CSCl 3110

Fun with Algorithms

Christopher Whidden
cwhidden@dal.ca

Faculty of Computer Science
Dalhousie University
Summer 2019
(Adapted from Slides by Norbert Zeh)

Stable Matching: An Introductory Example

Given:

- n women $w_{1}, w_{2}, \ldots, w_{n}$
- n men $m_{1}, m_{2}, \ldots, m_{n}$
- A preference list for each

Stable Matching: An Introductory Example

Output:

- A set of n marriages $\left\{\left(w_{i_{i}}, m_{i_{1}}\right),\left(\left(w_{i_{2}}, m_{i_{2}}\right), \ldots,\left(w_{i_{n}}, m_{i_{n}}\right)\right\}\right.$
- Every man is married
- Every woman is married
- The marriages are stable

Stable Matching: An Introductory Example

A pair of marriages (m, w) and $\left(\mathrm{m}^{\prime}, \mathrm{w}^{\prime}\right)$ is unstable if

- w prefers m^{\prime} over $\mathrm{m}\left(\mathrm{m}^{\prime} \prec_{w} \mathrm{~m}\right)$
- m^{\prime} prefers w over $w^{\prime}\left(w \prec_{m^{\prime}} w^{\prime}\right)$

Stable Matching: An Introductory Example

A pair of marriages (m, w) and $\left(\mathrm{m}^{\prime}, \mathrm{w}^{\prime}\right)$ is unstable if

- w prefers m^{\prime} over $\mathrm{m}\left(\mathrm{m}^{\prime} \prec_{w} \mathrm{~m}\right)$
- m^{\prime} prefers w over $w^{\prime}\left(w \prec_{m^{\prime}} w^{\prime}\right)$

Stable Matching: A Solution Inspired By Real Life

StableMatching(M, W)
I while there exists an unmarried man m
2 do m proposes to the most preferable woman w he has not proposed to yet
if w is unmarried or likes m better than her current partner m^{\prime}
then if w is married
then w divorces m^{\prime}
w marries m

Stable Matching: A Solution Inspired By Real Life

StableMatching(M, W)
I while there exists an unmarried man m
2 do m proposes to the most preferable woman w he has not proposed to yet
if w is unmarried or likes m better than her current partner m^{\prime}
then if w is married

> then w divorces m^{\prime}
> w marries m

Questions we can and should ask about the algorithm:

- Is there always a stable matching?
- Does the algorithm always terminate?
- Does the algorithm always produce a stable matching?
- How efficient is the algorithm? Cán we bound its running time?

Course Outline

- Correctness proofs
- Analysis of resource consumption
- Algorithm design techniques
- Graph exploration
- Greedy algorithms
- Divide and conquer
- Dynamic programming
- Data structuring
- Randomization
- NP-completeness and intractability

General Information

Instructor:	Christopher Whidden
Office:	CS 315
Office hours:	Thursday 1:00-2:00
Email:	cwhidden@dal.ca
Textbook:	Cormen, Leiserson, Rivest, Stein. Introduction to Algorithms. 3rd edition, MIT Press, 2009.
	Zeh. Data Structures. CSCI 3110 Lecture Notes, 2005.
Website:	http://www.cs.dal.ca/~whidden/CSCI3IIO
TAs:	Yuhan Fu
	Mozhgan Saeid
	Younan Gao
Midterm:	July 4

Grading

- 10 Assignments (A)

The best 8 count. Each carries equal weight.

- Midterm (M)
- Final (F)

$$
\text { Final grade }=\max \binom{60 \% \cdot F+40 \% \cdot A}{40 \% \cdot F+20 \% \cdot M+40 \% \cdot A}
$$

Collaboration, Plagiarism, Late Assignments

Collaboration

- Groups of up to three people are allowed to collaborate on assignments.
- Every group hands in one set of solutions; every group member gets the same marks.
- Collaboration between groups is not allowed!

Plagiarism

- Plagiarism will not be tolerated.
- Collaboration between groups is a form of plagiarism.

Late assignments

... will not be accepted. Assignments missed for a reason documented by a Student Declaration of Absence will be covered by your final exam score.

Please see course website for a detailed discussion of these rules.

Things I Expect You To Know

- Basic rules concerning logarithms
- Basic rules concerning limits
- Basic derivatives
- Propositional logic
- Elementary combinatorics (counting permutations, combinations, ...)
- Elementary probability theory (linearity of expectation, ...)
- Elementary data structures (arrays, lists, stacks, queues, ...)
- Standard sorting algorithms (insertion sort, quick sort, merge sort)
- Binary heaps

