Greedy Algorithms

Textbook Reading

Chapters 16, 17, 21, 23 \& 24

Overview

Design principle:

Make progress towards a globally optimal solution by making locally optimal choices, hence the name.

Problems:

- Interval scheduling
- Minimum spanning tree
- Shortest paths
- Minimum-length codes

Proof techniques:

- Induction
- The greedy algorithm "stays ahead"
- Exchange argument

Data structures:

- Priority queue
- Union-find data structure

Interval Scheduling

Given:

A set of activities competing for time intervals on a certain resource (E.g., classes to be scheduled competing for a classroom)

Goal:

Schedule as many non-conflicting activities as possible

एumbumb

Interval Scheduling

Given:

A set of activities competing for time intervals on a certain resource (E.g., classes to be scheduled competing for a classroom)

Goal:

Schedule as many non-conflicting activities as possible

Interval Scheduling

Given:

A set of activities competing for time intervals on a certain resource (E.g., classes to be scheduled competing for a classroom)

Goal:

Schedule as many non-conflicting activities as possible

A Greedy Framework for Interval Scheduling

FindSchedule(S)

$$
\begin{aligned}
& S=\text { set }_{0} f_{\text {interval }} \text { S } \\
& S^{\prime}=\text { output schedule }
\end{aligned}
$$

$1 \quad \mathbf{S}^{\prime}=\emptyset$
while \mathbf{S} is not empty
do pick an interval I in S add I to S $^{\prime}$
remove all intervals from S that conflict with I
return \mathbf{S}^{\prime}

A Greedy Framework for Interval Scheduling

FindSchedule(S)

1 $\mathbf{S}^{\prime}=\emptyset$
2 while \mathbf{S} is not empty
3 do pick an interval I in S add I to \mathbf{S}^{\prime} remove all intervals from S that conflict with I
return \mathbf{S}^{\prime}

Main questions:

- Can we choose an arbitrary interval I in each iteration?
- How do we choose interval I in each iteration?

Greedy Strategies for Interval Scheduling

$$
\begin{aligned}
\text { options: } & \text { shortest I } \\
& \text { median interval } \\
& \text { least conflicts }
\end{aligned}
$$

Greedy Strategies for Interval Scheduling

Choose the interval that starts first.

Greedy Strategies for Interval Scheduling

Choose the interval that starts first.

एयाय एयाय एयाया एत्याय

Greedy Strategies for Interval Scheduling

Choose the interval that starts first.

Choose the shortest interval.

Greedy Strategies for Interval Scheduling

Choose the interval that starts first.

एताप एताप खापात एतापय

Choose the shortest interval.

एयायाय

Greedy Strategies for Interval Scheduling

Choose the interval that starts first.

Choose the shortest interval.

एयायाय

Choose the interval with the fewest conflicts.

Greedy Strategies for Interval Scheduling

Choose the interval that starts first.

Choose the shortest interval.

एแाแ

Choose the interval with the fewest conflicts.

The Strategy That Works

FindSchedule(S)

$S^{\prime}=\emptyset$
2 while \boldsymbol{S} is not empty
3 do let I be the interval in S that ends first add I to S'
remove all intervals from S that conflict with I return \mathbf{S}^{\prime}

The Strategy That Works

FindSchedule(S)

$\mathbf{S}^{\prime}=\emptyset$
while S is not empty
do let I be the interval in S that ends first add I to S $^{\prime}$
remove all intervals from S that conflict with I return \mathbf{S}^{\prime}

The Strategy That Works

FindSchedule(S)

$1 \quad S^{\prime}=\emptyset$
2. while \mathbf{S} is not empty

3 do let I be the interval in S that ends first
4

6

```
        add I to S'
            remove all intervals from S that conflict with I
return S'
```


The Strategy That Works

FindSchedule(S)

$1 \quad \mathbf{S}^{\prime}=\emptyset$
2 while \mathbf{S} is not empty
3 do let I be the interval in S that ends first add I to S $^{\prime}$
remove all intervals from S that conflict with I
return \mathbf{S}^{\prime}

The Strategy That Works

FindSchedule(S)

$1 \quad \mathbf{S}^{\prime}=\emptyset$
2 while \mathbf{S} is not empty
3 do let I be the interval in S that ends first add I to S $^{\prime}$
remove all intervals from S that conflict with I
return \mathbf{S}^{\prime}

सायायायायायाय

The Strategy That Works

FindSchedule(S)

$1 \quad \mathbf{S}^{\prime}=\emptyset$
2 while \mathbf{S} is not empty
3 do let I be the interval in S that ends first add I to S $^{\prime}$
remove all intervals from S that conflict with I
return \mathbf{S}^{\prime}

The Strategy That Works

FindSchedule(S)

$1 \quad \mathbf{S}^{\prime}=\emptyset$
2 while \mathbf{S} is not empty
3 do let I be the interval in S that ends first add I to S $^{\prime}$
remove all intervals from S that conflict with I
return \mathbf{S}^{\prime}

सायायायाय

सायायायायायाय

The Strategy That Works

FindSchedule(S)

$1 \quad S^{\prime}=\emptyset$
2 while \mathbf{S} is not empty
3 do let I be the interval in S that ends first add I to S^{\prime}
remove all intervals from S that conflict with I return \mathbf{S}^{\prime}

सायायायायायाด

सापातापाप

सायायायायायायด

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

Let $I_{1} \prec I_{2} \prec \cdots \prec I_{k}$ be the schedule we compute.
Let $\mathrm{O}_{1} \prec \mathrm{O}_{2} \prec \cdots \prec \mathrm{O}_{\mathrm{m}}$ be an optimal schedule.
Prove by induction on j that l_{j} ends no later than O_{j}.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

Let $I_{\mathrm{I}} \prec \mathrm{I}_{2} \prec \cdots \prec \mathrm{I}_{\mathrm{k}}$ be the schedule we compute.
Let $\mathrm{O}_{1} \prec \mathrm{O}_{2} \prec \cdots \prec \mathrm{O}_{\mathrm{m}}$ be an optimal schedule.
Prove by induction on j that l_{j} ends no later than O_{j}.
\Rightarrow Since $\mathrm{O}_{\mathrm{j}+1}$ starts after O_{j} ends, it also starts after I_{j} ends.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

$$
0 k+1
$$

Let $I_{1} \prec I_{2} \prec \cdots \prec I_{k}$ be the schedule we compute.
Let $\mathrm{O}_{1} \prec \mathrm{O}_{2} \prec \cdots \prec \mathrm{O}_{\mathrm{m}}$ be an optimal schedule.
Prove by induction on j that l_{j} ends no later than O_{j}.
\Rightarrow Since $\mathrm{O}_{\mathrm{i}+1}$ starts after O_{j} ends, it also starts after I_{j} ends.
\Rightarrow If $\mathrm{k}<\mathrm{m}$, FindSchedule inspects Θ_{k+1} after I_{k} and thus would have added it to its output, a contradiction.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

Proof by induction:

Base case(s): Verify that the claim holds for a set of initial instances. Inductive step: Prove that, if the claim holds for the first k instances, it holds for the ($k+1$)st instance.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

Base case: I_{1} ends no later than O_{1} because both I_{1} and O_{1} are chosen from S and I_{1} is the interval in S that ends first.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

Base case: I_{1} ends no later than O_{1} because both I_{1} and O_{1} are chosen from S and I_{1} is the interval in S that ends first.

Inductive step:

Since I_{k} ends before O_{k+1}, so do $I_{1}, l_{2}, \ldots, l_{k-1}$.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

Base case: \boldsymbol{I}_{I} ends no later than O_{1} because both \boldsymbol{I}_{1} and O_{1} are chosen from S and \boldsymbol{I}_{1} is the interval in S that ends first.

Inductive step:

Since I_{k} ends before O_{k+1}, so do $I_{1}, l_{2}, \ldots, l_{k-1}$.
$\Rightarrow \mathrm{O}_{\mathrm{k}+1}$ does not conflict with $\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots, \mathrm{I}_{\mathrm{k}}$.

The Greedy Algorithm Stays Ahead

Lemma: FindSchedule finds a maximum-cardinality set of conflict-free intervals.

Base case: I_{1} ends no later than O_{1} because both I_{1} and O_{1} are chosen from S and I_{1} is the interval in S that ends first.

Inductive step:

Since l_{k} ends before O_{k+1}, so do $l_{1}, l_{2}, \ldots, l_{k-1}$.
$\Rightarrow \mathrm{O}_{\mathrm{k}+1}$ does not conflict with $\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots, \mathrm{I}_{\mathrm{k}}$.
$\Rightarrow I_{k+1}$ ends no later than O_{k+1} because it is the interval that ends first among all intervals that do not conflict with $I_{1}, I_{2}, \ldots, I_{k}$.

Implementing The Algorithm

FindSchedule(S)

1 $\mathbf{S}^{\prime}=[$ [
2 sort the intervals in S by increasing finish times
3 S'.append(S[I])
$4 \quad \mathrm{f}=\mathrm{S[1]}$.f

5 for $\mathrm{i}=2$ to $|\mathrm{S}|$
6 do if $S[i] . s>f$
7 then \mathbf{S}^{\prime}.append(S[i])
$8 \quad \mathrm{f}=\mathrm{S}[\mathrm{i}] . \mathrm{f}$
9 return \mathbf{S}^{\prime}

Implementing The Algorithm

FindSchedule(S)
I $\mathbf{S}^{\prime}=[$ [

2 sort the intervals in S by increasing finish times
3 S'.append(S[I])
$4 \quad \mathrm{f}=\mathrm{S}[1] . \mathrm{f}$
5 for $\mathrm{i}=2$ to $|\mathrm{S}|$ do if $S[i] . s>f$
then \mathbf{S}^{\prime} append (Si])
$\mathrm{f}=\mathrm{S}[\mathrm{i}] . \mathrm{f}$
9 return \mathbf{S}^{\prime}

Lemma: A maximum-cardinality set of non-conflicting intervals can be found in $O(n \lg \mathrm{n})$ time.

Minimum Spanning Tree

Given: n computers

Goal: Connect them so that every computer can communicate with every other computer.

We don't care whether the connection between any pair of computers is short.
We don't care about fault tolerance.
Every foot of cable costs us $\$ 1$.

\Rightarrow We want the cheapest possible network.

Minimum Spanning Tree

Given a graph $G=(V, E)$ and an assignment of weights (costs) to the edges of G, a minimum spanning tree (MST) T of G is a spanning tree with minimum total weight

$$
w(T)=\sum_{e \in T} w(e) .
$$

Kruskal's Algorithm

Greedy choice: Pick the shortest edge

Kruskal's Algorithm

Greedy choice: Pick the shortest edge that connects two previously disconnected vertices.

Kruskal's Algorithm

Greedy choice: Pick the shortest edge that connects two previously disconnected vertices.

Kruskal(G)

$1 \mathrm{~T}=(\mathrm{V}, \emptyset)$
2 while T has more than one connected component
3 do let e be the cheapest edge of G whose endpoints belong to different connected components of T
4 add e to T
5 return T

A Cut Theorem

A cut is a partition (U, W) of V into two non-empty subsets: $\emptyset \subset \mathrm{U} \subset \mathrm{V}$ and $\mathrm{W}=\mathrm{V} \backslash \mathrm{U}$.

A Cut Theorem

A cut is a partition (U, W) of V into two non-empty subsets: $\emptyset \subset \mathrm{U} \subset \mathrm{V}$ and $\mathrm{W}=\mathrm{V} \backslash \mathrm{U}$.

An edge crosses the cut (U, W) if it has one endpoint in U and one in W .

A Cut Theorem

A cut is a partition (U, W) of V into two non-empty subsets: $\emptyset \subset \mathrm{U} \subset \mathrm{V}$ and $\mathrm{W}=\mathrm{V} \backslash \mathrm{U}$.

An edge crosses the cut (U, W) if it has one endpoint in U and one in W.
Theorem: Let T be a minimum spanning tree, let (U, W) be an arbitrary cut, and let e be the cheapest edge crossing the cut. Then there exists a minimum spanning tree that contains e and all edges of T that do not cross the cut.

A Cut Theorem

A cut is a partition (U, W) of V into two non-empty subsets: $\emptyset \subset \mathrm{U} \subset \mathrm{V}$ and $\mathrm{W}=\mathrm{V} \backslash \mathrm{U}$.

An edge crosses the cut (U, W) if it has one endpoint in U and one in W.
Theorem: Let T be a minimum spanning tree, let (U, W) be an arbitrary cut, and let e be the cheapest edge crossing the cut. Then there exists a minimum spanning tree that contains e and all edges of T that do not cross the cut.

A Cut Theorem

A cut is a partition (U, W) of V into two non-empty subsets: $\emptyset \subset \mathrm{U} \subset \mathrm{V}$ and $\mathrm{W}=\mathrm{V} \backslash \mathrm{U}$.

An edge crosses the cut (U, W) if it has one endpoint in U and one in W .
Theorem: Let T be a minimum spanning tree, let (U,W) be an arbitrary cut, and let e be the cheapest edge crossing the cut. Then there exists a minimum spanning tree that contains e and all edges of T that do not cross the cut.

A Cut Theorem

A cut is a partition (U, W) of V into two non-empty subsets: $\emptyset \subset \mathrm{U} \subset \mathrm{V}$ and $\mathrm{W}=\mathrm{V} \backslash \mathrm{U}$.

An edge crosses the cut (U, W) if it has one endpoint in U and one in W.
Theorem: Let T be a minimum spanning tree, let (U, W) be an arbitrary cut, and let e be the cheapest edge crossing the cut. Then there exists a minimum spanning tree that contains e and all edges of T that do not cross the cut.

An exchange argument:

A Cut Theorem

A cut is a partition (U, W) of V into two non-empty subsets: $\emptyset \subset \mathrm{U} \subset \mathrm{V}$ and $\mathrm{W}=\mathrm{V} \backslash \mathrm{U}$.

An edge crosses the cut (U, W) if it has one endpoint in U and one in W.
Theorem: Let T be a minimum spanning tree, let (U,W) be an arbitrary cut, and let e be the cheapest edge crossing the cut. Then there exists a minimum spanning tree that contains e and all edges of T that do not cross the cut.

An exchange argument:

A Cut Theorem

A cut is a partition (U, W) of V into two non-empty subsets: $\emptyset \subset \mathrm{U} \subset \mathrm{V}$ and $\mathrm{W}=\mathrm{V} \backslash \mathrm{U}$.

An edge crosses the cut (U, W) if it has one endpoint in U and one in W.
Theorem: Let T be a minimum spanning tree, let (U,W) be an arbitrary cut, and let e be the cheapest edge crossing the cut. Then there exists a minimum spanning tree that contains e and all edges of T that do not cross the cut.

An exchange argument:

Correctness Of Kruskal's Algorithm

Lemma: Kruskal's algorithm computes a minimum spanning tree.

Correctness Of Kruskal's Algorithm

Lemma: Kruskal's algorithm computes a minimum spanning tree.
Let $(\mathrm{V}, \emptyset)=\mathrm{F}_{0} \subset \mathrm{~F}_{1} \subset \cdots \subset \mathrm{~F}_{\mathrm{n}-1}=\mathrm{T}$ be the sequence of forests computed by Kruskal's algorithm.

Correctness Of Kruskal's Algorithm

Lemma: Kruskal's algorithm computes a minimum spanning tree.
Let $(\mathrm{V}, \emptyset)=\mathrm{F}_{0} \subset \mathrm{~F}_{1} \subset \cdots \subset \mathrm{~F}_{\mathrm{n}-1}=\mathrm{T}$ be the sequence of forests computed by Kruskal's algorithm.

Need to prove that, for all i, there exists an MST $T_{i} \supseteq F_{i}$.

Correctness Of Kruskal's Algorithm

Lemma: Kruskal's algorithm computes a minimum spanning tree.
Let $(\mathrm{V}, \emptyset)=\mathrm{F}_{0} \subset \mathrm{~F}_{1} \subset \cdots \subset \mathrm{~F}_{\mathrm{n}-1}=\mathrm{T}$ be the sequence of forests computed by Kruskal's algorithm.

Need to prove that, for all i, there exists an MST $T_{i} \supseteq F_{i}$.

Correctness Of Kruskal's Algorithm

Lemma: Kruskal's algorithm computes a minimum spanning tree.
Let $(\mathrm{V}, \emptyset)=\mathrm{F}_{0} \subset \mathrm{~F}_{1} \subset \cdots \subset \mathrm{~F}_{\mathrm{n}-1}=\mathrm{T}$ be the sequence of forests computed by Kruskal's algorithm.

Need to prove that, for all i, there exists an MST $T_{i} \supseteq F_{i}$.

Correctness Of Kruskal's Algorithm

Lemma: Kruskal's algorithm computes a minimum spanning tree.
Let $(\mathrm{V}, \emptyset)=\mathrm{F}_{0} \subset \mathrm{~F}_{1} \subset \cdots \subset \mathrm{~F}_{\mathrm{n}-1}=\mathrm{T}$ be the sequence of forests computed by Kruskal's algorithm.

Need to prove that, for all i, there exists an MST $T_{i} \supseteq F_{i}$.

Implementing Kruskal's Algorithm

Kruskal(G)
$1 \quad \mathrm{~T}=(\mathrm{V}, \emptyset)$
2 while T has more than one connected component
3 do let e be the cheapest edge of G whose endpoints belong to different connected components of T add e to T
5 return T

$$
\Downarrow
$$

Kruskal(G)
$1 \quad \mathrm{~T}=(\mathrm{V}, \emptyset)$
2 sort the edges in G by increasing weight
3 for every edge (v, w) of G, in sorted order
4 do if v and w belong to different connected components of T
5 then add (v, w) to T
6 return T

A Union-Find Data Structure

Given a set S of elements, maintain a partition of \boldsymbol{S} into subsets $\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \ldots, \boldsymbol{S}_{\mathbf{k}}$.

A Union-Find Data Structure

Given a set S of elements, maintain a partition of S into subsets $\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \ldots, \boldsymbol{S}_{\mathbf{k}}$.

Support the following operations: Union (x, y) : Replace sets S_{i} and S_{j} in the partition with $S_{i} \cup S_{i}$, where $x \in S_{i}$ and $y \in S_{\text {j }}$.

A Union-Find Data Structure

Given a set S of elements, maintain a partition of S into subsets $\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \ldots, \boldsymbol{S}_{\mathbf{k}}$.

Support the following operations:
Union (x, y) : Replace sets S_{i} and S_{j} in the partition with $S_{i} \cup S_{i}$, where $x \in S_{i}$ and $y \in S_{\text {j }}$.

A Union-Find Data Structure

Given a set S of elements, maintain a partition of S into subsets $\mathbf{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathbf{k}}$.

Support the following operations:
Union (x, y) : Replace sets S_{i} and S_{j} in the partition with $S_{i} \cup S_{i}$, where $x \in S_{i}$ and $y \in S_{j}$.

Find (x) : Return a representative $r\left(S_{i}\right) \in \mathbf{S}_{i}$ of the set S_{i} that contains x .

A Union-Find Data Structure

Given a set S of elements, maintain a partition of S into subsets $S_{1}, S_{2}, \ldots, S_{k}$.

Support the following operations:
Union (x, y) : Replace sets S_{i} and S_{j} in the partition with $S_{i} \cup S_{i}$, where $x \in S_{i}$ and $y \in S_{j}$.

Find (x) : Return a representative $r\left(S_{i}\right) \in \mathbf{S}_{i}$ of the set S_{i} that contains x.

A Union-Find Data Structure

Given a set S of elements, maintain a partition of S into subsets $S_{1}, S_{2}, \ldots, S_{k}$.

Support the following operations:
Union (x, y) : Replace sets S_{i} and S_{j} in the partition with $S_{i} \cup S_{i}$, where $x \in S_{i}$ and $y \in S_{\text {j }}$.

Find (x) : Return a representative $r\left(S_{i}\right) \in \mathbf{S}_{\mathrm{i}}$ of the set S_{i} that contains x.

In particular, Find $(x)=$ Find (y) if and only if
 x and y belong to the same set.

