insertion Sort, Merge Sort, Quick Sort do, it is impossible
to sort faster than in Ω(n lg n) time.

By exploiting assumptions about the input and using element values in the algorithm,
we can do be�er:

Counting sort: Sorts n integers between 1 and n in O(n) time.

Bucket sort: Sorts n real numbers drawn uniformly at random from an interval [a, b)
in expected linear time.

Radix sort: Sorts n integers between 1 and nc in O(cn) time. This is O(n) if c is a
constant.
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Bucket Sort

Assume the inputs are real numbers drawn uniformly at random from some interval
[a, b).

a b

We can normalize this to the interval [0, 1).

Divide [0, 1) into subintervals of length 1
n .

⇒ Strategy:
• Bucket items according to the subinterval they belong to.
• Sort each bucket, hopefully in constant time.
• Concatenate the sorted buckets.

0 1

How many elements do we expect to end up in each subinterval? 1!
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1 n = |A|
2 B = an array of n empty singly-linked lists
3 for i = 1 to n
4 do prepend A[i] to list B[1 + bn · A[i]c]
5 for i = 1 to n
6 do InsertionSort(B[i])
7 j = 0
8 for i = 1 to n
9 do for every element x ∈ B[i]
10 do A[j] = x
11 j = j + 1
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Bucket Sort

Worst-case running time: O(n2)

BucketSort(A)

1 n = |A|
2 B = an array of n empty singly-linked lists
3 for i = 1 to n
4 do prepend A[i] to list B[1 + bn · A[i]c]
5 for i = 1 to n
6 do InsertionSort(B[i])
7 j = 0
8 for i = 1 to n
9 do for every element x ∈ B[i]
10 do A[j] = x
11 j = j + 1

This is where we depart
from using comparisons
only!

Why not Merge Sort?

It only helps in the worst case.
It’s more complicated.
It actually hurts when buckets are
small, which is what we expect.
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Running time: T(n) ∈ O

(
n +

n∑
i=1

n2i

)
ni = the number of elements in B[i]

Lemma: E[n2i ] < 2.

Corollary: E[T(n)] ∈ O(n).
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Bucket Sort

Lemma: E[n2i ] < 2.

Xj =

{
1 A[j] ends up in B[i]
0 otherwise

ni =
n∑
j=1

Xj

E[n2i ] = E
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j=1

Xj

2
 = E

 n∑
j=1

n∑
k=1

XjXk

 =
n∑
j=1

n∑
k=1

E[XjXk]

=
n∑
j=1

E[X2
j ] +

n∑
j=1

n∑
k=1
k6 =j

E[Xj]E[Xk]

Xj and Xj are clearly not independent. Xj and Xk are independent.
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E[X2
j ] =

1
n
· 12 +

(
1 –

1
n

)
· 02 = 1

n

E[Xj] =
1
n
· 1 +

(
1 –

1
n

)
· 0 =

1
n

E[n2i ] =
n∑
j=1

E[X2
j ] +

n∑
j=1

n∑
k=1
k6 =j

E[Xj]E[Xk] = n · 1
n
+
n(n – 1)
n2

< 2



Randomized Bucket Sort?

For Quick Sort, we were able to eliminate assumptions about the input distribution
using randomization.



Randomized Bucket Sort?

For Quick Sort, we were able to eliminate assumptions about the input distribution
using randomization.

Does that work for Bucket Sort?



Randomized Bucket Sort?

For Quick Sort, we were able to eliminate assumptions about the input distribution
using randomization.

Does that work for Bucket Sort?

No!



Randomized Bucket Sort?

For Quick Sort, we were able to eliminate assumptions about the input distribution
using randomization.

Does that work for Bucket Sort?

No!

For Quick Sort, we relied on a random ordering of the elements.



Randomized Bucket Sort?

For Quick Sort, we were able to eliminate assumptions about the input distribution
using randomization.

Does that work for Bucket Sort?

No!

For Quick Sort, we relied on a random ordering of the elements.

Randomly permuting the input to guarantee this does not a�ect the final result of the
algorithm.



Randomized Bucket Sort?

For Quick Sort, we were able to eliminate assumptions about the input distribution
using randomization.

Does that work for Bucket Sort?

No!

For Quick Sort, we relied on a random ordering of the elements.

Randomly permuting the input to guarantee this does not a�ect the final result of the
algorithm.

Bucket Sort relies on the random distribution of the input values.



Randomized Bucket Sort?

For Quick Sort, we were able to eliminate assumptions about the input distribution
using randomization.

Does that work for Bucket Sort?

No!

For Quick Sort, we relied on a random ordering of the elements.

Randomly permuting the input to guarantee this does not a�ect the final result of the
algorithm.

Bucket Sort relies on the random distribution of the input values.

We can’t simply change them without changing the algorithm’s output.
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• One recursive call per node
• 2n – 1 nodes
⇒ Running time O(n)

GameValue(v)

1 if v is a leaf
2 then return its value
3 if not GameValue(v.leftChild)
4 then return 1
5 else return not GameValue(v.rightChild)
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Game Tree Evaluation: Randomized Algorithm

RandomizedGameValue(v)

1 if v is a leaf
2 then return its value
3 coinFlip = RandomNumber(0, 1)
4 if coinFlip = 1
5 then first = v.leftChild
6 second = v.rightChild
7 else first = v.rightChild
8 second = v.leftChild
9 if not f = GameValue(first)
10 then return 1
11 else return not GameValue(second)
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Summary

Algorithms that are fast on average are often easier to design and faster in practice
than worst-case e�cient algorithms.

In some applications, worst-case guarantees ma�er!

Average-case analysis provides a valid performance prediction only if the inputs are
uniformly distributed.

Randomized algorithms remove this dependence on the input distribution (but rely on
a good random number generator).

There are problems where randomized algorithms are provably faster than the best
possible deterministic algorithm.


