Stable Matching: An Introductory Example

Given:
- n women w_1, w_2, \ldots, w_n
- n men m_1, m_2, \ldots, m_n
- A preference list for each
Stable Matching: An Introductory Example

Output:
- A set of n marriages $\{(w_{i_1}, m_{j_1}), (w_{i_2}, m_{j_2}), \ldots, (w_{i_n}, m_{j_n})\}$
- Every man is married
- Every woman is married
- The marriages are stable
Stable Matching: An Introductory Example

A pair of marriages \((m, w)\) and \((m', w')\) is unstable if

- \(w\) prefers \(m'\) over \(m\) \((m' \prec_w m)\)
- \(m'\) prefers \(w\) over \(w'\) \((w \prec_{m'} w')\)
A pair of marriages \((m, w)\) and \((m', w')\) is **unstable** if

- \(w\) prefers \(m'\) over \(m\) \((m' \prec_w m)\)
- \(m'\) prefers \(w\) over \(w'\) \((w \prec_{m'} w')\)
Stable Matching: A Solution Inspired By Real Life

StableMatching(M, W)

1. while there exists an unmarried man m
2. do m proposes to the most preferable woman w he has not proposed to yet
3. if w is unmarried or likes m better than her current partner m′
4. then if w is married
5. then w divorces m′
6. w marries m
Stable Matching: A Solution Inspired By Real Life

StableMatching(M, W)

1. while there exists an unmarried man m
2. do m proposes to the most preferable woman w he has not proposed to yet
3. if w is unmarried or likes m better than her current partner m'
4. then if w is married
5. then w divorces m'
6. w marries m

Questions we can and should ask about the algorithm:

- Is there always a stable matching?
- Does the algorithm always terminate?
- Does the algorithm always produce a stable matching?
- How efficient is the algorithm? Can we bound its running time?
Course Outline

• Correctness proofs
• Analysis of resource consumption
• Algorithm design techniques
 • Graph exploration
 • Greedy algorithms
 • Divide and conquer
 • Dynamic programming
 • Data structuring
 • Randomization
• NP-completeness and intractability
General Information

Instructor: Christopher Whidden
Office: CS 315
Office hours: Thursday 1:00–2:00
Email: cwhidden@dal.ca
Zeh. *Data Structures.*
CSCI 3110 Lecture Notes, 2005.
Website: http://www.cs.dal.ca/~whidden/CSCI3110
TAs: Yuhan Fu
Mozhgan Saeid
Younan Gao
Midterm: July 4
Grading

- 10 Assignments (A)
 The best 8 count. Each carries equal weight.
- Midterm (M)
- Final (F)

\[
\text{Final grade} = \max \left(0.60 \cdot F + 0.40 \cdot A, 0.40 \cdot F + 0.20 \cdot M + 0.40 \cdot A \right)
\]
Collaboration, Plagiarism, Late Assignments

Collaboration

- Groups of up to three people are allowed to collaborate on assignments.
- Every group hands in one set of solutions; every group member gets the same marks.
- Collaboration between groups is not allowed!

Plagiarism

- Plagiarism will not be tolerated.
- Collaboration between groups is a form of plagiarism.

Late assignments

... will not be accepted. Assignments missed for a reason documented by a Student Declaration of Absence will be covered by your final exam score.

Please see course website for a detailed discussion of these rules.
Things I Expect You To Know

- Basic rules concerning logarithms
- Basic rules concerning limits
- Basic derivatives
- Propositional logic
- Elementary combinatorics (counting permutations, combinations, . . .)
- Elementary probability theory (linearity of expectation, . . .)
- Elementary data structures (arrays, lists, stacks, queues, . . .)
- Standard sorting algorithms (insertion sort, quick sort, merge sort)
- Binary heaps