Kruskal's Algorithm Using Union-Find

Idea: Maintain a partition of V into the vertex sets of the connected components of T .

Kruskal(G)

$$
T=(V, \emptyset)
$$

initialize a union-find structure D for V with every vertex $v \in V$ in its own set sort the edges in G by increasing weight for every edge (v, w) of G , in sorted order do if D.find $(v) \neq D$.find (w) then add (v, w) to T D.union(v, w)

8 return T

Kruskal's Algorithm Using Union-Find

Idea: Maintain a partition of V into the vertex sets of the connected components of T .

Kruskal(G)

$$
T=(V, \emptyset)
$$

$$
\text { initialize a union-find structure } D \text { for } V \text { with every vertex } v \in V \text { in its own set }
$$

$$
\text { sort the edges in } G \text { by increasing weight }
$$

$$
\text { for every edge }(\mathrm{v}, \mathrm{w}) \text { of } G \text {, in sorted order }
$$

$$
\text { do if D.find }(v) \neq \text { D.find(w) }
$$

$$
\text { then add }(v, w) \text { to } T
$$

D.union(v, w)

```
return T
```

Lemma: Kruskal's algorithm takes $\mathrm{O}(\mathrm{m} \lg \mathrm{m})$ time plus the cost of 2 m Find and $\mathrm{n}-1$ Union operations.

A Simple Union-Find Structure

List node:

- A set element
- Pointers to predecessor and successor
- Pointer to head of the list
- Pointer to tail of the list (only valid for head node)
- Size of the list (only valid for head node)

A Simple Union-Find Structure

List node:

- A set element
- Pointers to predecessor and successor
- Pointer to head of the list
- Pointer to tail of the list (only valid for head node)
- Size of the list (only valid for head node)

A Simple Union-Find Structure

List node:

- A set element
- Pointers to predecessor and successor
- Pointer to head of the list
* - Pointer to tail of the list (only valid for head node)
- Size of the list (only valid for head node)

A Simple Union-Find Structure

List node:

- A set element
- Pointers to predecessor and successor
- Pointer to head of the list
- Pointer to tail of the list (only valid for head node)
- Size of the list (only valid for head node)

Find

D.find(x)

1 return x.head.key

Find
D.find (x)

1 return x.head.key

D.find $(\mathrm{c})=\mathrm{b}$

Find
D.find (x)

1 return x.head.key

D.find $(\mathrm{c})=\mathrm{b}$
D.find $(\mathrm{d})=\mathrm{b}$

Find
D.find (x)

1 return x.head.key

D.find $(\mathrm{c})=\mathrm{b}$
D.find $(\mathrm{d})=\mathrm{b}$
D.find $(f)=e$

Union

D.union (x, y)

1 if x.head.listSize < y.head.listSize then swap x and y a^{-11} or 2) x. head. Iitsize $\geq y$ head. |islyy y.head.pred $=x$.head.tail x.head.tail.succ $=y$.head x.head.listSize $=\mathrm{x}$.head.listSize +y .head.listSize x. head.tail $=y . h e a d . t a i l$
$z=y$.head
while $z \neq$ null
do z.head = x.head
z = z.succ

Union

D.union (x, y)
if x.head.listSize $<y$.head.listSize
then swap x and y
y.head.pred $=x . h e a d . t a i l$
x.head.tail.succ $=y . h e a d$
x.head.listSize $=x . h e a d . l i s t S i z e ~+~ y . h e a d . l i s t S i z e ~$
x.head.tail $=y . h e a d . t a i l$
$z=y . h e a d$
while $z \neq$ null
do z.head $=x$.head
z = z.succ
D.union(c, e):

Union

D.union (x, y)

$$
\begin{aligned}
& \text { if } x . \text { head.listSize }<y . \text { head.listSize } \\
& \text { then swap } x \text { and } y \\
& \text { y.head.pred }=x . h e a d . t a i l \\
& \text { x.head.tail.succ }=y . h e a d \\
& \text { x.head.listSize }=x . h e a d . l i s t S i z e ~
\end{aligned} \text { y.head.listSize } \quad \begin{aligned}
& \text { x.head.tail }=\text { y.head.tail } \\
& z=y \text {.head } \\
& \text { while } z \neq \text { null } \\
& \text { do z.head }=\text { x.head } \\
& z=z . \text { succ }
\end{aligned}
$$

D.union(c, e):

Union

D.union (x, y)
if x .head.listSize $<\mathrm{y}$.head.listSize
2 then swap x and y y.head.pred $=x$. head.tail
x.head.tail.succ $=\mathrm{y}$.head
x.head.listSize $=\mathrm{x}$.head.listSize +y .head.listSize
x.head.tail $=y . h e a d . t a i l$
$z=y . h e a d$
while $z \neq$ null
do z. head $=x$. head
z = z.succ
haid
D.union(c, e): ${ }_{n}$. $p^{\text {red }}{ }^{m} \downarrow$

Union

D.union (x, y)
if x .head.listSize $<\mathrm{y}$.head.listSize
then swap x and y
y.head.pred $=x . h e a d . t a i l$
x.head.tail.succ $=y$.head
x .head.listSize $=\mathrm{x}$.head.listSize +y .head.listSize
x.head.tail $=y . h e a d . t a i l$
$z=y . h e a d$
while $z \neq$ null
do z. head $=x$. head
z = z.succ
D.union(c, e):

Union

D.union (x, y)
if x .head.listSize $<\mathrm{y}$.head.listSize
then swap x and y y.head.pred $=x$. head.tail
x.head.tail.succ $=\mathrm{y}$.head
x.head.listSize $=x$. head.listSize +y .head.listSize
x.head.tail $=y$.head.tail
$z=y$.head
while $z \neq$ null
do z.head $=x$.head
z = z.succ
D.union(c, e):

Union

D.union (x, y)
if x .head.listSize $<\mathrm{y}$.head.listSize
then swap x and y y.head.pred $=x$. head.tail
x.head.tail.succ $=\mathrm{y}$.head
x.head.listSize $=x$. head.listSize +y .head.listSize
x.head.tail $=y$.head.tail
$z=y$.head
while $z \neq$ null
do z.head $=x$.head
z = z.succ
D.union(c, e):

Union

D.union (x, y)

I if x.head.listSize < y.head.listSize
then swap x and y y.head.pred $=x . h e a d . t a i l$
x.head.tail.succ $=y$.head
x.head.listSize $=x$. head.listSize +y .head.listSize
x. head.tail $=y$.head.tail
$z=y . h e a d$
while $z \neq$ null
do z.head $=x$. head
z = z.succ
D.union(c, e):

Union

D.union (x, y)

1 if x.head.listSize < y.head.listSize
2 then swap x and y y.head.pred $=x$.head.tail x.head.tail.succ $=y$.head x.head.listSize $=\mathrm{x}$.head.listSize +y .head.listSize clear y.head. listsize x.head.tail $=y$.head.tail $z=y$.head

while $z \neq$ null

do z. head $=x$. head
z = z.succ
D.union(c, e):

Union

D.union (x, y)
if x .head.listSize $<\mathrm{y}$.head.listSize
then swap x and y y.head.pred $=x . h e a d . t a i l$
x.head.tail.succ $=y$.head
x.head.listSize $=x . h e a d . l i s t S i z e ~+~ y . h e a d . l i s t S i z e ~$
x.head.tail $=y . h e a d . t a i l$
$z=y$.head while $z \neq$ null
do z.head $=x$. head z = z.succ
D.union(c, e):

Union

D.union (x, y)
if x .head.listSize $<\mathrm{y}$.head.listSize
then swap x and y y.head.pred $=x . h e a d . t a i l$ x.head.tail.succ $=\mathrm{y}$.head
x.head.listSize $=x . h e a d . l i s t S i z e ~+~ y . h e a d . l i s t S i z e ~$
x.head.tail $=y . h e a d . t a i l$
$z=y$.head
while $z \neq$ null
9 do z.head $=x$. head
10

$$
z=z . s u c c
$$

D.union(c, e):

Analysis
Observation: A Find operation takes constant time.

Analysis

Observation: A Find operation takes constant time.
Observation: A Union operation takes $\mathrm{O}(\mathrm{l}+\mathrm{s})$ time, where s is the size of the smaller list.

Analysis

Observation: A Find operation takes constant time.
Observation: A Union operation takes $\mathrm{O}(\mathrm{I}+\mathrm{s})$ time, where s is the size of the smaller list.

Corollary: The total cost of m operations over a base set S is $O\left(m+\sum_{x \in S} c(x)\right)$, where $c(x)$ is the number of times x is in the smaller list of a Union operation.

Analysis

Observation: A Find operation takes constant time.
Observation: A Union operation takes $\mathrm{O}(\mathrm{l}+\mathrm{s})$ time, where s is the size of the smaller list.

Corollary: The total cost of m operations over a base set S is $O\left(m+\sum_{x \in S} c(x)\right)$, where $c(x)$ is the number of times x is in the smaller list of a Union operation.

Lemma: Let $s(x, i)$ be the size of the list containing x after x was in the smaller list of i Union operations. Then $s(x, i) \geq 2^{i}$.

Analysis

Observation: A Find operation takes constant time.
Observation: A Union operation takes $\mathrm{O}(1+\mathrm{s})$ time, where s is the size of the smaller list.

Corollary: The total cost of m operations over a base set S is $O\left(m+\sum_{x \in S} c(x)\right)$, where $c(x)$ is the number of times x is in the smaller list of a Union operation.

Lemma: Let $s(x, i)$ be the size of the list containing x after x was in the smaller list of i Union operations. Then $s(x, i) \geq 2^{i}$.

Base case: $\mathrm{i}=0$. The list containing x has size at least $\mathrm{I}=2^{0}$.

Analysis

Observation: A Find operation takes constant time.
Observation: A Union operation takes $\mathrm{O}(1+\mathrm{s})$ time, where s is the size of the smaller list.

Corollary: The total cost of m operations over a base set S is $O\left(m+\sum_{x \in S} c(x)\right)$, where $c(x)$ is the number of times x is in the smaller list of a Union operation.

Lemma: Let $\mathrm{s}(\mathrm{x}, \mathrm{i})$ be the size of the list containing x after x was in the smaller list of i Union operations. Then $s(x, i) \geq 2^{i}$.

Base case: $\mathrm{i}=0$. The list containing x has size at least $\mathrm{I}=2^{0}$.
Inductive step: i>0.

- Consider the ith Union operation where x is in the smaller list.
- Let \boldsymbol{S}_{1} and \mathbf{S}_{2} be the two unioned lists and assume $\mathrm{x} \in \mathbf{S}_{2}$.
- Then $\left|S_{1}\right| \geq\left|S_{2}\right| \geq 2^{i-1}$.
- Thus, $\left|S_{1} \cup S_{2}\right| \geq 2^{i}$.

Analysis

Observation: A Find operation takes constant time.
Observation: A Union operation takes $\mathrm{O}(1+\mathrm{s})$ time, where s is the size of the smaller list.

Corollary: The total cost of m operations over a base set S is $O\left(m+\sum_{x \in S} c(x)\right)$, where $c(x)$ is the number of times x is in the smaller list of a Union operation.

Lemma: Let $s(x, i)$ be the size of the list containing x after x was in the smaller list of i Union operations. Then $s(x, i) \geq 2^{i}$.

Base case: $\mathrm{i}=0$. The list containing x has size at least $\mathrm{I}=2^{0}$.
Inductive step: i>0.

- Consider the ith Union operation where x is in the smaller list.
- Let \boldsymbol{S}_{1} and \boldsymbol{S}_{2} be the two unioned lists and assume $\mathrm{x} \in \mathbf{S}_{2}$.
- Then $\left|S_{1}\right| \geq\left|S_{2}\right| \geq 2^{i-1}$.
- Thus, $\left|S_{1} \cup S_{2}\right| \geq 2^{i}$.

Corollary: $\mathrm{c}(\mathrm{x}) \leq \lg \mathrm{n}$ for all $\mathrm{x} \in \mathrm{S}$.

Analysis

Corollary: A sequence of m Union and Find operations over a base set of size n takes $O(\mathrm{n} \lg \mathrm{n}+\mathrm{m})$ time.

Analysis

Corollary: A sequence of m Union and Find operations over a base set of size n takes $O(n \lg n+m)$ time.

Corollary: Kruskal's algorithm takes $\mathrm{O}(\mathrm{n} \lg \mathrm{n}+\mathrm{m} \lg \mathrm{m})$ time.

Analysis

Corollary: A sequence of m Union and Find operations over a base set of size n takes $\mathrm{O}(\mathrm{n} \lg \mathrm{n}+\mathrm{m})$ time.

Corollary: Kruskal's algorithm takes $\mathrm{O}(\mathrm{n} \lg \mathrm{n}+\mathrm{m} \lg \mathrm{m})$ time.
If the graph is connected, then $m \geq n-1$, so the running time simplifies to $O(m \lg m)$.

The Cut Theorem And Graph Traversal

The Cut Theorem And Graph Traversal

If there exists an MST containing all green edges, then there exists an MST containing all green edges and the cheapest red edge.

The Cut Theorem And Graph Traversal

If there exists an MST containing all green edges, then there exists an MST containing all green edges and the cheapest red edge.

Cut: $\mathrm{U}=$ explored vertices, $\mathrm{W}=\mathrm{V} \backslash \mathrm{U}$

Prim's Algorithm

Prim(G)

$1 \mathrm{~T}=(\mathrm{V}, \emptyset)$
2 mark all vertices of G as unexplored
3 mark an arbitrary vertex s as explored
4 while not all vertices are explored
do pick the cheapest edge e with exactly one unexplored endpoint v a mark v as explored add e to T
8 return T

Prim's Algorithm

Prim(G)

$1 \quad \mathrm{~T}=(\mathrm{V}, \emptyset)$
2 mark all vertices of G as unexplored
3 mark an arbitrary vertex s as explored
4 while not all vertices are explored
5 do pick the cheapest edge e with exactly one unexplored endpoint v
6 mark v as explored add e to T
return T

Lemma: Prim's algorithm computes a minimum spanning tree.

Prim's Algorithm

Prim(G)

$1 \mathrm{~T}=(\mathrm{V}, \emptyset)$
2 mark all vertices of G as unexplored
3 mark an arbitrary vertex sas explored
4 while not all vertices are explored
5 do pick the cheapest edge e with exactly one unexplored endpoint v 6 mark v as explored add e to T
8 return T

Lemma: Prim's algorithm computes a minimum spanning tree.
By induction on the number of edges in T , there exists an MST $\mathrm{T}^{*} \supseteq \mathrm{~T}$.

Prim's Algorithm

Prim(G)

$1 \quad \mathrm{~T}=(\mathrm{V}, \emptyset)$
2 mark all vertices of G as unexplored
3 mark an arbitrary vertex s as explored
4 while not all vertices are explored
5 do pick the cheapest edge e with exactly one unexplored endpoint v
7 add e to T
8 return T

Lemma: Prim's algorithm computes a minimum spanning tree.
By induction on the number of edges in T , there exists an MST $\mathrm{T}^{*} \supseteq \mathrm{~T}$.
Once T is connected, we have $\mathrm{T}^{*}=\mathrm{T}$.

The Abstract Data Type Priority Queue

Operations:

Q.insert(x, p): Insert element x with priority p
Q.delete(x): Delete element x
Q.findMin(): Find and return the element with minimum priority
Q.deleteMin(): Delete the element with minimum priority and return it
Q.decreaseKey (x, p) : Change the priority p_{x} of x to $\min \left(\mathrm{p}, \mathrm{p}_{\mathrm{x}}\right)$

Delete and DecreaseKey assume they're given a pointer to the place in Q where x is stored.

The Abstract Data Type Priority Queue

Operations:

Q.insert(x, p): Insert element x with priority p
Q.delete(x): Delete element x
Q.findMin(): Find and return the element with minimum priority
Q.deleteMin(): Delete the element with minimum priority and return it
Q.decreaseKey (x, p) : Change the priority p_{x} of x to $\min \left(\mathrm{p}, \mathrm{p}_{\mathrm{x}}\right)$

Delete and DecreaseKey assume they're given a pointer to the place in Q where x is stored.

Example: A binary heap is a priority queue supporting all operations in $\mathrm{O}(\mathrm{lg} \mid \mathrm{Q})$ time.

Prim's Algorithm Using A Priority Queue

Prim(G)

1 $\mathrm{T}=(\mathrm{V}, \emptyset)$
2 mark every vertex of G as unexplored
3 mark an arbitrary vertex s as explored
4 Q = an empty priority queue
5 for every edge (s, v) incident to s
do Q.insert((s, v), w(s, v))
while not Q.isEmpty()
do (u, v) $=$ Q.deleteMin()
if v is unexplored
then mark v as explored add edge (u, v) to T
for every edge (v, w) incident to v do Q.insert($(\mathrm{v}, \mathrm{w}), \mathrm{w}(\mathrm{v}, \mathrm{w})$)
14 return T

Prim's Algorithm Using A Priority Queue

Prim(G)

$\mathrm{T}=(\mathrm{V}, \emptyset)$ mark every vertex of G as unexplored mark an arbitrary vertex s as explored
$Q=$ an empty priority queue for every edge (s, v) incident to s do Q.insert((s, v), w(s, v)) while not Q.isEmpty()
do (u, v) $=$ Q.deleteMin()
if v is unexplored
then mark v as explored add edge (u, v) to T for every edge (v, w) incident to v do Q.insert($(\mathrm{v}, \mathrm{w}), \mathrm{w}(\mathrm{v}, \mathrm{w})$)

Invariant: Q contains all edges with exactly one unexplored endpoint.

Prim's Algorithm Using A Priority Queue

Prim(G)

$\mathrm{T}=(\mathrm{V}, \emptyset)$
mark every vertex of G as unexplored mark an arbitrary vertex s as explored
$Q=$ an empty priority queue
for every edge (s, v) incident to s
do Q.insert((s, v), w(s, v))
while not Q.isEmpty()
do $(\mathrm{u}, \mathrm{v})=$ Q.deleteMin()
if v is unexplored
then mark v as explored add edge (u, v) to T for every edge (v, w) incident to v do Q.insert($(\mathrm{v}, \mathrm{w}), \mathrm{w}(\mathrm{v}, \mathrm{w})$)

Invariant: Q contains all edges with exactly one unexplored endpoint.
\Rightarrow This version of Prim's algorithm computes an MST.

Prim's Algorithm Using A Priority Queue

Prim(G)

$\mathrm{T}=(\mathrm{V}, \emptyset)$
mark every vertex of G as unexplored mark an arbitrary vertex s as explored
$Q=$ an empty priority queue
for every edge (s, v) incident to s
do Q.insert((s, v), w(s, v))
while not Q.isEmpty()
do (u, v) = Q.deleteMin()
if v is unexplored
then mark v as explored add edge (u, v) to T for every edge (v, w) incident to v do Q.insert((v,w), w(v,w))

Invariant: Q contains all edges with exactly one unexplored endpoint.
\Rightarrow This version of Prim's algorithm computes an MST.

This version of Prim's algorithm takes $\mathrm{O}(\mathrm{m} \lg \mathrm{m})$ time:

Prim's Algorithm Using A Priority Queue

Prim(G)

$\mathrm{T}=(\mathrm{V}, \emptyset)$
mark every vertex of G as unexplored mark an arbitrary vertex s as explored
$Q=$ an empty priority queue for every edge (s, v) incident to s do Q.insert((s, v), w(s, v)) while not Q.isEmpty()
do (u, v) = Q.deleteMin()
if v is unexplored
then mark v as explored add edge (u, v) to T for every edge (v, w) incident to v do Q.insert((v,w), w(v,w))

Invariant: Q contains all edges with exactly one unexplored endpoint.
\Rightarrow This version of Prim's algorithm computes an MST.

This version of Prim's algorithm takes $\mathrm{O}(\mathrm{m} \lg \mathrm{m})$ time:
Every edge is inserted into Q once.

Prim's Algorithm Using A Priority Queue

Prim(G)

$\mathrm{T}=(\mathrm{V}, \emptyset)$
mark every vertex of G as unexplored mark an arbitrary vertex s as explored
$Q=$ an empty priority queue for every edge (s, v) incident to s do Q.insert((s, v), w(s, v)) while not Q.isEmpty()
do $(\mathrm{u}, \mathrm{v})=$ Q.deleteMin()
if v is unexplored
then mark v as explored add edge (u, v) to T for every edge (v, w) incident to v do Q.insert((v, w), w(v, w))

Invariant: Q contains all edges with exactly one unexplored endpoint.
\Rightarrow This version of Prim's algorithm computes an MST.

This version of Prim's algorithm takes $\mathrm{O}(\mathrm{m} \lg \mathrm{m})$ time:

Every edge is inserted into Q once.
\Rightarrow Every edge is removed from Q once.

Prim's Algorithm Using A Priority Queue

Prim(G)

$\mathrm{T}=(\mathrm{V}, \emptyset)$
mark every vertex of G as unexplored
mark an arbitrary vertex s as explored
$Q=$ an empty priority queue
for every edge (s, v) incident to s
do Q.insert((s, v), w(s, v))
while not Q.isEmpty()
do (u, v) $=$ Q.deleteMin()
if v is unexplored
then mark v as explored add edge (u, v) to T for every edge $(\mathrm{v}, \mathrm{w}$) incident to v do Q.insert((v, w), w(v, w))

Invariant: Q contains all edges with exactly one unexplored endpoint.
\Rightarrow This version of Prim's algorithm computes an MST.

This version of Prim's algorithm takes $\mathrm{O}(\mathrm{m} \lg \mathrm{m})$ time:
Every edge is inserted into Q once.
\Rightarrow Every edge is removed from Q once.
$\Rightarrow 2 \mathrm{~m}$ priority queue operations.

Most Edges In Q Are Useless

Observation: Of all the edges connecting an unexplored vertex to explored vertices only the cheapest has a chance of being added to the MST.
$w(e)<w(f)$

Most Edges In Q Are Useless

Observation: Of all the edges connecting an unexplored vertex to explored vertices only the cheapest has a chance of being added to the MST.

$$
w(e)<w(f)
$$

While v is unexplored, all red and orange edges are in Q, so none of the red edges can be the first edge to be removed from Q.

Most Edges In Q Are Useless

Observation: Of all the edges connecting an unexplored vertex to explored vertices only the cheapest has a chance of being added to the MST.

$$
w(e)<w(f)
$$

While v is unexplored, all red and orange edges are in Q, so none of the red edges can be the first edge to be removed from Q .

After marking v as explored, both endpoints of red edges are explored, so they cannot be added to T either.

A Faster Version Of Prim's Algorithm

Prim(G)

```
T = (V,\emptyset)
```

mark every vertex of G as unexplored
set $\mathrm{e}(\mathrm{v})=$ nil for every vertex $\mathrm{v} \in \mathrm{G}$
mark an arbitrary vertex s as explored
$Q=$ an empty priority queue
for every edge (s, v) incident to s
do Q.insert($v, w(s, v)$)
$e(v)=(s, v)$
while not Q.isEmpty()
do $\mathrm{u}=$ Q.deleteMin()
mark u as explored
add e(u) to T
for every edge (u, v) incident to u
do if v is unexplored and $(v \notin Q$ or $w(u, v)<w(e(v)))$
then if $v \notin Q$
then Q.insert(v, w(u, v))
else Q.decreaseKey(v, w(u,v))
$e(v)=(u, v)$
19 return T

A Faster Version Of Prim's Algorithm

Prim(G)

$\mathrm{T}=(\mathrm{V}, \emptyset)$
mark every vertex of G as unexplored
set $\mathrm{e}(\mathrm{v})=$ nil for every vertex $\mathrm{v} \in \mathrm{G}$ mark an arbitrary vertex s as explored
$Q=$ an empty priority queue
for every edge (s, v) incident to s
do Q.insert(v, w(s, v))
$e(v)=(s, v)$
while not Q.isEmpty()
do $\mathrm{u}=$ Q.deleteMin()
mark u as explored
add e(u) to T
for every edge (u, v) incident to u
do if v is unexplored and $(v \notin Q$ or $w(u, v)<w(e(v)))$ then if $v \notin Q$
then Q.insert($v, w(u, v))$
else Q.decreaseKey(v,w(u,v))

$$
e(v)=(u, v)
$$

This version of Prim's algorithm also takes $O(\mathrm{~m} \lg \mathrm{~m})$ time:

A Faster Version Of Prim's Algorithm

Prim(G)

```
T = (V,\emptyset)
```

mark every vertex of G as unexplored
set $e(v)=$ nil for every vertex $v \in G$
mark an arbitrary vertex s as explored
$Q=$ an empty priority queue
for every edge (s, v) incident to s
do Q.insert(v, w(s, v))
$e(v)=(s, v)$
while not Q.isEmpty()
do $\mathrm{u}=$ Q.deleteMin()
mark u as explored
add e(u) to T
for every edge (u, v) incident to u
do if v is unexplored and $(v \notin Q$ or $w(u, v)<w(e(v)))$
then if $v \notin Q$
then Q.insert(v, w(u, v))
else Q.decreaseKey(v, w(u,v))
$e(v)=(u, v)$
19 return T

This version of Prim's algorithm also takes $O(m \lg m)$ time:

- n Insert operations

A Faster Version Of Prim's Algorithm

Prim(G)

```
T = (V,\emptyset)
```

mark every vertex of G as unexplored
set $e(v)=$ nil for every vertex $v \in G$
mark an arbitrary vertex s as explored
$Q=$ an empty priority queue
for every edge (s, v) incident to s
do Q.insert(v, w(s, v))
$e(v)=(s, v)$
while not Q.isEmpty()
do $\mathrm{u}=$ Q.deleteMin()
mark u as explored
add e(u) to T
for every edge (u, v) incident to u
do if v is unexplored and $(v \notin Q$ or $w(u, v)<w(e(v)))$
then if $v \notin Q$
then Q.insert(v, w(u, v))
else Q.decreaseKey(v,w(u,v))
$e(v)=(u, v)$
19 return T

This version of Prim's algorithm also takes $\mathrm{O}(\mathrm{m} \lg \mathrm{m})$ time:

- n Insert operations
- m - n DecreaseKey operations

A Faster Version Of Prim's Algorithm

Prim(G)

```
T = (V,\emptyset)
```

mark every vertex of G as unexplored
set $\mathrm{e}(\mathrm{v})=$ nil for every vertex $\mathrm{v} \in \mathrm{G}$
mark an arbitrary vertex s as explored
$Q=$ an empty priority queue
for every edge (s, v) incident to s
do Q.insert($v, w(s, v)$)
$e(v)=(s, v)$
while not Q.isEmpty()
do $\mathrm{u}=$ Q.deleteMin()
mark u as explored
add e(u) to T
for every edge (u, v) incident to u
do if v is unexplored and $(v \notin Q$ or $w(u, v)<w(e(v)))$
then if $v \notin Q$
then Q.insert(v, w(u, v))
else Q.decreaseKey(v, w(u,v))
$e(v)=(u, v)$
return T

A Faster Version Of Prim's Algorithm

Prim(G)

$\mathrm{T}=(\mathrm{V}, \emptyset)$
mark every vertex of G as unexplored
set $e(v)=$ nil for every vertex $v \in G$
mark an arbitrary vertex s as explored
$Q=$ an empty priority queue
for every edge (s, v) incident to s
do Q.insert(v, w(s, v))
$e(v)=(s, v)$
while not Q.isEmpty()
do $\mathrm{u}=$ Q.deleteMin()
mark u as explored add e(u) to T
for every edge (u, v) incident to u
do if v is unexplored and $(v \notin Q$ or $w(u, v)<w(e(v)))$
then if $v \notin Q$
then Q.insert($v, w(u, v))$
else Q.decreaseKey(v,w(u, v))

$$
e(v)=(u, v)
$$

This version of Prim's algorithm also takes $O(\mathrm{~m} \lg \mathrm{~m})$ time:

- n Insert operations
- m-n DecreaseKey operations
- n DeleteMin operations
$\Rightarrow \mathrm{n}+\mathrm{m}$ priority queue operations.

A Faster Version Of Prim's Algorithm

Prim(G)

$\mathrm{T}=(\mathrm{V}, \emptyset)$
mark every vertex of G as unexplored
set $e(v)=$ nil for every vertex $v \in G$
mark an arbitrary vertex s as explored
$Q=$ an empty priority queue
for every edge (s, v) incident to s
do Q.insert(v, w(s, v))
$e(v)=(s, v)$
while not Q.isEmpty()
do $\mathrm{u}=$ Q.deleteMin()
mark u as explored add e(u) to T
for every edge (u, v) incident to u
do if v is unexplored and $(v \notin Q$ or $w(u, v)<w(e(v)))$
then if $v \notin Q$

$$
\begin{aligned}
& \text { then Q.insert(v, w(u,v)) } \\
& \text { else Q.decreaseKey(v, w(u,v)) } \\
& e(v)=(u, v)
\end{aligned}
$$

This version of Prim's algorithm also takes $O(\mathrm{~m} \lg \mathrm{~m})$ time:

- n Insert operations
- m-n DecreaseKey operations
- n DeleteMin operations
$\Rightarrow \mathrm{n}+\mathrm{m}$ priority queue operations.

Did we gain anything?

A Faster Version Of Prim's Algorithm

Prim(G)

$$
\mathrm{T}=(\mathrm{V}, \emptyset)
$$

mark every vertex of G as unexplored
set $e(v)=$ nil for every vertex $v \in G$
mark an arbitrary vertex s as explored
$Q=$ an empty priority queue
for every edge (s, v) incident to s
do Q.insert(v, w(s, v))
$e(v)=(s, v)$
while not Q.isEmpty()
do $\mathrm{u}=$ Q.deleteMin()
mark u as explored add e(u) to T
for every edge (u, v) incident to u
do if v is unexplored and $(v \notin Q$ or $w(u, v)<w(e(v)))$
then if $v \notin Q$
then Q.insert(v, w(u, v))
else Q.decreaseKey(v, w(u,v))

$$
e(v)=(u, v)
$$

This version of Prim's algorithm also takes $O(\mathrm{~m} \lg \mathrm{~m})$ time:

- n Insert operations
- m - n DecreaseKey operations
- n DeleteMin operations
$\Rightarrow \mathrm{n}+\mathrm{m}$ priority queue operations.

Did we gain anything?

Thin Heap

The Thin Heap is a priority queue which supports

- Insert, DecreaseKey, and FindMin in $O(1)$ time and
- DeleteMin and Delete in $\mathrm{O}(\lg \mathrm{n})$ time.

Thin Heap

The Thin Heap is a priority queue which supports

- Insert, DecreaseKey, and FindMin in $O(1)$ time and
- DeleteMin and Delete in $\mathrm{O}(\lg \mathrm{n})$ time.

These bounds are amortized:

- Individual operations can take much longer.
- A sequence of m operations, d of them DeleteMin or Delete operations, takes $O(m+d \lg n)$ time in the worst case.

Thin Heap

The Thin Heap is a priority queue which supports

- Insert, DecreaseKey, and FindMin in $O(1)$ time and
- DeleteMin and Delete in $\mathrm{O}(\lg \mathrm{n})$ time.

These bounds are amortized:

- Individual operations can take much longer.
- A sequence of m operations, d of them DeleteMin or Delete operations, takes $O(m+d \lg n)$ time in the worst case.

Prim's algorithm performs $\mathrm{n}+\mathrm{m}$ priority queue operations, n of which are DeleteMin operations.

Lemma: Prim's algorithm takes $\mathrm{O}(\mathrm{n} \lg \mathrm{n}+\mathrm{m})$ time.

Thin Tree

A Thin Heap is built from Thin Trees. Thin Trees are defined inductively.

Thin Tree

A Thin Heap is built from Thin Trees. Thin Trees are defined inductively. Every Thin Tree is a rooted tree whose nodes have ranks.

Thin Tree

A Thin Heap is built from Thin Trees. Thin Trees are defined inductively. Every Thin Tree is a rooted tree whose nodes have ranks. A node of rank 0 is a leaf.

Rank 0

Thin Tree

A Thin Heap is built from Thin Trees. Thin Trees are defined inductively.
Every Thin Tree is a rooted tree whose nodes have ranks.
A node of rank 0 is a leaf.
A node of rank $k>0$ has
Thick node: k children of ranks $k-1, k-2, \ldots, 0$ or
Thin node: $k-1$ children of ranks $k-2, k-3, \ldots, 0$.

Thin Tree

A Thin Heap is built from Thin Trees. Thin Trees are defined inductively.
Every Thin Tree is a rooted tree whose nodes have ranks.
A node of rank 0 is a leaf.
A node of rank $k>0$ has
Thick node: k children of ranks $k-1, k-2, \ldots, 0$ or
Thin node: $k-1$ children of ranks $k-2, k-3, \ldots, 0$.

Thin Heap

A Thin Heap is a circular list of heap-ordered Thin Trees.

Thin Heap

A Thin Heap is a circular list of heap-ordered Thin Trees.
Heap-ordered: Every node stores an element no less than the element stored at its parent.

Thin Heap

A Thin Heap is a circular list of heap-ordered Thin Trees.
Heap-ordered: Every node stores an element no less than the element stored at its parent.

All roots are thick.

Thin Heap

A Thin Heap is a circular list of heap-ordered Thin Trees.
Heap-ordered: Every node stores an element no less than the element stored at its parent.

All roots are thick.
The minimum element is stored at one of the roots.

Thin Heap

A Thin Heap is a circular list of heap-ordered Thin Trees.
Heap-ordered: Every node stores an element no less than the element stored at its parent.

All roots are thick.
The minimum element is stored at one of the roots.
We store a pointer to this root.

Node Representation

- Element stored at the node
- Rank
- Pointer to leftmost child
- Pointer to right sibling
- Pointer to left sibling or parent

Node Representation

- Element stored at the node
- Rank
- Pointer to leftmost child
- Pointer to right sibling
- Pointer to left sibling or parent

FindMin
... is easy:

Delete

... can be implemented using DecreaseKey and DeleteMin:
Q. delete (x)

1 Q.decreaseKey $(x,-\infty)$
2 Q.deleteMin()

If Q is empty:

Insert

If Q is empty:

Insert
If Q is empty:

If Q is not empty:

Insert

If Q is empty:

If Q is not empty:

- Insert new element between min and its successor.

Insert

If Q is empty:

If Q is not empty:

- Insert new element between min and its successor.
- Update min if the new element is the new smallest element.

DeleteMin

DeleteMin

DeleteMin

DeleteMin

What do we do with the children?
How do we find the new minimum?

DeleteMin

What do we do with the children?
How do we find the new minimum?

- Could be one of the children.
- Could be one of the other roots.

DeleteMin

- Ensure all former children of min are thick. How?

DeleteMin

- Ensure all former children of min are thick. How?
- Collect all roots and former children of min.

DeleteMin

- Ensure all former children of min are thick. How?
- Collect all roots and former children of min.
- Link trees of the same rank until at most one tree of each rank remains.

DeleteMin

- Ensure all former children of min are thick. How?
- Collect all roots and former children of min.
- Link trees of the same rank until at most one tree of each rank remains.

DeleteMin

- Ensure all former children of min are thick. How?
- Collect all roots and former children of min.
- Link trees of the same rank until at most one tree of each rank remains.

DeleteMin

- Ensure all former children of min are thick. How?
- Collect all roots and former children of min.
- Link trees of the same rank until at most one tree of each rank remains.

DeleteMin

- Ensure all former children of min are thick. How?
- Collect all roots and former children of min.
- Link trees of the same rank until at most one tree of each rank remains.

DeleteMin

- Ensure all former children of min are thick. How?
- Collect all roots and former children of min.
- Link trees of the same rank until at most one tree of each rank remains.

DeleteMin

- Ensure all former children of min are thick. How?
- Collect all roots and former children of min.
- Link trees of the same rank until at most one tree of each rank remains.
- Relink roots into circular list and make min point to the minimum root.

Linking

Important: Both nodes need to be thick and of the same rank.
Assume $\mathrm{y}<\mathrm{x}$ (swap the two trees otherwise).

This produces a valid thin tree:
y had r children of ranks $r-1, r-2, \ldots, 0$ before.
$\Rightarrow y$ has $r+1$ children of ranks $r, r-1, \ldots, 0$ after.

Bounding the Maximum Rank

Lemma: A tree whose root has rank r has at least F_{r} nodes, where F_{r} is the r th Fibonacci number.

Bounding the Maximum Rank

Lemma: A tree whose root has rank r has at least F_{r} nodes, where F_{r} is the r th Fibonacci number.

Fibonacci numbers:

$$
F_{k}= \begin{cases}1 & k=0 \text { or } k=1 \\ F_{k-1}+F_{k-2} & \text { otherwise }\end{cases}
$$

Bounding the Maximum Rank

Lemma: A tree whose root has rank r has at least F_{r} nodes, where F_{r} is the r th Fibonacci number.

Fibonacci numbers:

$$
F_{k}= \begin{cases}1 & k=0 \text { or } k=1 \\ F_{k-1}+F_{k-2} & \text { otherwise }\end{cases}
$$

Base case: $r \in\{0,1\} \Rightarrow$ at least $I=F_{0}=F_{1}$ node.

Bounding the Maximum Rank

Lemma: A tree whose root has rank r has at least F_{r} nodes, where F_{r} is the r th Fibonacci number.

Fibonacci numbers:

$$
F_{k}= \begin{cases}1 & k=0 \text { or } k=1 \\ F_{k-1}+F_{k-2} & \text { otherwise }\end{cases}
$$

Base case: $r \in\{0,1\} \Rightarrow$ at least $I=F_{0}=F_{1}$ node.
Inductive step: $r>1$. We can assume the root is thin.

Bounding the Maximum Rank

Lemma: A tree whose root has rank r has at least F_{r} nodes, where F_{r} is the r th Fibonacci number.

Fibonacci numbers:

$$
F_{k}= \begin{cases}1 & k=0 \text { or } k=1 \\ F_{k-1}+F_{k-2} & \text { otherwise }\end{cases}
$$

Base case: $r \in\{0,1\} \Rightarrow$ at least $I=F_{0}=F_{1}$ node.
Inductive step: $r>1$. We can assume the root is thin.

Bounding the Maximum Rank

Lemma: A tree whose root has rank r has at least F_{r} nodes, where F_{r} is the r th Fibonacci number.

Fibonacci numbers:

$$
F_{k}= \begin{cases}1 & k=0 \text { or } k=1 \\ F_{k-1}+F_{k-2} & \text { otherwise }\end{cases}
$$

Base case: $r \in\{0,1\} \Rightarrow$ at least $I=F_{0}=F_{1}$ node.
Inductive step: $r>1$. We can assume the root is thin.

Bounding the Maximum Rank

Lemma: $F_{r} \geq \phi^{r-1}$, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.62$ is the Golden Ratio.

Bounding the Maximum Rank

Lemma: $F_{r} \geq \phi^{r-1}$, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.62$ is the Golden Ratio.
Base case: $\mathrm{F}_{0}=1>\phi^{-1}$

$$
F_{1}=1=\phi^{0}
$$

Bounding the Maximum Rank

Lemma: $\mathrm{F}_{\mathrm{r}} \geq \phi^{r-1}$, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.62$ is the Golden Ratio.
Base case: $\mathrm{F}_{0}=1>\phi^{-1}$

$$
F_{1}=1=\phi^{0}
$$

Inductive step: $\boldsymbol{r}>\mathrm{I}$.

$$
\begin{aligned}
F_{r}=F_{r-1}+F_{r-2} \geq \phi^{r-2} & +\phi^{r-3} \\
& =\left(\frac{1+\sqrt{5}}{2}+1\right) \phi^{r-3}=\frac{3+\sqrt{5}}{2} \phi^{r-3}
\end{aligned}
$$

$$
=\left(\frac{1+\sqrt{5}}{2}\right)^{2} \phi^{r-3}=\phi^{r-1} .
$$

Bounding the Maximum Rank

Lemma: $\mathrm{F}_{\mathrm{r}} \geq \phi^{r-1}$, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.62$ is the Golden Ratio.
Base case: $\mathrm{F}_{0}=1>\phi^{-1}$

$$
F_{1}=1=\phi^{0}
$$

Inductive step: $r>1$.

$$
F_{r}=F_{r-1}+F_{r-2} \geq \phi^{r-2}+\phi^{r-3}
$$

$$
=\left(\frac{1+\sqrt{5}}{2}+1\right) \phi^{r-3}=\frac{3+\sqrt{5}}{2} \phi^{r-3}
$$

$$
=\left(\frac{1+\sqrt{5}}{2}\right)^{2} \phi^{r-3}=\phi^{r-1} .
$$

Corollary: The maximum rank in a Thin Heap storing n elements is $\log _{\phi} n<2 \lg n$.

Implementation of DeleteMin

Q.deleteMin()

```
\(x=\) Q.min
\(R=\) array of size \(2 \lg n\) with all its entries initially null.
for every root \(r\) other than Q.min
    do LinkTrees( \(\mathrm{R}, \mathrm{r}\) )
for every child \(c\) of Q.min
    do decrease c's rank if necessary to make it thick
    LinkTrees(R, c)
Q.min \(=\) null
for \(i=0\) to \(2 \lg n\)
    do if \(R[i] \neq\) null
        then R[i].lefiSibOrParent \(=\) null
        if Q.min = null
            then \(Q\).min \(=R[i]\)
                    Q.min.rightSib \(=\) Q.min
            else R[i].rightSib = Q.min.rightSib
                    Q.min.rightSib \(=\) R[i].
                    if \(R[i]\).val < Q.min.val
                        then \(Q \cdot \min =R[i]\)
return x.val
```


Implementation of DeleteMin

Q.deleteMin()

```
\(x=\) Q.min
\(\mathrm{R}=\) array of size \(2 \lg n\) with all its entries initially null.
for every root \(r\) other than Q.min
    do LinkTrees( \(\mathrm{R}, \mathrm{r}\) )
for every child \(c\) of Q.min
    do decrease c's rank if necessary to make it thick
        LinkTrees( \(\mathrm{R}, \mathrm{c}\) )
Q.min = null
for \(i=0\) to \(2 \lg n\)
    do if \(R[i] \neq\) null
        then R[i].lefiSibOrParent \(=\) null
        if Q.min = null
                        then \(\mathrm{Q} . \min =\mathrm{R}[\mathrm{i}]\)
                    Q.min.rightSib \(=\) Q.min
            else R[i].rightSib = Q.min.rightSib
                            Q.min.rightSib \(=\) R[i].
                    if \(\mathrm{R}[\mathrm{I}]\).val \(<\) Q.min.val
                        then \(Q . \min =R[i]\)
return x.val
```

Collect trees while ensuring no two have the same rank.

Implementation of DeleteMin

Q.deleteMin()

$x=$ Q.min

 \(\mathrm{R}=\) array of size \(2 \lg n\) with all its entries initially null.
 for every root \(r\) other than Q.min
 do LinkTrees(\(\mathrm{R}, \mathrm{r}\))
 for every child \(c\) of Q.min
 do decrease c's rank if necessary to make it thick
 LinkTrees(\(\mathrm{R}, \mathrm{c}\))
 Q.min = null
 for \(i=0\) to \(2 \lg n\)
 do if \(R[i] \neq\) null
 then R[i]. .leftSibOrParent \(=\) null
 if \(\mathrm{Q} . \mathrm{min}=\) null
 then \(Q . \min =R[i]\)
 Q.min.rightSib \(=\) Q.min
 else R[i].rightSib = Q.min.rightSib
 Q.min.rightSib \(=\) R[i].
 if \(R[i]\).val \(<\) Q.min.val
 then \(Q . \min =R[i]\)
 Collect trees while ensuring no two have the same rank.

LinkTrees (R, x)

$$
r=x \cdot r a n k
$$

$$
\text { while } R[r] \neq \text { null }
$$

$$
\text { do } x=\operatorname{Link}(x, R[r])
$$

$$
\mathrm{R}[\mathrm{r}]=\text { null }
$$

$$
r=r+1
$$

$$
R[r]=x
$$

Implementation of DeleteMin

Q.deleteMin()

$x=Q . \min$
$R=$ array of size $2 \lg n$ with all its entries initially null.
for every root r other than Q.min do LinkTrees(R, r)
for every child c of Q.min
do decrease c's rank if necessary to make it thick
LinkTrees(R, c)
Q.min = null
for $i=0$ to $2 \lg n$
do if $R[i] \neq$ null
then R[i].leftSibOrParent = null
if Q.min = null
then Q.min $=R[i]$
Q.min.rightSib $=$ Q.min
else R[i].rightSib = Q.min.rightSib
Q.min.rightSib $=$ R[i].
if $R[i]$.val $<$ Q.min.val then $Q \cdot \min =R[i]$

DecreaseKey

DecreaseKey

- Update x's priority

DecreaseKey

- Update x's priority
- Make x a root

DecreaseKey

- Update x's priority
- Make x a root

DecreaseKey

y.rank >0 and y has no right sibling or
y.rightSib.rank < y.rank -1 .

- Update x's priority
- Make x a root

DecreaseKey

y.rank >0 and y has no right sibling or y.rightSib.rank < y.rank - .

- Update x's priority
- Make x a root

Parent viofation at y:

y.rank > I and y has no children or y.child.rank < y.rank - 2 .

DecreaseKey

y.rank >0 and y has no right sibling or y.rightSib.rank < y.rank - I.

- Update x's priority
- Make x a root
- Fix parent/sibling violations

Parent violation at y:

y.rank > I and y has no children or y.child.rank < y.rank - 2 .

Sibling Violation

Sibling Violation

If y is thin, then

Sibling Violation

If y is thin, then

- decrease its rank by one and

Sibling Violation

If y is thin, then

- decrease its rank by one and
- fix violation at y.leftSibOrParent.

Sibling Violation

If y is thin, then

- decrease its rank by one and
- fix violation at y.leftSibOrParent.

If y is thick, then

Sibling Violation

If y is thin, then

- decrease its rank by one and
- fix violation at y.leftSibOrParent.

If y is thick, then make y.child y's right sibling.

$$
=7 y \text { is thin }
$$

Parent Violation

Parent Violation

If y is a root, then set $\mathrm{y} \cdot \mathrm{rank}=\mathrm{y}$.child.rank +l .

Parent Violation

If y is a root, then set $\mathrm{y} \cdot \mathrm{rank}=\mathrm{y}$.child.rank +l .

If y is not a root, then

Parent Violation

If y is a root, then set $\mathrm{y} \cdot \mathrm{rank}=\mathrm{y}$.child.rank +l .

If y is not a root, then

- make y a root,

Parent Violation

If y is a root, then set $\mathrm{y} \cdot \mathrm{rank}=\mathrm{y}$. child. $\mathrm{rank}+\mathrm{l}$.

If y is not a root, then

- make y a root,
- set y.rank = y.child.rank + I, and

Parent Violation

If y is a root, then set $\mathrm{y} \cdot \mathrm{rank}=\mathrm{y}$.child.rank +l .

If y is not a root, then

- make y a root,
- set y.rank = y.child.rank +1 , and
- fix violation at y.leftSibOrParent.

Amortized Analysis

For a sequence of operations on a data structure, the total worst-case cost of these operations is bounded by the sum of the worst-case costs of these operations.

Amortized Analysis

For a sequence of operations on a data structure, the total worst-case cost of these operations is bounded by the sum of the worst-case costs of these operations.
We've already seen an example where this bound isn't tight:

- A single Union operation on a union-find data structure can take linear time, but
- The total cost of n Union operations is in $O(n \lg n)$.

Amortized Analysis

For a sequence of operations on a data structure, the total worst-case cost of these operations is bounded by the sum of the worst-case costs of these operations.
We've already seen an example where this bound isn't tight:

- A single Union operation on a union-find data structure can take linear time, but
- The total cost of n Union operations is in $O(n \lg n)$.

This means: If there's an expensive operation, there must have been many cheap operations that can "pay" for this high cost.

Amortized Analysis

For a sequence of operations on a data structure, the total worst-case cost of these operations is bounded by the sum of the worst-case costs of these operations.
We've already seen an example where this bound isn't tight:

- A single Union operation on a union-find data structure can take linear time, but
- The total cost of n Union operations is in $O(n \lg n)$.

This means: If there's an expensive operation, there must have been many cheap operations that can "pay" for this high cost.
Amortized analysis formalizes this idea:
Let $0_{1}, 0_{2}, \ldots, 0_{m}$ be a sequence of operations.
Let $c_{1}, c_{2}, \ldots, c_{m}$ be their costs.

Amortized Analysis

For a sequence of operations on a data structure, the total worst-case cost of these operations is bounded by the sum of the worst-case costs of these operations.
We've already seen an example where this bound isn't tight:

- A single Union operation on a union-find data structure can take linear time, but
- The total cost of n Union operations is in $O(n \lg n)$.

This means: If there's an expensive operation, there must have been many cheap operations that can "pay" for this high cost.
Amortized analysis formalizes this idea:
Let $0_{1}, 0_{2}, \ldots, 0_{m}$ be a sequence of operations.
Let $c_{1}, c_{2}, \ldots, c_{m}$ be their costs.
Now define amortized costs $\hat{\mathrm{c}}_{1}, \hat{c}_{2}, \ldots, \hat{c}_{\mathrm{c}}$.

Amortized Analysis

For a sequence of operations on a data structure, the total worst-case cost of these operations is bounded by the sum of the worst-case costs of these operations.
We've already seen an example where this bound isn't tight:

- A single Union operation on a union-find data structure can take linear time, but
- The total cost of n Union operations is in $O(n \lg n)$.

This means: If there's an expensive operation, there must have been many cheap operations that can "pay" for this high cost.
Amortized analysis formalizes this idea:
Let $0_{1}, 0_{2}, \ldots, o_{m}$ be a sequence of operations.
Let $c_{1}, c_{2}, \ldots, c_{m}$ be their costs.
Now define amortized costs $\hat{\mathrm{c}}_{1}, \hat{c}_{2}, \ldots, \hat{c}_{\mathrm{c}}$.
These costs are completely fictitious but must satisfy an important condition to be useful:

$$
\sum_{i=1}^{m} c_{i} \leq \sum_{i=1}^{m} \hat{c}_{i}
$$

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.
A potential function Φ calculates a number, the potential of the data structure, from its current structure.

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.
A potential function Φ calculates a number, the potential of the data structure, from its current structure.

Conditions:

- The empty data structure has potential 0 .
- The potential of the data structure is always non-negative.

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.
A potential function Φ calculates a number, the potential of the data structure, from its current structure.

Conditions:

- The empty data structure has potential 0 .
- The potential of the data structure is always non-negative.

$$
D_{0} \xrightarrow[0_{1}]{ } D_{1} \xrightarrow[0_{2}]{ } D_{2} \longrightarrow \quad D_{m-1} \xrightarrow[0_{m}]{ } D_{m}
$$

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.
A potential function Φ calculates a number, the potential of the data structure, from its current structure.

Conditions:

- The empty data structure has potential 0 .
- The potential of the data structure is always non-negative.

$$
D_{0} \xrightarrow[\substack{o_{1} \\ c_{1}}]{D_{1}} \xrightarrow[\substack{o_{2} \\ c_{2}}]{D_{2}} D_{2} \rightarrow D_{m-1} \xrightarrow[\substack{o_{m} \\ c_{m}}]{ } D_{m}
$$

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.
A potential function Φ calculates a number, the potential of the data structure, from its current structure.

Conditions:

- The empty data structure has potential 0 .
- The potential of the data structure is always non-negative.

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.
A potential function Φ calculates a number, the potential of the data structure, from its current structure.

Conditions:

- The empty data structure has potential 0 .
- The potential of the data structure is always non-negative.

$$
\begin{aligned}
& \hat{c}_{i}:=c_{i}+\Phi_{i}-\Phi_{i-1}
\end{aligned}
$$

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.
A potential function Φ calculates a number, the potential of the data structure, from its current structure.

Conditions:

- The empty data structure has potential 0 .
- The potential of the data structure is always non-negative.

$$
\begin{aligned}
& \hat{c}_{i}:=c_{i}+\Phi_{i}-\Phi_{i-1} \\
& \sum_{i=1}^{m} \hat{c}_{i}=\sum_{i=1}^{m}\left(c_{i}+\Phi_{i}-\Phi_{i-1}\right)=\sum_{i=1}^{m} c_{i}+\Phi_{m}-\Phi_{0} \geq \sum_{i=1}^{m} c_{i}
\end{aligned}
$$

Techniques for Proving Amortized Bounds

The most important ones are the Accounting Method and Potential Functions.
A potential function Φ calculates a number, the potential of the data structure, from its current structure.

Conditions:

- The empty data structure has potential 0 .
- The potential of the data structure is always non-negative.

Intuition:

- The potential captures parts of the data structure that can make operations expensive.
- If operations that take long eliminate these "expensive" parts of the data structure, then there can't be many expensive operations without lots of operations that create these expensive parts.
- These operations can "pay" for the cost of the expensive operations.

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x$)$	Push element x on the stack
S.pop(Pop the topmost element from the stack
S.multiPop(k)	Pop min(k, $\mid \mathrm{S})$ elements from the stack

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x)	Push element x on the stack
S.pop(Pop the topmost element from the stack
S.multiPop(k)	Pop min $(k,\|S\|)$ elements from the stack

Our goal is to prove that the amortized cost per operation is constant.

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x)	Push element x on the stack
S.pop(Pop the topmost element from the stack
S.multiPop(k)	Pop min $(k,\|S\|)$ elements from the stack

Our goal is to prove that the amortized cost per operation is constant.
What can make operations expensive?

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x)	Push element x on the stack
S.pop(Pop the topmost element from the stack
S.multiPop(k)	Pop min(k, \mid S $)$ elements from the stack

Our goal is to prove that the amortized cost per operation is constant.
What can make operations expensive?
MultiPop becomes expensive if k is large and there are lots of elements on the stack.

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x)	Push element x on the stack
S.pop(Pop the topmost element from the stack
S.multiPop(k)	Pop min(k, \mid S $)$ elements from the stack

Our goal is to prove that the amortized cost per operation is constant.
What can make operations expensive?
MultiPop becomes expensive if k is large and there are lots of elements on the stack.
Afterwards, fewer elements are on the stack.

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x)	Push element x on the stack
S.pop(Pop the topmost element from the stack
S.multiPop(k)	Pop min $(k,\|S\|)$ elements from the stack

Our goal is to prove that the amortized cost per operation is constant.
What can make operations expensive?
MultiPop becomes expensive if k is large and there are lots of elements on the stack.
Afterwards, fewer elements are on the stack.
\Rightarrow When we remove lots of elements from the stack, we want the potential to drop proportionally to pay for the cost of removing these elements.

Amortized Analysis: Stack with MultiPop Operation

Operations:

S.push(x)	Push element x on the stack
S.pop(Pop the topmost element from the stack
S.multiPop(k)	Pop min(k, \mid S $)$ elements from the stack

Our goal is to prove that the amortized cost per operation is constant.
What can make operations expensive?
MultiPop becomes expensive if k is large and there are lots of elements on the stack.
Afterwards, fewer elements are on the stack.
\Rightarrow When we remove lots of elements from the stack, we want the potential to drop proportionally to pay for the cost of removing these elements.

$$
\Phi=|S|
$$

Amortized Analysis: Stack with MultiPop Operation

 Initially, the stack is empty.$\Rightarrow \Phi_{0}=0$

Amortized Analysis: Stack with MultiPop Operation

 Initially, the stack is empty.$\Rightarrow \Phi_{0}=0$

Push operation:

Amortized Analysis: Stack with MultiPop Operation

Initially, the stack is empty.
$\Rightarrow \Phi_{0}=0$

Push operation:

- $c \in O(I)$

Amortized Analysis: Stack with MultiPop Operation

Initially, the stack is empty.
$\Rightarrow \Phi_{0}=0$

Push operation:

- $c \in O(1)$
- $\Delta \Phi=+1$

Amortized Analysis: Stack with MultiPop Operation

Initially, the stack is empty.
$\Rightarrow \Phi_{0}=0$

Push operation:

- $c \in O(1)$
- $\Delta \Phi=+1$
$\Rightarrow \hat{\mathrm{c}}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{I})+\mathrm{I}=\mathrm{O}(\mathrm{I})$

Amortized Analysis: Stack with MultiPop Operation

 Initially, the stack is empty.$$
\Rightarrow \Phi_{0}=0
$$

Push operation:

- $c \in O(1)$
- $\Delta \Phi=+1$
$\Rightarrow \hat{c}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{I})+\mathrm{I}=\mathrm{O}(\mathrm{I})$

Pop operation:

Amortized Analysis: Stack with MultiPop Operation

 Initially, the stack is empty.$$
\Rightarrow \Phi_{0}=0
$$

Push operation:

- $c \in O(1)$
- $\Delta \Phi=+1$
$\Rightarrow \hat{\mathrm{c}}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{I})+\mathrm{I}=\mathrm{O}(\mathrm{I})$

Pop operation:

- $c \in O(1)$

Amortized Analysis: Stack with MultiPop Operation

 Initially, the stack is empty.$$
\Rightarrow \Phi_{0}=0
$$

Push operation:

- $c \in O(1)$
- $\Delta \Phi=+1$
$\Rightarrow \hat{\mathrm{c}}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{I})+\mathrm{I}=\mathrm{O}(\mathrm{I})$

Pop operation:

- $c \in O(I)$
- $\Delta \Phi=-1$

Amortized Analysis: Stack with MultiPop Operation

 Initially, the stack is empty.$$
\Rightarrow \Phi_{0}=0
$$

Push operation:

- $c \in O(1)$
- $\Delta \Phi=+1$
$\Rightarrow \hat{\mathrm{c}}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{I})+\mathrm{I}=\mathrm{O}(\mathrm{I})$

Pop operation:

- $c \in O(1)$
- $\Delta \Phi=-1$
$\Rightarrow \hat{c}=c+\Delta \Phi=O(1)-1=0$!

Amortized Analysis: Stack with MultiPop Operation

 Initially, the stack is empty.$$
\Rightarrow \Phi_{0}=0
$$

Push operation:

- $c \in O(1)$
- $\Delta \Phi=+1$
$\Rightarrow \hat{\mathrm{c}}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{I})+\mathrm{I}=\mathrm{O}(\mathrm{I})$

Pop operation:

- $c \in O(I)$
- $\Delta \Phi=-1$
$\Rightarrow \hat{c}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{I})-\mathrm{I}=0$!

MultiPop operation:

Amortized Analysis: Stack with MultiPop Operation

 Initially, the stack is empty.$$
\Rightarrow \Phi_{0}=0
$$

Push operation:

- $c \in O(1)$
- $\Delta \Phi=+1$
$\Rightarrow \hat{\mathrm{c}}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{I})+\mathrm{I}=\mathrm{O}(\mathrm{I})$

Pop operation:

- $c \in O(I)$
- $\Delta \Phi=-1$
$\Rightarrow \hat{\mathrm{c}}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{I})-\mathrm{I}=0$!

MultiPop operation:

- $c \in O(I+\min (k,|S|))$

Amortized Analysis: Stack with MultiPop Operation

 Initially, the stack is empty.$$
\Rightarrow \Phi_{0}=0
$$

Push operation:

- $c \in O(1)$
- $\Delta \Phi=+1$
$\Rightarrow \hat{\mathrm{c}}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{I})+\mathrm{I}=\mathrm{O}(\mathrm{I})$

Pop operation:

- $c \in O(I)$
- $\Delta \Phi=-1$
$\Rightarrow \hat{c}=c+\Delta \Phi=O(1)-1=0$!

MultiPop operation:

- $c \in O(I+\min (k,|S|))$
- $\Delta \Phi=-\min (k,|S|)$

Amortized Analysis: Stack with MultiPop Operation

 Initially, the stack is empty.$$
\Rightarrow \Phi_{0}=0
$$

Push operation:

- $c \in O(1)$
- $\Delta \Phi=+1$
$\Rightarrow \hat{\mathrm{c}}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{I})+\mathrm{l}=\mathrm{O}(\mathrm{I})$

Pop operation:

- $c \in O(I)$
- $\Delta \Phi=-1$
$\Rightarrow \hat{c}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{I})-\mathrm{I}=0$!

MultiPop operation:

- $c \in O(I+\min (k,|S|))$
- $\Delta \Phi=-\min (k,|S|)$
$\Rightarrow \hat{c}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{l}+\min (\mathrm{k},|\mathrm{S}|)-\min (\mathrm{k},|\mathrm{S}|)=\mathrm{O}(\mathrm{l})$

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0 .
The only operation we want to support is Increment.

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0 .
The only operation we want to support is Increment.

$$
011001111
$$

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0 .
The only operation we want to support is Increment.

$$
\begin{aligned}
& 011001111 \\
& \begin{array}{l}
1 \\
0
\end{array}
\end{aligned}
$$

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0 .
The only operation we want to support is Increment.

$$
\begin{array}{lllllll}
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
& & 1 & 1 \\
& & & & & 1 & 1 \\
& & 0 & 0
\end{array}
$$

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0 .
The only operation we want to support is Increment.

$$
\begin{array}{llllllll}
0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\
& & & 1 & 1 \\
& & & 1 & 1 & 1 \\
& & & 0 & 0 & 0
\end{array}
$$

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0 .
The only operation we want to support is Increment.

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0 .
The only operation we want to support is Increment.

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0 .
The only operation we want to support is Increment.

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0 .
The only operation we want to support is Increment.

Again, we want to prove that the amortized cost per Increment operation is constant.

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0 .
The only operation we want to support is Increment.

Again, we want to prove that the amortized cost per Increment operation is constant.
What makes increment operations expensive?

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0 .
The only operation we want to support is Increment.

Again, we want to prove that the amortized cost per Increment operation is constant.
What makes increment operations expensive?
Lots of ls that need to be flipped into 0 s.

Amortized Analysis: Binary Counter

Consider a binary counter initially set to 0 .
The only operation we want to support is Increment.

Again, we want to prove that the amortized cost per Increment operation is constant.
What makes increment operations expensive?
Lots of ls that need to be flipped into 0 s.

$$
\Phi=\# 1 \mathrm{~s} \text { in the current counter value }
$$

Amortized Analysis: Binary Counter

Initially, all digits are 0.
$\Rightarrow \Phi_{0}=0$

Amortized Analysis: Binary Counter

Initially, all digits are 0.
$\Rightarrow \Phi_{0}=0$

If the rightmost 0 is the kth digit from the right, then an Increment operation takes O(k) time.

Amortized Analysis: Binary Counter

Initially, all digits are 0.
$\Rightarrow \Phi_{0}=0$

If the rightmost 0 is the k dh digit from the right, then an Increment operation takes O(k) time.

The operation turns the k th digit into a I and turns the $\mathrm{k}-\mathrm{I}$ Is to its right into 0 s.

Amortized Analysis: Binary Counter

Initially, all digits are 0.
$\Rightarrow \Phi_{0}=0$

If the rightmost 0 is the k th digit from the right, then an Increment operation takes $O(k)$ time.

The operation turns the k th digit into a I and turns the $\mathrm{k}-\mathrm{I}$ Is to its right into 0 s.
$\Rightarrow \Delta \Phi=+\mathrm{l}-(\mathrm{k}-\mathrm{I})=2-\mathrm{k}$

Amortized Analysis: Binary Counter

Initially, all digits are 0.

$\Rightarrow \Phi_{0}=0$

If the rightmost 0 is the k dh digit from the right, then an Increment operation takes $O(k)$ time.

The operation turns the k th digit into a I and turns the $\mathrm{k}-\mathrm{I}$ Is to its right into 0 s.
$\Rightarrow \Delta \Phi=+\mathrm{l}-(\mathrm{k}-\mathrm{I})=2-\mathrm{k}$
$\Rightarrow \hat{c}=\mathrm{c}+\Delta \Phi=\mathrm{O}(\mathrm{k})+2-\mathrm{k}=\mathrm{O}(\mathrm{l})$

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

- DeleteMin: Many roots.

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

- DeleteMin: Many roots.
- DecreaseKey: Many thin nodes.

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

- DeleteMin: Many roots.
- DecreaseKey: Many thin nodes.
\Rightarrow The potential function should count roots and thin nodes.

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

- DeleteMin: Many roots.
- DecreaseKey: Many thin nodes.
\Rightarrow The potential function should count roots and thin nodes.
A DecreaseKey operation may turn many thin nodes into roots. If we want an amortized cost of $\mathrm{O}(\mathrm{I})$ for DecreaseKey, this needs to be paid for by a drop in potential.

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

- DeleteMin: Many roots.
- DecreaseKey: Many thin nodes.
\Rightarrow The potential function should count roots and thin nodes.
A DecreaseKey operation may turn many thin nodes into roots. If we want an amortized cost of $\mathrm{O}(1)$ for DecreaseKey, this needs to be paid for by a drop in potential.
\Rightarrow Thin nodes should be "more expensive" than roots.

A Potential Function for Thin Heap

What makes Thin Heap operations expensive?

- DeleteMin: Many roots.
- DecreaseKey: Many thin nodes.
\Rightarrow The potential function should count roots and thin nodes.
A DecreaseKey operation may turn many thin nodes into roots. If we want an amortized cost of $\mathrm{O}(1)$ for DecreaseKey, this needs to be paid for by a drop in potential.
\Rightarrow Thin nodes should be "more expensive" than roots.

$$
\Phi=2 \cdot \text { number of thin nodes }+ \text { number of roots }
$$

Amortized Cost of Insert, FindMin, and Delete

Insert:

- $c \in O(1)$
- $\Delta \Phi=+1$:
- Δ (number of roots) $=+1$
- Δ (number of thin nodes) $=0$
$\Rightarrow \hat{c} \in \mathrm{O}(\mathrm{I})$

Amortized Cost of Insert, FindMin, and Delete

Insert:

- $c \in O(1)$
- $\triangle \Phi=+1$:
- Δ (number of roots) $=+1$
- Δ (number of thin nodes) $=0$
$\Rightarrow \hat{c} \in O(1)$

FindMin:

- $c \in O(I)$
- $\Delta \Phi=0$:
- The heap structure doesn't change.
$\Rightarrow \hat{c} \in O(1)$

Amortized Cost of Insert, FindMin, and Delete

Insert:

- $c \in O(1)$
- $\triangle \Phi=+1$:
- Δ (number of roots) $=+1$
- Δ (number of thin nodes) $=0$
$\Rightarrow \hat{c} \in O(I)$

FindMin:

- $c \in O(I)$
- $\triangle \Phi=0$:
- The heap structure doesn't change.
$\Rightarrow \hat{\mathrm{c}} \in \mathrm{O}(\mathrm{I})$

Delete:

- We show that $\hat{c}($ DecreaseKey $) \in O(I)$.
- We show that $\hat{\mathbf{c}}($ DeleteMin $) \in \mathbf{O}(\lg \mathrm{n})$.
$\Rightarrow \hat{c} \in \mathrm{O}(\lg \mathrm{n})$

Amortized Cost of DeleteMin

Actual cost: $O(\lg n+n u m b e r$ of roots + number of children of Q.min)

- $O(\lg n)$ for initializing R
- $O(I)$ per addition to R
- $O(I)$ per link operation
- $O(\lg n)$ to collect final list of roots from R
- Number of additions to $\mathrm{R}=$ number of roots and children of Q.min
- Number of link operations \leq number of roots and children of Q.min

Amortized Cost of DeleteMin

Actual cost: $O(\lg n+n u m b e r$ of roots + number of children of Q.min)

- $O(\lg n)$ for initializing R
- $O(I)$ per addition to R
- $O(I)$ per link operation
- $O(\lg n)$ to collect final list of roots from R
- Number of additions to $\mathrm{R}=$ number of roots and children of Q.min
- Number of link operations \leq number of roots and children of Q.min
- Number of children of Q.min $=$ Q.min.rank $\in \mathbf{O}(\lg n)$
$\Rightarrow \mathrm{c} \in \mathrm{O}(\lg \mathrm{n}+$ number of roots)

Amortized Cost of DeleteMin

Actual cost: $O(\lg n+n u m b e r$ of roots + number of children of Q.min)

- $O(\lg n)$ for initializing R
- $O(I)$ per addition to R
- $O(I)$ per link operation
- $O(\lg n)$ to collect final list of roots from R
- Number of additions to $\mathrm{R}=$ number of roots and children of Q.min
- Number of link operations \leq number of roots and children of Q.min
- Number of children of Q.min $=$ Q.min.rank $\in \mathbf{O}(\lg n)$
$\Rightarrow \mathrm{c} \in \mathrm{O}(\lg \mathrm{n}+$ number of roots)
- Δ (number of thin nodes) ≤ 0
- Δ (number of roots) $\leq 2 \lg n-$ number of roots
$\Rightarrow \Delta \Phi \leq 2 \lg n-$ number of roots

Amortized Cost of DeleteMin

Actual cost: $\mathrm{O}(\lg \mathrm{n}+$ number of roots + number of children of Q.min)

- $O(\lg n)$ for initializing R
- $O(I)$ per addition to R
- $O(I)$ per link operation
- $O(\lg n)$ to collect final list of roots from R
- Number of additions to $\mathrm{R}=$ number of roots and children of Q.min
- Number of link operations \leq number of roots and children of Q.min
- Number of children of Q.min $=$ Q.min.rank $\in \mathbf{O}(\lg n)$
$\Rightarrow \mathrm{c} \in \mathrm{O}(\lg \mathrm{n}+$ number of roots)
- Δ (number of thin nodes) ≤ 0
- Δ (number of roots) $\leq 2 \lg n$ - number of roots
$\Rightarrow \Delta \Phi \leq 2 \lg n$ - number of roots

Amortized cost:

$\hat{c}=c+\Delta \Phi=O(\lg n+$ number of roots $)+2 \lg n-$ number of roots $\in O(\lg n)$.

Amortized Cost of DecreaseKey

Make affected element x a root (if it isn't already a root):

- $c \in O(1)$
- Δ (number of roots) ≤ 1
- Δ (number of thin nodes $) \leq 1$:
- x's parent becomes thin if it was thick and x is the leftmost child.
$\Rightarrow \Delta \Phi \leq 3$
$\Rightarrow \hat{\mathrm{c}} \in \mathrm{O}(\mathrm{I})$

Amortized Cost of DecreaseKey

Make affected element x a root (if it isn't already a root):

- $c \in O(1)$
- Δ (number of roots) ≤ 1
- Δ (number of thin nodes $) \leq 1$:
- x's parent becomes thin if it was thick and x is the leftmost child.
$\Rightarrow \Delta \Phi \leq 3$
$\Rightarrow \hat{\mathrm{c}} \in \mathrm{O}(\mathrm{I})$
The remaining cost is the result of fixing violations.

Amortized Cost of DecreaseKey

Make affected element x a root (if it isn't already a root):

- $c \in O(1)$
- Δ (number of roots) ≤ 1
- Δ (number of thin nodes) ≤ 1 :
- x's parent becomes thin if it was thick and x is the leftmost child.
$\Rightarrow \Delta \Phi \leq 3$
$\Rightarrow \hat{\mathrm{c}} \in \mathrm{O}(\mathrm{I})$
The remaining cost is the result of fixing violations.
We prove that
- Fixing the last violation has constant amortized cost,
- Fixing all other violations has amortized cost 0 !
\Rightarrow The amortized cost of fixing all violations is in $\mathrm{O}(1)$.

Amortized Cost of DecreaseKey

Make affected element x a root (if it isn't already a root):

- $c \in O(l)$
- Δ (number of roots) ≤ 1
- Δ (number of thin nodes) ≤ 1 :
- x's parent becomes thin if it was thick and x is the leftmost child.
$\Rightarrow \Delta \Phi \leq 3$
$\Rightarrow \hat{\mathrm{c}} \in \mathrm{O}(\mathrm{I})$
The remaining cost is the result of fixing violations.
We prove that
- Fixing the last violation has constant amortized cost,
- Fixing all other violations has amortized cost 0 !
\Rightarrow The amortized cost of fixing all violations is in $\mathrm{O}(1)$.
$\Rightarrow \hat{\mathrm{c}}($ DecreaseKey $) \in \mathrm{O}(\mathrm{I})$.

Amortized Cost of Fixing Sibling Violations

If y is thin,

- $c \in O(I)$
- Δ (number of thin nodes) $=-1$
- Δ (number of roots) $=0$
$\Rightarrow \Delta \Phi=-2$
$\Rightarrow \hat{c}=0$

Amortized Cost of Fixing Sibling Violations

If y is thick,

- $c \in O(1)$
- Δ (number of thin nodes) $=+1$
- Δ (number of roots) $=0$
$\Rightarrow \Delta \Phi=+2$
$\Rightarrow \hat{\mathrm{c}} \in \mathrm{O}(\mathrm{I})$
After this, we're done!

Amortized Cost of Fixing Parent Violations

If y is a root, then

- $c \in O(1)$
- Δ (number of roots) $=0$
- Δ (number of thin nodes) $=-1$
$\Rightarrow \Delta \Phi=-2$
$\Rightarrow \hat{c}=0$

Amortized Cost of Fixing Parent Violations

If y is a root, then

- $c \in O(l)$
- Δ (number of roots) $=0$
- Δ (number of thin nodes) $=-1$
$\Rightarrow \Delta \Phi=-2$
$\Rightarrow \hat{\mathrm{c}}=0$

If y is not a root and is not the leftmost child of its parent, then

- $c \in \mathbb{O}(\mathrm{l})$
- Δ (number of roots) $=+1$
- Δ (number of thin nodes) $=-1$
$\Rightarrow \Delta \Phi=-1$
$\Rightarrow \hat{\mathrm{c}}=0$

Amortized Cost of Fixing Parent Violations

If y is not a root and is the leftmost child of its parent, and its parent is thin, then

- $c \in O(1)$
- Δ (number of roots) $=+1$
- Δ (number of thin nodes) $=-1$
$\Rightarrow \Delta \Phi=-1$
$\Rightarrow \hat{\mathrm{c}}=0$

Amortized Cost of Fixing Parent Violations

If y is not a root and is the leftmost child of its parent, and its parent is thin, then

- $c \in O(1)$
- Δ (number of roots) $=+1$
- Δ (number of thin nodes) $=-1$
$\Rightarrow \Delta \Phi=-1$
$\Rightarrow \hat{\mathrm{c}}=0$
If y is not a root and is the leftmost child of its parent, and its parent is thick, then
- $c \in \mathbb{O}(\mathrm{l})$
- Δ (number of roots) $=+1$
- Δ (number of thin nodes) $=0$
$\Rightarrow \Delta \Phi=+1$
$\Rightarrow \hat{\mathrm{c}} \in \mathrm{O}(\mathrm{I})$
After this, we're done!

Shortest Path

Given a graph $G=(V, E)$ and an assignment of weights (costs) to the edges of G, a shortest path from u to v is a path from u to v with minimum total edge weight among all paths from u to v.

Shortest Path

Given a graph $G=(V, E)$ and an assignment of weights (costs) to the edges of G, a shortest path from u to v is a path from u to v with minimum total edge weight among all paths from u to v.

Let the distance dist($\mathrm{s}, \mathrm{v})$ from s to v be the length of a shortest path from s to v .

Shortest Path

Given a graph $G=(V, E)$ and an assignment of weights (costs) to the edges of G, a shortest path from u to v is a path from u to v with minimum total edge weight among all paths from u to v.

Let the distance dist($s, w)$ from s to v be the length of a shortest path from s to v.

This is well-defined only if there is no negative cycle (cycle with negative total edge weight) that has a vertex on a path from u to v.

Optimal Substructure of Shortest Paths

For a path P and two vertices u and w in P, let $\mathrm{P}[\mathrm{u}, \mathrm{w}]$ be the subpath of P from u to w .

Optimal Substructure of Shortest Paths

For a path P and two vertices u and w in P, let $\mathrm{P}[\mathrm{u}, \mathrm{w}]$ be the subpath of P from u to w .

Lemma: If P_{v} is a shortest path from s to v and w is a vertex in P_{v}, then $P_{v}[s, w]$ is a shortest path from s to w .

Optimal Substructure of Shortest Paths

For a path P and two vertices u and w in P, let $\mathrm{P}[\mathrm{u}, \mathrm{w}]$ be the subpath of P from u to w .

Lemma: If P_{v} is a shortest path from s to v and w is a vertex in P_{v}, then $\mathrm{P}_{\mathrm{v}}[\mathrm{s}, \mathrm{w}]$ is a shortest path from s to w .

Assume there exists a path P_{w} from s to w with $\mathrm{w}\left(\mathrm{P}_{\mathrm{w}}\right)<\mathrm{w}\left(\mathrm{P}_{\mathrm{v}}[\mathrm{s}, \mathrm{w}]\right)$.

Optimal Substructure of Shortest Paths

For a path P and two vertices u and w in P, let $\mathrm{P}[\mathrm{u}, \mathrm{w}]$ be the subpath of P from u to w .

Lemma: If P_{v} is a shortest path from s to v and w is a vertex in P_{v}, then $P_{v}[s, w]$ is a shortest path from s to w .

Assume there exists a path P_{w} from s to w with $\mathrm{w}\left(\mathrm{P}_{\mathrm{w}}\right)<\mathrm{w}\left(\mathrm{P}_{\mathrm{v}}[\mathrm{s}, \mathrm{w}]\right)$.

Then $w\left(P_{w} \circ P_{v}[w, v]\right)<w\left(P_{v}[s, w] \circ P_{v}[w, v]\right)=w\left(P_{v}\right)$, a contradiction because P_{v} is a shortest path from s to v.

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.

Let $R(s)=\left\{v_{1}, v_{2}, \ldots, v_{1}\right\}$ and let $\left\{P_{v_{1}}^{\prime}, P_{v_{2}}^{\prime}, \ldots, P_{v_{1}}^{\prime}\right\}$ be a collection of shortest paths from s to these vertices.
We define a sequence of trees $\left\langle T_{1}, T_{2}, \ldots, T_{t}\right\rangle$ and shortest paths $\left\langle\mathrm{P}_{\mathrm{v}_{1}}, \mathrm{P}_{\mathrm{v}_{2}}, \ldots, \mathrm{P}_{\mathrm{v}_{1}}\right\rangle$ as follows:

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.

Let $R(s)=\left\{v_{1}, v_{2}, \ldots, v_{1}\right\}$ and let $\left\{P_{v_{1}}^{\prime}, P_{v_{2}}^{\prime}, \ldots, P_{v_{1}}^{\prime}\right\}$ be a collection of shortest paths from s to these vertices.
We define a sequence of trees $\left\langle T_{1}, T_{2}, \ldots, T_{t}\right\rangle$ and shortest paths $\left\langle\mathrm{P}_{\mathrm{v}_{1}}, \mathrm{P}_{\mathrm{v}_{2}}, \ldots, \mathrm{P}_{\mathrm{v}_{1}}\right\rangle$ as follows:

- $T_{1}=P_{v_{1}}=P_{v_{1}}^{\prime}$.

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.

Let $R(s)=\left\{v_{1}, v_{2}, \ldots, v_{1}\right\}$ and let $\left\{P_{v_{1}}^{\prime}, P_{v_{2}}^{\prime}, \ldots, P_{v_{1}}^{\prime}\right\}$ be a collection of shortest paths from s to these vertices.
We define a sequence of trees $\left\langle T_{1}, T_{2}, \ldots, T_{t}\right\rangle$ and shortest paths $\left\langle\mathrm{P}_{\mathrm{v}_{1}}, \mathrm{P}_{\mathrm{v}_{2}}, \ldots, \mathrm{P}_{\mathrm{v}_{1}}\right\rangle$ as follows:

- $T_{1}=P_{v_{1}}=P_{v_{1}}^{\prime}$.
- For $\mathrm{i}>0$, let w be the last vertex in $\mathrm{P}_{v_{i}}^{\prime}$ that belongs to $\mathrm{T}_{\mathrm{i}-\text { I }}$ and let $\mathrm{T}_{\mathrm{i}-1}[\mathrm{~s}, \mathrm{w}]$ be the path from s to w in T. Then
- $P_{v_{i}}=T[s, w] \circ P_{v_{i}}^{\prime}\left[w, v_{i}\right]$
- $T_{i}=T_{i-1} \bigcup P_{v_{i}}^{\prime}\left[w, v_{i}\right]$

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.

Let $R(s)=\left\{v_{1}, v_{2}, \ldots, v_{1}\right\}$ and let $\left\{P_{v_{1}}^{\prime}, P_{v_{2}}^{\prime}, \ldots, P_{v_{1}}^{\prime}\right\}$ be a collection of shortest paths from s to these vertices.
We define a sequence of trees $\left\langle T_{1}, T_{2}, \ldots, T_{t}\right\rangle$ and shortest paths $\left\langle\mathrm{P}_{\mathrm{v}_{1}}, \mathrm{P}_{\mathrm{v}_{2}}, \ldots, \mathrm{P}_{\mathrm{v}_{1}}\right\rangle$ as follows:

- $T_{1}=P_{v_{1}}=P_{v_{1}}^{\prime}$.
- For $\mathrm{i}>0$, let w be the last vertex in $\mathrm{P}_{v_{i}}^{\prime}$ that belongs to $\mathrm{T}_{\mathrm{i}-\mathrm{I}}$ and let $\mathrm{T}_{\mathrm{i}-I}[\mathrm{~s}, \mathrm{w}]$ be the path from s to w in T. Then
- $P_{v_{i}}=T[s, w] \circ P_{v_{i}}^{\prime}\left[w, v_{i}\right]$
- $T_{i}=T_{i-1} \bigcup P_{v_{i}}^{\prime}\left[w, v_{i}\right]$

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.

Let $R(s)=\left\{v_{1}, v_{2}, \ldots, v_{1}\right\}$ and let $\left\{P_{v_{1}}^{\prime}, P_{v_{2}}^{\prime}, \ldots, P_{v_{1}}^{\prime}\right\}$ be a collection of shortest paths from s to these vertices.
We define a sequence of trees $\left\langle T_{1}, T_{2}, \ldots, T_{t}\right\rangle$ and shortest paths $\left\langle\mathrm{P}_{\mathrm{v}_{1}}, \mathrm{P}_{\mathrm{v}_{2}}, \ldots, \mathrm{P}_{\mathrm{v}_{1}}\right\rangle$ as follows:

- $T_{1}=P_{v_{1}}=P_{v_{1}}^{\prime}$.
- For $\mathrm{i}>0$, let w be the last vertex in $\mathrm{P}_{v_{i}}^{\prime}$ that belongs to $\mathrm{T}_{\mathrm{i}-\mathrm{I}}$ and let $\mathrm{T}_{\mathrm{i}-1}[\mathrm{~s}, \mathrm{w}]$ be the path from s to w in T. Then
- $P_{v_{i}}=T[s, w] \circ P_{v_{i}}^{\prime}\left[w, v_{i}\right]$
- $T_{i}=T_{i-1} \bigcup P_{v_{i}}^{\prime}\left[w, v_{i}\right]$

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.

Let $R(s)=\left\{v_{1}, v_{2}, \ldots, v_{1}\right\}$ and let $\left\{P_{v_{1}}^{\prime}, P_{v_{2}}^{\prime}, \ldots, P_{v_{1}}^{\prime}\right\}$ be a collection of shortest paths from s to these vertices.
We define a sequence of trees $\left\langle T_{1}, T_{2}, \ldots, T_{t}\right\rangle$ and shortest paths $\left\langle\mathrm{P}_{\mathrm{v}_{1}}, \mathrm{P}_{\mathrm{v}_{2}}, \ldots, \mathrm{P}_{\mathrm{v}_{1}}\right\rangle$ as follows:

- $T_{1}=P_{v_{1}}=P_{v_{1}}^{\prime}$.
- For $\mathrm{i}>0$, let w be the last vertex in $\mathrm{P}_{v_{i}}^{\prime}$ that belongs to $\mathrm{T}_{\mathrm{i}-\mathrm{I}}$ and let $\mathrm{T}_{\mathrm{i}-1}[\mathrm{~s}, \mathrm{w}]$ be the path from s to w in T. Then
- $P_{v_{i}}=T[s, w] \circ P_{v_{i}}^{\prime}\left[w, v_{i}\right]$
- $T_{i}=T_{i-1} \bigcup P_{v_{i}}^{\prime}\left[w, v_{i}\right]$

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.
$T_{t}=\bigcup_{v \in R(s)} P_{v}$

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.
$\mathrm{T}_{\mathrm{t}}=\bigcup_{\mathrm{v} \in \mathrm{R}(\mathrm{s})} \mathrm{P}_{\mathrm{v}}$
T_{t} is a tree:

- T_{1} is a tree.
- T_{i} is obtained by adding a path to T_{i-1} that shares only one vertex with $\mathrm{T}_{\mathrm{i}-1}$.
- To create a cycle, the added path would have to share two vertices with $\mathrm{T}_{\mathrm{i}-1}$.

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.
P_{v} is a shortest path from s to v, for all $v \in R(s)$.

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.
P_{v} is a shortest path from s to v, for all $v \in R(s)$.
Prove by induction on i that $T_{i}[s, v]$ is a shortest path from s to v, for all $v \in T_{i}$.

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.

P_{v} is a shortest path from s to v, for all $v \in R(s)$.

For $\mathrm{i}=1, \mathrm{~T}_{1}=\mathrm{P}_{\mathrm{v}_{1}}=\mathrm{P}_{v_{1}}^{\prime}$ is a shortest path from s to v_{1}. By optimal substructure, $\mathrm{T}_{1}[\mathrm{~s}, \mathrm{v}]=\mathrm{P}_{\mathrm{v}_{1}}^{\prime}[\mathrm{s}, \mathrm{v}]$ is a shortest path from s to v for all $\mathrm{v} \in \mathrm{T}_{1}$.

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.

P_{v} is a shortest path from s to v, for all $v \in R(s)$.

For $\mathrm{i}=1, \mathrm{~T}_{1}=\mathrm{P}_{\mathrm{v}_{1}}=\mathrm{P}_{v_{1}}^{\prime}$ is a shortest path from s to v_{1}. By optimal substructure, $\mathrm{T}_{1}[\mathrm{~s}, \mathrm{v}]=\mathrm{P}_{\mathrm{v}_{1}}^{\prime}[\mathrm{s}, \mathrm{v}]$ is a shortest path from s to v for all $v \in T_{1}$. For $\mathrm{i}>\mathrm{I}, \mathrm{T}_{\mathrm{i}-1}[\mathrm{~s}, \mathrm{v}]$ is a shortest path from s to v for all $v \in T_{i-1}$, by the inductive hypothesis.

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.

P_{v} is a shortest path from s to v, for all $v \in R(s)$.

For $\mathrm{i}=1, \mathrm{~T}_{1}=\mathrm{P}_{\mathrm{v}_{1}}=\mathrm{P}_{v_{1}}^{\prime}$ is a shortest path from s to v_{1}. By optimal substructure, $\mathrm{T}_{1}[\mathrm{~s}, \mathrm{v}]=\mathrm{P}_{\mathrm{v}_{1}}^{\prime}[\mathrm{s}, \mathrm{v}]$ is a shortest path from s to v for all $v \in T_{1}$.
For $\mathrm{i}>\mathrm{I}, \mathrm{T}_{\mathrm{i}-1}[\mathrm{~s}, \mathrm{v}]$ is a shortest path from s to v for all $v \in T_{i-1}$, by the inductive hypothesis:
Thus, $w\left(T_{i-1}[s, w]\right) \leq w\left(P_{v_{i}}^{\prime}[s, w]\right)$ and therefore $w\left(P_{v_{i}}\right)=w\left(T_{i-1}[s, w]\right)+w\left(P_{v_{i}}^{\prime}\left[w, v_{i}\right]\right) \leq w\left(P_{v_{i}}^{\prime}\right)$.

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.

P_{v} is a shortest path from s to v, for all $v \in R(s)$.

For $\mathrm{i}=1, \mathrm{~T}_{1}=\mathrm{P}_{\mathrm{v}_{1}}=\mathrm{P}_{v_{1}}^{\prime}$ is a shortest path from s to v_{1}. By optimal substructure, $\mathrm{T}_{1}[\mathrm{~s}, \mathrm{v}]=\mathrm{P}_{\mathrm{v}_{1}}^{\prime}[\mathrm{s}, \mathrm{v}]$ is a shortest path from s to v for all $v \in T_{1}$.
For $\mathrm{i}>\mathrm{I}_{1} \mathrm{~T}_{\mathrm{i}-1}[\mathrm{~s}, \mathrm{v}]$ is a shortest path from s to v for all $v \in T_{i-1}$, by the inductive hypothesis:
Thus, $w\left(T_{i-1}[s, w]\right) \leq w\left(P_{v_{i}}^{\prime}[s, w]\right)$ and therefore $w\left(P_{v_{i}}\right)=w\left(T_{i-1}[s, w]\right)+w\left(P_{v_{i}}^{\prime}\left[w, v_{i}\right]\right) \leq w\left(P_{v_{i}}^{\prime}\right)$.
Since $P_{v_{i}}^{\prime}$ is a shortest path from s to v_{i}, so is $P_{v_{i}}$.

Shortest Path Tree

For a vertex $s \in G$, let $R(s)$ be the set of vertices reachable from s : for every vertex $v \in R(s)$, there exists a path from s to v.

Lemma: For every node $s \in G$, there exists a collection of paths $S=\left\{P_{v} \mid v \in R(s)\right\}$ such that P_{v} is a shortest path from s to v and $\bigcup_{v \in R(s)} P_{v}$ is a tree.

P_{v} is a shortest path from s to v, for all $v \in R(s)$.

For $\mathrm{i}=1, \mathrm{~T}_{1}=\mathrm{P}_{\mathrm{v}_{1}}=\mathrm{P}_{v_{1}}^{\prime}$ is a shortest path from s to v_{1}. By optimal substructure, $\mathrm{T}_{1}[\mathrm{~s}, \mathrm{v}]=\mathrm{P}_{\mathrm{v}_{1}}^{\prime}[\mathrm{s}, \mathrm{v}]$ is a shortest path from s to v for all $\mathrm{v} \in \mathrm{T}_{1}$.
For $\mathrm{i}>\mathrm{I}, \mathrm{T}_{\mathrm{i}-1}[\mathrm{~s}, \mathrm{v}]$ is a shortest path from s to v for all $v \in T_{i-1}$, by the inductive hypothesis:
Thus, $w\left(T_{i-1}[s, w]\right) \leq w\left(P_{v_{i}}^{\prime}[s, w]\right)$ and therefore $w\left(P_{v_{i}}\right)=w\left(T_{i-1}[s, w]\right)+w\left(P_{v_{i}}^{\prime}\left[w, v_{i}\right]\right) \leq w\left(P_{v_{i}}^{\prime}\right)$.
Since $P_{v_{i}}^{\prime}$ is a shortest path from s to v_{i}, so is $P_{v_{i}}$.

By optimal substructure $P_{v_{i}}[s, v]$ is a shortest path from s to v, for all $v \in P_{v_{i}}$.

A Characterization of Shortest Path Trees

An out-tree of s is a spanning tree T of $G[R(s)]=(R(s), E[R(s)])$, where $E[R(s)]=\{(v, w) \in E \mid v, w \in R(s)\}$, such that there exists a path from s to v in T, for all $v \in R(s)$.

A Characterization of Shortest Path Trees

An out-tree of s is a spanning tree T of $G[R(s)]=(R(s), E[R(s)])$, where $E[R(s)]=\{(v, w) \in E \mid v, w \in R(s)\}$, such that there exists a path from s to v in T, for all $v \in R(s)$.

For an out-tree T of s and every $v \in T$, let $d_{T}(v)=w(T[s, v])$.

A Characterization of Shortest Path Trees

An out-tree of s is a spanning tree T of $G[R(s)]=(R(s), E[R(s)])$, where $E[R(s)]=\{(v, w) \in E \mid v, w \in R(s)\}$, such that there exists a path from s to v in T, for all $v \in R(s)$.

For an out-tree T of s and every $v \in T$, let $d_{T}(v)=w(T[s, v])$.
Let $D(T)=\sum_{v \in R(s)} d_{T}(v)$.

A Characterization of Shortest Path Trees

An out-tree of s is a spanning tree T of $G[R(s)]=(R(s), E[R(s)])$, where $E[R(s)]=\{(v, w) \in E \mid v, w \in R(s)\}$, such that there exists a path from s to v in T, for all $v \in R(s)$.

For an out-tree T of s and every $v \in T$, let $d_{T}(v)=w(T[s, v])$.
Let $D(T)=\sum_{v \in R(s)} d_{T}(v)$.
Lemma: An out-tree T of s is a shortest path tree if and only if $D(T)$ is minimal among all out-trees of s .

A Characterization of Shortest Path Trees

An out-tree of s is a spanning tree T of $G[R(s)]=(R(s), E[R(s)])$, where $E[R(s)]=\{(v, w) \in E \mid v, w \in R(s)\}$, such that there exists a path from s to v in T, for all $v \in R(s)$.

For an out-tree T of s and every $v \in T$, let $d_{T}(v)=w(T[s, v])$.
Let $D(T)=\sum_{v \in R(s)} d_{T}(v)$.
Lemma: An out-tree T of s is a shortest path tree if and only if $D(T)$ is minimal among all out-trees of s .

Let T and T^{\prime} be two out-trees of s such that

- T is a shortest path tree and
- $D\left(T^{\prime}\right)$ is minimal among all out-trees of s. In particular, $D\left(T^{\prime}\right) \leq D(T)$.

A Characterization of Shortest Path Trees

An out-tree of s is a spanning tree T of $G[R(s)]=(R(s), E[R(s)])$, where $E[R(s)]=\{(v, w) \in E \mid v, w \in R(s)\}$, such that there exists a path from s to v in T, for all $v \in R(s)$.

For an out-tree T of s and every $v \in T$, let $d_{T}(v)=w(T[s, v])$.
Let $D(T)=\sum_{v \in R(s)} d_{T}(v)$.
Lemma: An out-tree T of s is a shortest path tree if and only if $D(T)$ is minimal among all out-trees of s .

Let T and T^{\prime} be two out-trees of s such that

- T is a shortest path tree and
- $D\left(T^{\prime}\right)$ is minimal among all out-trees of s. In particular, $D\left(T^{\prime}\right) \leq D(T)$.

If $D\left(T^{\prime}\right)<D(T)$, there exists some vertex $v \in R(s)$ such that $d_{T^{\prime}}(v)<d_{T}(v)$.

A Characterization of Shortest Path Trees

An out-tree of s is a spanning tree T of $G[R(s)]=(R(s), E[R(s)])$, where $E[R(s)]=\{(v, w) \in E \mid v, w \in R(s)\}$, such that there exists a path from s to v in T, for all $v \in R(s)$.

For an out-tree T of s and every $v \in T$, let $d_{T}(v)=w(T[s, v])$.
Let $D(T)=\sum_{v \in R(s)} d_{T}(v)$.
Lemma: An out-tree T of s is a shortest path tree if and only if $D(T)$ is minimal among all out-trees of s .

Let T and T^{\prime} be two out-trees of s such that

- T is a shortest path tree and
- $D\left(T^{\prime}\right)$ is minimal among all out-trees of s. In particular, $D\left(T^{\prime}\right) \leq D(T)$.

If $D\left(T^{\prime}\right)<D(T)$, there exists some vertex $v \in R(s)$ such that $d_{T^{\prime}}(v)<d_{T}(v)$.
$\Rightarrow \mathrm{T}$ is not a shortest path tree, a contradiction.

A Characterization of Shortest Path Trees

An out-tree of s is a spanning tree T of $G[R(s)]=(R(s), E[R(s)])$, where $E[R(s)]=\{(v, w) \in E \mid v, w \in R(s)\}$, such that there exists a path from s to v in T, for all $v \in R(s)$.

For an out-tree T of s and every $v \in T$, let $d_{T}(v)=w(T[s, v])$.
Let $D(T)=\sum_{v \in R(s)} d_{T}(v)$.
Lemma: An out-tree T of s is a shortest path tree if and only if $D(T)$ is minimal among all out-trees of s .

Let T and T^{\prime} be two out-trees of s such that

- T is a shortest path tree and
- $D\left(T^{\prime}\right)$ is minimal among all out-trees of s. In particular, $D\left(T^{\prime}\right) \leq D(T)$.

If $D\left(T^{\prime}\right)<D(T)$, there exists some vertex $v \in R(s)$ such that $d_{T^{\prime}}(v)<d_{T}(v)$.
$\Rightarrow \mathrm{T}$ is not a shortest path tree, a contradiction.
$\Rightarrow D(T)=D\left(T^{\prime}\right)$.

A Characterization of Shortest Path Trees

An out-tree of s is a spanning tree T of $G[R(s)]=(R(s), E[R(s)])$, where $E[R(s)]=\{(v, w) \in E \mid v, w \in R(s)\}$, such that there exists a path from s to v in T, for all $v \in R(s)$.

For an out-tree T of s and every $v \in T$, let $d_{T}(v)=w(T[s, v])$.
Let $D(T)=\sum_{v \in R(s)} d_{T}(v)$.
Lemma: An out-tree T of s is a shortest path tree if and only if $D(T)$ is minimal among all out-trees of s .

Let T and T^{\prime} be two out-trees of s such that $\mathrm{D}(\mathrm{T})=\mathrm{D}\left(\mathrm{T}^{\prime}\right)$ is minimal among all out-trees of s and

- T is a shortest path tree,

A Characterization of Shortest Path Trees

An out-tree of s is a spanning tree T of $G[R(s)]=(R(s), E[R(s)])$, where $E[R(s)]=\{(v, w) \in E \mid v, w \in R(s)\}$, such that there exists a path from s to v in T, for all $v \in R(s)$.

For an out-tree T of s and every $v \in T$, let $d_{T}(v)=w(T[s, v])$.
Let $D(T)=\sum_{v \in R(s)} d_{T}(v)$.
Lemma: An out-tree T of s is a shortest path tree if and only if $D(T)$ is minimal among all out-trees of s .

Let T and T^{\prime} be two out-trees of s such that $\mathrm{D}(\mathrm{T})=\mathrm{D}\left(\mathrm{T}^{\prime}\right)$ is minimal among all out-trees of s and

- T is a shortest path tree,
- T^{\prime} is not.
\Rightarrow There exists a vertex $v \in R(s)$ such that $\mathrm{d}_{\mathrm{T}}(\mathrm{v})<\mathrm{d}_{\mathrm{T}^{\prime}}(\mathrm{v})$.

A Characterization of Shortest Path Trees

An out-tree of s is a spanning tree T of $G[R(s)]=(R(s), E[R(s)])$, where $E[R(s)]=\{(v, w) \in E \mid v, w \in R(s)\}$, such that there exists a path from s to v in T, for all $v \in R(s)$.

For an out-tree T of s and every $v \in T$, let $d_{T}(v)=w(T[s, v])$.
Let $D(T)=\sum_{v \in R(s)} d_{T}(v)$.
Lemma: An out-tree T of s is a shortest path tree if and only if $D(T)$ is minimal among all out-trees of s .

Let T and T^{\prime} be two out-trees of s such that $\mathrm{D}(\mathrm{T})=\mathrm{D}\left(\mathrm{T}^{\prime}\right)$ is minimal among all out-trees of s and

- T is a shortest path tree,
- T^{\prime} is not.
\Rightarrow There exists a vertex $v \in R(s)$ such that $\mathrm{d}_{\mathrm{T}}(\mathrm{v})<\mathrm{d}_{\mathrm{T}^{\prime}}(\mathrm{v})$.
\Rightarrow There exists a vertex $\mathrm{v}^{\prime} \in \mathrm{R}(\mathrm{s})$ such that $\mathrm{d}_{\mathrm{T}^{\prime}}\left(\mathrm{v}^{\prime}\right)<\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}^{\prime}\right)$, a contradiction.

$$
\begin{aligned}
& d+(s, w)
\end{aligned}
$$

$$
\begin{aligned}
& D_{7}=D_{T} \\
& D_{T}=D_{-\rho}-d_{y}(s, v)+W_{T}, s, v+\ldots \ldots \\
& d_{j}(s, v)<w_{p}(s, v) \\
& \text { weight subtunctio } \\
& \begin{array}{l}
\text { Trum rusther } \\
\text { path }
\end{array}
\end{aligned}
$$

A Characterization of Shortest Path Trees

An out-tree of s is a spanning tree T of $G[R(s)]=(R(s), E[R(s)])$, where $E[R(s)]=\{(v, w) \in E \mid v, w \in R(s)\}$, such that there exists a path from s to v in T, for all $v \in R(s)$.

For an out-tree T of s and every $v \in T$, let $d_{T}(v)=w(T[s, v])$.
Let $D(T)=\sum_{v \in R(s)} d_{T}(v)$.
Lemma: An out-tree T of s is a shortest path tree if and only if $D(T)$ is minimal among all out-trees of s .

Let T and T^{\prime} be two out-trees of s such that $\mathrm{D}(\mathrm{T})=\mathrm{D}\left(\mathrm{T}^{\prime}\right)$ is minimal among all out-trees of s and

- T is a shortest path tree,
- T^{\prime} is not.
\Rightarrow There exists a vertex $v \in R(s)$ such that $\mathrm{d}_{\mathrm{T}}(\mathrm{v})<\mathrm{d}_{\mathrm{T}^{\prime}}(\mathrm{v})$.
\Rightarrow There exists a vertex $\mathrm{v}^{\prime} \in \mathrm{R}(\mathrm{s})$ such that $\mathrm{d}_{\mathrm{T}^{\prime}}\left(\mathrm{v}^{\prime}\right)<\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}^{\prime}\right)$, a contradiction.
$\Rightarrow \mathrm{T}^{\prime}$ is a shortest path tree.

Dijkstra's Algorithm

Build a shortest-path tree by starting with s and adding vertices in $R(s)$ one by one.

Dijkstra's Algorithm

Build a shortest-path tree by starting with s and adding vertices in $R(s)$ one by one. In each step, we can only add out-neighbours of vertices already in T .

Dijkstra's Algorithm

Build a shortest-path tree by starting with s and adding vertices in $R(s)$ one by one. In each step, we can only add out-neighbours of vertices already in T.

A greedy choice:

Add the vertex $\mathrm{v} \notin \mathrm{T}$ that minimizes $\mathrm{d}_{\mathrm{T}}(\mathrm{v})$.

Dijkstra's Algorithm

Build a shortest-path tree by starting with s and adding vertices in $R(s)$ one by one. In each step, we can only add out-neighbours of vertices already in T.

A greedy choice:

Add the vertex $\mathrm{v} \notin \mathrm{T}$ that minimizes $\mathrm{d}_{\mathrm{T}}(\mathrm{v})$.
Dijkstra(G, s)
1 $\mathrm{T}=(\{\mathrm{s}\}, \emptyset)$
2 while some vertex in T has an out-neighbour not in T
3 do choose an edge (u, v) such that

- $u \in T$,
- $v \notin T$, and
- $d_{T}(\mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v})$ is minimized.
$4 \quad$ add v and (u, v) to T
5 return T

Dijkstra's Algorithm

Dijkstra (G, s)

$$
T=(V, \emptyset)
$$

mark every vertex of G as unexplored
set $\mathrm{d}(\mathrm{v})=+\infty$ and $\mathrm{e}(\mathrm{v})=$ nil for every vertex $v \in G$
mark s as explored and set $d(v)=0$
$Q=$ an empty priority queue
for every edge (s, v) incident to s
do Q.insert(v, wis, v))
$d(v)=w(s, v)$
$e(v)=(s, v)$
while not Q.isEmpty()
do $\mathrm{u}=$ Q.deleteMin()

mark u as explored add eu) to T
for every edge (u, v) incident to u do if v is unexplored and $(v \notin Q$ or $d(u)+w(u, v)<d(v))$
then $\mathrm{d}(\mathrm{v})=\mathrm{d}(\mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v})$ $e(v)=(u, v)$ if $v \notin Q$
then Q.insert($(\mathrm{v}, \mathrm{d}(\mathrm{v}))$ else Q.decreaseKey(v, d(v))
return T

Dijkstra's Algorithm

Dijkstra(G, s)

```
    T=(V,\emptyset)
```

 mark every vertex of \(G\) as unexplored
 set \(d(v)=+\infty\) and \(e(v)=\) nil for every vertex \(v \in G\)
 mark \(s\) as explored and set \(d(v)=0\)
 \(Q=\) an empty priority queue
 for every edge (\(s, v\)) incident to \(s\)
 do Q.insert(v, w(s, v))
 \(d(v)=w(s, v)\)
 \(e(v)=(s, v)\)
 while not Q.isEmpty()
 do \(\mathrm{u}=\) Q.deleteMin()
 mark \(u\) as explored
 add e(u) to T
 for every edge \((u, v)\) incident to \(u\)
 do if \(v\) is unexplored and \((v \notin Q\) or \(d(u)+w(u, v)<d(v))\)
 then \(d(v)=d(u)+w(u, v)\)
 \(e(v)=(u, v)\)
 if \(v \notin Q\)
 then Q.insert(v, \(\mathrm{d}(\mathrm{v}))\)
 else Q.decreaseKey(v, d(v))
 return T

This is the same as Prim's algorithm, except that vertex priorities are calculated differently.
$Q=$ an empty priority queue

Dijkstra's Algorithm

Dijkstra(G, s)

```
    T=(V,\emptyset)
```

 mark every vertex of \(G\) as unexplored
 set \(\mathrm{d}(\mathrm{v})=+\infty\) and \(\mathrm{e}(\mathrm{v})=\) nil for every vertex \(v \in G\)
 mark \(s\) as explored and set \(d(v)=0\)
 \(Q=\) an empty priority queue
 for every edge (\(s, v\)) incident to \(s\)
 do Q.insert(v, w(s, v))
 This is the same as Prim's algorithm, except that vertex priorities are calculated differently.
\Rightarrow Dijkstra's algorithm takes $O(n \lg n+m)$ time.

```
        d(v)=w(s,v)
    e(v)=(s,v)
    while not Q.isEmpty()
    do u = Q.deleteMin()
        mark u as explored
    add e(u) to T
    for every edge (u,v) incident to u
        do if v}\mathrm{ is unexplored and (v&Q or d(u) +w(u,v)<d(v))
            then d(v)=d(u)+w(u,v)
                e(v)=(u,v)
                if v}\not\in
            then Q.insert(v, d(v))
                        else Q.decreaseKey(v,d(v))
return T
```


Correctness of Dijkstra's Algorithm

Dijkstra's algorithm does not necessarily produce a shortest path tree if there are edges with negative weights!

Correctness of Dijkstra's Algorithm

Dijkstra's algorithm does not necessarily produce a shortest path tree if there are edges with negative weights!

Lemma: If all edges in G have non-negative weights, then Dijkstra's algorithm computes a shortest path tree of G .

Correctness of Dijkstra's Algorithm

Dijkstra's algorithm does not necessarily produce a shortest path tree if there are edges with negative weights!

Lemma: If all edges in G have non-negative weights, then Dijkstra's algorithm computes a shortest path tree of G.

Assume the contrary and let v be the first vertex added to T such that $\mathrm{d}_{\mathrm{T}}(\mathrm{v})>\operatorname{dist}(\mathrm{s}, \mathrm{v})$.

Correctness of Dijkstra's Algorithm

Dijkstra's algorithm does not necessarily produce a shortest path tree if there are edges with negative weights!

Lemma: If all edges in G have non-negative weights, then Dijkstra's algorithm computes a shortest path tree of G.

Assume the contrary and let v be the first vertex added to T such that $\mathrm{d}_{\mathrm{T}}(\mathrm{v})>\operatorname{dist}(\mathrm{s}, \mathrm{v})$. For every vertex $x \notin \mathrm{~T}$, we have

$$
d(x)=\min _{\substack{(u, x) \in E \\ u \in T}} d(u)+w(u, x)=\min _{\substack{(u, x) \in E \\ u \in T}} \operatorname{dist}(s, u)+w(u, x) \text {. }
$$

Correctness of Dijkstra's Algorithm

Dijkstra's algorithm does not necessarily produce a shortest path tree if there are edges with negative weights!

Lemma: If all edges in G have non-negative weights, then Dijkstra's algorithm computes a shortest path tree of G.

Assume the contrary and let v be the first vertex added to T such that $\mathrm{d}_{\mathrm{T}}(\mathrm{v})>\operatorname{dist}(\mathrm{s}, \mathrm{v})$.
The shortest path $\pi(\mathrm{s}, \mathrm{v})$ from s to v must include a vertex $\mathrm{w} \notin \mathrm{T}$ whose predecessor u in $\pi(\mathrm{s}, \mathrm{v})$ belongs to T .

Correctness of Dijkstra's Algorithm

Dijkstra's algorithm does not necessarily produce a shortest path tree if there are edges with negative weights!
Lemma: If all edges in G have non-negative weights, then Dijkstra's algorithm computes a shortest path tree of G.

Assume the contrary and let v be the first vertex added to T such that $\mathrm{d}_{\mathrm{T}}(\mathrm{v})>\operatorname{dist}(\mathrm{s}, \mathrm{v})$.
The shortest path $\pi(\mathrm{s}, \mathrm{v})$ from s to v must include a vertex $\mathrm{w} \notin \mathrm{T}$ whose predecessor u in $\pi(\mathrm{s}, \mathrm{v})$ belongs to T .

$\Rightarrow \mathrm{d}(\mathrm{w}) \leq \operatorname{dist}(\mathrm{s}, \mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{w})=\operatorname{dist}(\mathrm{s}, \mathrm{w}) \leq \operatorname{dist}(\mathrm{s}, \mathrm{v})<\mathrm{d}(\mathrm{v})$.

Correctness of Dijkstra's Algorithm

Dijkstra's algorithm does not necessarily produce a shortest path tree if there are edges with negative weights!
Lemma: If all edges in G have non-negative weights, then Dijkstra's algorithm computes a shortest path tree of G.

Assume the contrary and let v be the first vertex added to T such that $\mathrm{d}_{\mathrm{T}}(\mathrm{v})>\operatorname{dist}(\mathrm{s}, \mathrm{v})$.
The shortest path $\pi(\mathrm{s}, \mathrm{v})$ from s to v must include a vertex $\mathrm{w} \notin \mathrm{T}$ whose predecessor u in $\pi(\mathrm{s}, \mathrm{v})$ belongs to T .

$\Rightarrow \mathrm{d}(\mathrm{w}) \leq \operatorname{dist}(\mathrm{s}, \mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{w})=\operatorname{dist}(\mathrm{s}, \mathrm{w}) \leq \operatorname{dist}(\mathrm{s}, \mathrm{v})<\mathrm{d}(\mathrm{v})$.
$\Rightarrow \mathrm{v}$ is not the next vertex we add to T , a contradiction.

Minimum Length Codes

- Encode a given text using as few bits as possible:
- Limit amount of disk space required to store the text.
- Send the text over a potentially slow network.

Codes That Can Be Decoded

A code is a mapping $C(\cdot)$ that maps every character x to a bit string $C(x)$, called the encoding of x .

Codes That Can Be Decoded

A code is a mapping $C(\cdot)$ that maps every character x to a bit string $C(x)$, called the encoding of x .

Codes That Can Be Decoded

A code is a mapping $C(\cdot)$ that maps every character x to a bit string $C(x)$, called the encoding of x .

For a text $T=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, let $C(T)=C\left(x_{1}\right) \circ C\left(x_{2}\right) \circ \ldots \circ C\left(x_{n}\right)$ be the bit string obtained by concatenating the encodings of its characters. We call $\mathrm{C}(\mathrm{T})$ the encoding of T .

	e	f	i	p	r	x	-
c_{1}	000	001	010	011	100	101	110

Codes That Can Be Decoded

A code is a mapping $C(\cdot)$ that maps every character x to a bit string $C(x)$, called the encoding of x .

For a text $T=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, let $C(T)=C\left(x_{1}\right) \circ C\left(x_{2}\right) \circ \ldots \circ C\left(x_{n}\right)$ be the bit string obtained by concatenating the encodings of its characters. We call $\mathrm{C}(\mathrm{T})$ the encoding of T .

```
"prefix-free"
```

	e	f	i	p	r	x	-
c_{1}	000	001	010	011	100	101	110

C_{1} (prefix-free) $=011100000001010101110001100000000$ (33 bits)

Codes That Can Be Decoded

A code is a mapping $C(\cdot)$ that maps every character x to a bit string $C(x)$, called the encoding of x .

For a text $T=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, let $C(T)=C\left(x_{1}\right) \circ C\left(x_{2}\right) \circ \ldots \circ C\left(x_{n}\right)$ be the bit string obtained by concatenating the encodings of its characters. We call $\mathrm{C}(\mathrm{T})$ the encoding of T .

C_{1} (prefix-free) $=011100000001010101110001100000000$ (33 bits)
C_{2} (prefix-free) $=011110000100110110111010100000$ (30 bits)

Codes That Can Be Decoded

A code is a mapping $C(\cdot)$ that maps every character x to a bit string $C(x)$, called the encoding of x .

For a text $T=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, let $C(T)=C\left(x_{1}\right) \circ C\left(x_{2}\right) \circ \ldots \circ C\left(x_{n}\right)$ be the bit string obtained by concatenating the encodings of its characters. We call $\mathrm{C}(\mathrm{T})$ the encoding of T.

C_{1} (prefix-free) $=011100000001010101110001100000000$ (33 bits)
C_{2} (prefix-free) $=011110000100110110111010100000$ (30 bits)
C_{3} (prefix-free) $=011001001100011000$ (18 bits)

Codes That Can Be Decoded

A code is a mapping $C(\cdot)$ that maps every character x to a bit string $C(x)$, called the encoding of x .

For a text $T=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, let $C(T)=C\left(x_{1}\right) \circ C\left(x_{2}\right) \circ \ldots \circ C\left(x_{n}\right)$ be the bit string obtained by concatenating the encodings of its characters. We call $\mathrm{C}(\mathrm{T})$ the encoding of T.

```
"prefix-free"
```

	e	f	i	p	r	x	-
C_{1}	000	001	010	011	100	101	110
C_{2}	00	010	0110	0111	10	110	111
C_{3}	0	1	00	01	10	11	000

C_{1} (prefix-free) $=011100000001010101110001100000000$ (33 bits)
C_{2} (prefix-free) $=011110000100110110111010100000$ (30 bits)
C_{3} (prefix-free) $=011001001100011000$ (18 bits)
A code $C(\cdot)$ is prefix-free if there are no two characters x and y such that $C(x)$ is a prefix of $C(y)$.

Codes That Can Be Decoded

A code is a mapping $C(\cdot)$ that maps every character x to a bit string $C(x)$, called the encoding of x .

For a text $T=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, let $C(T)=C\left(x_{1}\right) \circ C\left(x_{2}\right) \circ \ldots \circ C\left(x_{n}\right)$ be the bit string obtained by concatenating the encodings of its characters. We call $\mathrm{C}(\mathrm{T})$ the encoding of T.

C_{1} (prefix-free) $=011100000001010101110001100000000$ (33 bits)
C_{2} (prefix-free) $=011110000100110110111010100000$ (30 bits)
C_{3} (prefix-free) $=011001001100011000$ (18 bits)
A code $C(\cdot)$ is prefix-free if there are no two characters x and y such that $C(x)$ is a prefix of $C(y)$.

Non-prefix-free codes cannot always be decoded uniquely!

Codes That Can Be Decoded

Lemma: If $C(\cdot)$ is a prefix-free code and $T \neq \mathrm{T}^{\prime}$, then $\mathrm{C}(\mathrm{T}) \neq \mathrm{C}\left(\mathrm{T}^{\prime}\right)$.

Codes That Can Be Decoded

Lemma: If $C(\cdot)$ is a prefix-free code and $T \neq T^{\prime}$, then $C(T) \neq C\left(T^{\prime}\right)$.
Let $T=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $T^{\prime}=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ and assume $C(T)=C\left(T^{\prime}\right)$.

Codes That Can Be Decoded

Lemma: If $C(\cdot)$ is a prefix-free code and $T \neq T^{\prime}$, then $C(T) \neq C\left(T^{\prime}\right)$.
Let $T=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $T^{\prime}=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ and assume $C(T)=C\left(T^{\prime}\right)$.
Let i be the minimum index such that $x_{i} \neq y_{i}$.

Codes That Can Be Decoded

Lemma: If $C(\cdot)$ is a prefix-free code and $T \neq T^{\prime}$, then $C(T) \neq C\left(T^{\prime}\right)$.
Let $T=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $T^{\prime}=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ and assume $C(T)=C\left(T^{\prime}\right)$.
Let i be the minimum index such that $x_{i} \neq y_{i}$.
$\Rightarrow C\left(\left\langle x_{1}, x_{2}, \ldots, x_{i-1}\right\rangle\right)=C\left(\left\langle y_{1}, y_{2}, \ldots, y_{i-1}\right\rangle\right)$ and $C\left(\left\langle x_{i}, x_{i+1}, \ldots, x_{m}\right\rangle\right)=C\left(\left\langle y_{i}, y_{i+1}, \ldots, y_{n}\right\rangle\right)$.

$$
\begin{array}{l|l|l|l|}
\hline C(T)\left(\left\langle x_{1}, x_{2}, \ldots, x_{i-1}\right\rangle\right) & C\left(x_{i}\right) & C\left(\left\langle x_{i+1}, x_{i+2}, \ldots, x_{m}\right\rangle\right) \\
C & C\left(\left\langle y_{1}, y_{2}, \ldots, y_{i-1}\right\rangle\right) & C\left(y_{i}\right) & C\left(\left\langle y_{i+1}, y_{i+2}, \ldots, y_{n}\right\rangle\right) \\
\hline
\end{array}
$$

Codes That Can Be Decoded

Lemma: If $C(\cdot)$ is a prefix-free code and $T \neq T^{\prime}$, then $C(T) \neq C\left(T^{\prime}\right)$.
Let $T=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $T^{\prime}=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ and assume $C(T)=C\left(T^{\prime}\right)$.
Let i be the minimum index such that $x_{i} \neq y_{i}$.
$\Rightarrow C\left(\left\langle x_{1}, x_{2}, \ldots, x_{i-1}\right\rangle\right)=C\left(\left\langle y_{1}, y_{2}, \ldots, y_{i-1}\right\rangle\right)$ and $C\left(\left\langle x_{i}, x_{i+1}, \ldots, x_{m}\right\rangle\right)=C\left(\left\langle y_{i}, y_{i+1}, \ldots, y_{n}\right\rangle\right)$.

Assume w.l.o.g. that $\left|C\left(x_{i}\right)\right| \leq\left|C\left(y_{i}\right)\right|$.

$$
\begin{array}{l|l|l|l|}
\hline C(T)\left(\left\langle x_{1}, x_{2}, \ldots, x_{i-1}\right\rangle\right) & C\left(x_{i}\right) & C\left(\left\langle x_{i+1}, x_{i+2}, \ldots, x_{m}\right\rangle\right) \\
C & C\left(\left\langle y_{1}, y_{2}, \ldots, y_{i-1}\right\rangle\right) & C\left(y_{i}\right) & C\left(\left\langle y_{i+1}, y_{i+2}, \ldots, y_{n}\right\rangle\right) \\
\hline
\end{array}
$$

Codes That Can Be Decoded

Lemma: If $C(\cdot)$ is a prefix-free code and $T \neq T^{\prime}$, then $C(T) \neq C\left(T^{\prime}\right)$.
Let $T=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $T^{\prime}=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ and assume $C(T)=C\left(T^{\prime}\right)$.
Let i be the minimum index such that $x_{i} \neq y_{i}$.
$\Rightarrow C\left(\left\langle x_{1}, x_{2}, \ldots, x_{i-1}\right\rangle\right)=C\left(\left\langle y_{1}, y_{2}, \ldots, y_{i-1}\right\rangle\right)$ and $C\left(\left\langle x_{i}, x_{i+1}, \ldots, x_{m}\right\rangle\right)=C\left(\left\langle y_{i}, y_{i+1}, \ldots, y_{n}\right\rangle\right)$.
Assume w.l.o.g. that $\left|C\left(x_{i}\right)\right| \leq\left|C\left(y_{i}\right)\right|$.
Since both $C\left(x_{i}\right)$ and $C\left(y_{i}\right)$ are prefixes of $C\left(\left\langle x_{i}, x_{i+1}, \ldots, x_{m}\right\rangle\right), C\left(x_{i}\right)$ must be a prefix of $C\left(y_{i}\right)$, a contradiction.

$$
\begin{array}{l|l|l|l|}
C(T) & C\left(\left\langle x_{1}, x_{2}, \ldots, x_{i-1}\right\rangle\right) & C\left(x_{i}\right) & C\left(\left\langle x_{i+1}, x_{i+2}, \ldots, x_{m}\right\rangle\right) \\
C\left(T^{\prime}\right) & C\left(\left\langle y_{1}, y_{2}, \ldots, y_{i-1}\right\rangle\right) & C\left(y_{i}\right) & C\left(\left\langle y_{i+1}, y_{i+2}, \ldots, y_{n}\right\rangle\right) \\
\hline
\end{array}
$$

Prefix Codes and Binary Trees

Observation: Every prefix-free code $C(\cdot)$ can be represented as a binary tree \mathcal{T}_{C} whose leaves correspond to the letters in the alphabet.

| | e | f | i | p | r | x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |$-$

Prefix Codes and Binary Trees

Observation: Every prefix-free code $C(\cdot)$ can be represented as a binary tree \mathcal{T}_{C} whose leaves correspond to the letters in the alphabet.

$$
\begin{array}{c|ccccccc}
& \text { e } & f & \text { i } & \text { p } & \text { r } & \text { x } & - \\
\hline \mathrm{C} & 00 & 010 & 0110 & 0111 & 10 & 110 & \text { III }
\end{array}
$$

The depth of character x in \mathcal{T}_{C} is the number of bits $|\mathrm{C}(\mathrm{x})|$ used to encode x using $\mathrm{C}(\cdot)$.

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes $|\mathrm{C}(\mathrm{T})|$.

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes $|\mathrm{C}(\mathrm{T})|$.
Lemma: For every text T, there exists an optimal prefix-free code $C(\cdot)$ such that every internal node in $\mathcal{T}_{\mathcal{C}}$ has two children.

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes $|\mathrm{C}(\mathrm{T})|$.
Lemma: For every text T, there exists an optimal prefix-free code $C(\cdot)$ such that every internal node in \mathcal{T}_{C} has two children.
Choose $C(\cdot)$ so that \mathcal{T}_{C} has as few internal nodes with only one child as possible among all optimal prefix-free codes for T .

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes $|\mathrm{C}(\mathrm{T})|$.
Lemma: For every text T, there exists an optimal prefix-free code $C(\cdot)$ such that every internal node in $\mathcal{T}_{\mathcal{C}}$ has two children.
Choose $C(\cdot)$ so that \mathcal{T}_{C} has as few internal nodes with only one child as possible among all optimal prefix-free codes for T. If \mathcal{T}_{C} has no internal node with only one child, the lemma holds.

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes $|\mathrm{C}(\mathrm{T})|$.
Lemma: For every text T, there exists an optimal prefix-free code $C(\cdot)$ such that every internal node in $\mathcal{T}_{\mathcal{C}}$ has two children.
Choose $C(\cdot)$ so that \mathcal{T}_{C} has as few internal nodes with only one child as possible among all optimal prefix-free codes for T.

If \mathcal{T}_{C} has no internal node with only one child, the lemma holds.

Otherwise, choose an internal node v with only one child w and contract the edge (v, w).

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes $|\mathrm{C}(\mathrm{T})|$.
Lemma: For every text T, there exists an optimal prefix-free code $C(\cdot)$ such that every internal node in \mathcal{T}_{C} has two children.
Choose $C(\cdot)$ so that \mathcal{T}_{C} has as few internal nodes with only one child as possible among all optimal prefix-free codes for T.

If \mathcal{T}_{C} has no internal node with only one child, the lemma holds.

Otherwise, choose an internal node v with only one child w and contract the edge (v, w).

The resulting tree $\mathcal{T}_{\mathcal{C}^{\prime}}$ has one less internal node with only one child and represents a prefix-free code $\mathrm{C}^{\prime}(\cdot)$ with the property that $\left|C^{\prime}(\mathrm{x})\right| \leq|C(\mathrm{x})|$ for every character x .

Optimal Prefix Codes and Binary Trees

An optimal prefix-free code for a text T is a prefix-free code C that minimizes $|\mathrm{C}(\mathrm{T})|$.
Lemma: For every text T, there exists an optimal prefix-free code $C(\cdot)$ such that every internal node in $\mathcal{T}_{\mathcal{C}}$ has two children.
Choose $\mathrm{C}(\cdot)$ so that \mathcal{T}_{C} has as few internal nodes with only one child as possible among all optimal prefix-free codes for T.

If \mathcal{T}_{C} has no internal node with only one child, the lemma holds.

Otherwise, choose an internal node v with only one child w and contract the edge (v, w).

The resulting tree $\mathcal{T}_{\mathcal{C}^{\prime}}$ has one less internal node with only one child and represents a prefix-free code $\mathrm{C}^{\prime}(\cdot)$ with the property that $\left|C^{\prime}(x)\right| \leq|C(x)|$ for every character x.
$\Rightarrow\left|C^{\prime}(\mathrm{T})\right| \leq|C(\mathrm{~T})|$, contradicting the choice of C .

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

r

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is $|C(T)|=\sum_{x} f_{T}(x)|C(x)|$, where $f_{T}(x)$ is the frequency of x in T.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is $|C(T)|=\sum_{x} f_{T}(x)|C(x)|$, where $f_{T}(x)$ is the frequency of x in T.
When making a node r a child of a new parent, we add I bit to the encoding $C(x)$ of every descendant leaf x of r .

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is $|C(T)|=\sum_{x} f_{T}(x)|C(x)|$, where $f_{T}(x)$ is the frequency of x in T.
When making a node r a child of a new parent, we add I bit to the encoding $C(x)$ of every descendant leaf x of r.
\Rightarrow By choosing the two roots with minimum total frequency of their descendent leaves, we minimize the increase in $|C(T)|$.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

$$
\begin{aligned}
& \text { "prefix-free" } \\
& \begin{array}{c|c}
x & \text { e fip r x-} \\
\hline f_{T}(x) & 3211211
\end{array}
\end{aligned}
$$

$$
\begin{array}{lllllll}
\bullet & 0 & 0 & 0 & 0 & 0 & 0_{(1)} \\
\mathrm{e}(3) & \mathrm{f}(2) & \mathrm{i}(1) & \mathrm{p}(1) & \mathrm{r}(2) & \mathrm{x}(1) & -(1)
\end{array}
$$

The length of the encoding of T is $|C(T)|=\sum_{x} f_{T}(x)|C(x)|$, where $f_{T}(x)$ is the frequency of x in T.
When making a node r a child of a new parent, we add I bit to the encoding $C(x)$ of every descendant leaf x of r.
\Rightarrow By choosing the two roots with minimum total frequency of their descendent leaves, we minimize the increase in $|C(T)|$.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is $|C(T)|=\sum_{x} f_{T}(x)|C(x)|$, where $f_{T}(x)$ is the frequency of x in T.
When making a node r a child of a new parent, we add I bit to the encoding $C(x)$ of every descendant leaf x of r.
\Rightarrow By choosing the two roots with minimum total frequency of their descendent leaves, we minimize the increase in $|C(T)|$.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is $|C(T)|=\sum_{x} f_{T}(x)|C(x)|$, where $f_{T}(x)$ is the frequency of x in T.
When making a node r a child of a new parent, we add I bit to the encoding $C(x)$ of every descendant leaf x of r.
\Rightarrow By choosing the two roots with minimum total frequency of their descendent leaves, we minimize the increase in $|C(T)|$.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is $|C(T)|=\sum_{x} f_{T}(x)|C(x)|$, where $f_{T}(x)$ is the frequency of x in T .
When making a node r a child of a new parent, we add I bit to the encoding $C(x)$ of every descendant leaf x of r.
\Rightarrow By choosing the two roots with minimum total frequency of their descendent leaves, we minimize the increase in $|C(T)|$.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is $|C(T)|=\sum_{x} f_{T}(x)|C(x)|$, where $f_{T}(x)$ is the frequency of x in T.
When making a node r a child of a new parent, we add I bit to the encoding $C(x)$ of every descendant leaf x of r.
\Rightarrow By choosing the two roots with minimum total frequency of their descendent leaves, we minimize the increase in $|C(T)|$.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

The length of the encoding of T is $|C(T)|=\sum_{x} f_{T}(x)|C(x)|$, where $f_{T}(x)$ is the frequency of x in T.
When making a node r a child of a new parent, we add I bit to the encoding $C(x)$ of every descendant leaf x of r.
\Rightarrow By choosing the two roots with minimum total frequency of their descendent leaves, we minimize the increase in $|C(T)|$.

A Greedy Choice for Optimal Prefix Codes

We can build binary trees by starting with each leaf in its own tree, joining two trees under a common parent, and repeating this until only one tree is left.

$$
\begin{aligned}
& \text { "prefix-free" } \\
& \begin{array}{c|c}
\\
\mathrm{x} & \mathrm{e} \text { f ip r x }- \\
\hline \mathrm{f}_{\mathrm{T}}(\mathrm{x}) & 3211211
\end{array}
\end{aligned}
$$

The length of the encoding of T is $|C(T)|=\sum_{x} f_{T}(x)|C(x)|$, where $f_{T}(x)$ is the frequency of x in T.
When making a node r a child of a new parent, we add I bit to the encoding $\mathrm{C}(\mathrm{x})$ of every descendant leaf x of r.
\Rightarrow By choosing the two roots with minimum total frequency of their descendent leaves, we minimize the increase in $|C(T)|$.

Huffman's Algorithm

Huffman(T)

determine the set A of characters that occur in T and their frequencies $Q=$ an empty priority queue
for every character $x \in A$
do create a node v associated with x and define $f(v)=f(x)$
Q.insert(v, f(v))
while $|\mathrm{Q}|>1$
do $\mathrm{v}=\mathrm{Q}$. deleteMin()
$\mathrm{w}=$ Q.deleteMin()
$u=a$ new node with frequency $f(u)=f(v)+f(w)$ make v and w children of u
Q.insert(u, f(u))

12 return Q.deleteMin()
Lemma: Huffman's algorithm runs in $\mathrm{O}(\mathrm{m} \lg \mathrm{n})$ time, where $\mathrm{m}=|\mathrm{T}|$ and n is the size of the alphabet.

Correctness of Huffman's Algorithm

Lemma: Huffman's algorithm computes an optimal prefix-free code for its input text T.

Correctness of Huffman's Algorithm

Lemma: Huffman's algorithm computes an optimal prefix-free code for its input text T.
Proof by induction on n .

Correctness of Huffman's Algorithm

Lemma: Huffman's algorithm computes an optimal prefix-free code for its input text T.
Proof by induction on n .
Base case: $\mathrm{n}=2$.

Correctness of Huffman's Algorithm

Lemma: Huffman's algorithm computes an optimal prefix-free code for its input text T.
Proof by induction on n .
Base case: $\mathrm{n}=2$.
We cannot do better than using one bit per character.

Correctness of Huffman's Algorithm

Lemma: Huffman's algorithm computes an optimal prefix-free code for its input text T.
Proof by induction on n .
Base case: $\mathrm{n}=2$.
We cannot do better than using one bit per character.

Inductive step: $\mathrm{n}>2$.

Correctness of Huffman's Algorithm

Lemma: Huffman's algorithm computes an optimal prefix-free code for its input text T.
Proof by induction on n .
Base case: $\mathrm{n}=2$.
We cannot do better than using one bit per character.

Inductive step: $\mathrm{n}>2$.
Consider the first two characters a and b that are joined under a common parent z with frequency $f(z)=f(a)+f(b)$.

Correctness of Huffman's Algorithm

Lemma: Huffman's algorithm computes an optimal prefix-free code for its input text T.
Proof by induction on n .

Base case: $\mathrm{n}=2$.
We cannot do better than using one bit per character.

Inductive step: $\mathrm{n}>2$.
Consider the first two characters a and b that are joined under a common parent z with frequency $f(z)=f(a)+f(b)$.

Replacing a and b with z in T produces a new text T^{\prime} over an alphabet of size $n-1$ where z has frequency $\mathrm{f}(\mathrm{z})$.

$$
\begin{gathered}
\text { "prefix-free" } \\
\downarrow \\
\text { "zrefzx-free" }
\end{gathered}
$$

Correctness of Huffman's Algorithm

Lemma: Huffman's algorithm computes an optimal prefix-free code for its input text T.
Proof by induction on n.

Base case: $\mathrm{n}=2$.
We cannot do better than using one bit per character.

Inductive step: $\mathrm{n}>2$.
Consider the first two characters a and b that are joined under a common parent z with frequency $f(z)=f(a)+f(b)$.

Replacing a and b with z in T produces a new text T^{\prime} over an alphabet of size $\mathrm{n}-1$ where z has frequency $\mathrm{f}(\mathrm{z})$.

After joining a and b under z, Huffman's algorithm behaves exactly as if it was run on T^{\prime}.

$$
\begin{gathered}
\text { "prefix-free" } \\
\downarrow \\
\text { "zrefzx-free" }
\end{gathered}
$$

Correctness of Huffman's Algorithm

Lemma: Huffman's algorithm computes an optimal prefix-free code for its input text T.
Proof by induction on n.
Base case: $\mathrm{n}=2$.
We cannot do better than using one bit per character.

Inductive step: $\mathrm{n}>2$.
Consider the first two characters a and b that are joined under a common parent z with frequency $f(z)=f(a)+f(b)$.

Replacing a and b with z in T produces a new text T^{\prime} over an alphabet of size $\mathrm{n}-1$ where z has frequency $\mathrm{f}(\mathrm{z})$.

After joining a and b under z , Huffman's algorithm behaves exactly as if it was run on T^{\prime}.

By induction, it produces an optimal code $C^{\prime}(\cdot)$ for T^{\prime}.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $C(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $C(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{c}.
\Rightarrow Huffman's algorithm produces an optimal prefix-free code for T.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $C(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.
\Rightarrow Huffman's algorithm produces an optimal prefix-free code for T.

Assume there exists a better code $\mathrm{C}^{*}(\cdot)$ such that a and b are siblings in $\mathcal{T}_{\mathrm{C}^{*}}$, that is, $\left|\mathrm{C}^{*}(\mathrm{~T})\right|<|\mathrm{C}(\mathrm{T})|$.
"prefix-free"

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $C(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.
\Rightarrow Huffman's algorithm produces an optimal prefix-free code for T.
Assume there exists a better code $C^{*}(\cdot)$ such that a and b are siblings in $\mathcal{T}_{\mathrm{C}^{*}}$, that is, $\left|\mathrm{C}^{*}(\mathrm{~T})\right|<\mid \mathrm{C}(\mathrm{T})$.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $\mathrm{C}(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.
\Rightarrow Huffman's algorithm produces an optimal prefix-free code for T.
Assume there exists a better code $C^{*}(\cdot)$ such that a and b are siblings in $\mathcal{T}_{\mathrm{C}^{*}}$, that is, $\left|\mathrm{C}^{*}(\mathrm{~T})\right|<|\mathrm{C}(\mathrm{T})|$.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $\mathrm{C}(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.
\Rightarrow Huffman's algorithm produces an optimal prefix-free code for T.

Assume there exists a better code $C^{*}(\cdot)$ such that a and b are siblings in $\mathcal{T}_{\mathrm{C}^{*}}$, that is, $\left|\mathrm{C}^{*}(\mathrm{~T})\right|<|\mathrm{C}(\mathrm{T})|$.
$|C(T)|=\left|C^{\prime}\left(T^{\prime}\right)\right|+f(z)$ and $\left|C^{*}(T)\right|=\left|C^{\prime \prime}\left(T^{\prime}\right)\right|+f(z)$.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $\mathrm{C}(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.
\Rightarrow Huffman's algorithm produces an optimal prefix-free code for T.
Assume there exists a better code $C^{*}(\cdot)$ such that a and b are siblings in $\mathcal{T}_{\mathrm{C}^{*}}$, that is, $\left|\mathrm{C}^{*}(\mathrm{~T})\right|<|\mathrm{C}(\mathrm{T})|$.

$|C(T)|=\left|C^{\prime}\left(T^{\prime}\right)\right|+f(z)$ and $\left|C^{*}(T)\right|=\left|C^{\prime \prime}\left(T^{\prime}\right)\right|+f(z)$.
$\Rightarrow\left|C^{\prime \prime}\left(T^{\prime}\right)\right|<\left|C^{\prime}\left(T^{\prime}\right)\right|$, a contradiction because $C^{\prime}(\cdot)$ is optimal for T^{\prime}.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $C(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $\mathrm{C}(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Let $\mathrm{C}^{*}(\cdot)$ be an optimal code for T.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $C(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Let $\mathrm{C}^{*}(\cdot)$ be an optimal code for T .
The sibling b^{\prime} of the deepest leaf a^{\prime} in $\mathcal{T}_{C^{*}}$ is also a leaf.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $C(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Let $\mathrm{C}^{*}(\cdot)$ be an optimal code for T .
The sibling b^{\prime} of the deepest leaf a^{\prime} in $\mathcal{T}_{\mathrm{C}^{*}}$ is also a leaf.

We have $\left|C^{*}(a)\right| \leq\left|C^{*}\left(a^{\prime}\right)\right|$ and $\left|C^{*}(b)\right| \leq\left|C^{*}\left(b^{\prime}\right)\right|$.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $\mathrm{C}(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Let $\mathrm{C}^{*}(\cdot)$ be an optimal code for T .
The sibling b^{\prime} of the deepest leaf a^{\prime} in $\mathcal{T}_{\mathrm{C}^{*}}$ is also a leaf.

We have $\left|C^{*}(a)\right| \leq\left|C^{*}\left(a^{\prime}\right)\right|$ and $\left|C^{*}(b)\right| \leq\left|C^{*}\left(b^{\prime}\right)\right|$. Now assume $\mathrm{f}(\mathrm{a}) \leq \mathrm{f}(\mathrm{b})$ and $\mathrm{f}\left(\mathrm{a}^{\prime}\right) \leq \mathrm{f}\left(\mathrm{b}^{\prime}\right)$.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $\mathrm{C}(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Let $\mathrm{C}^{*}(\cdot)$ be an optimal code for T .
The sibling b^{\prime} of the deepest leaf a^{\prime} in $\mathcal{T}_{\mathrm{C}^{*}}$ is also a leaf.

We have $\left|C^{*}(a)\right| \leq\left|C^{*}\left(a^{\prime}\right)\right|$ and $\left|C^{*}(\mathrm{~b})\right| \leq\left|C^{*}\left(\mathrm{~b}^{\prime}\right)\right|$.

Now assume $\mathrm{f}(\mathrm{a}) \leq \mathrm{f}(\mathrm{b})$ and $\mathrm{f}\left(\mathrm{a}^{\prime}\right) \leq \mathrm{f}\left(\mathrm{b}^{\prime}\right)$.
Let $\mathrm{C}(\cdot)$ be the code such that \mathcal{T}_{C} is obtained from $\mathcal{T}_{\mathrm{C}^{*}}$ by swapping a and a^{\prime}, and b and b^{\prime}.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $C(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Let $\mathrm{C}^{*}(\cdot)$ be an optimal code for T .
The sibling b^{\prime} of the deepest leaf a^{\prime} in $\mathcal{T}_{\mathrm{C}^{*}}$ is also a leaf.

We have $\left|C^{*}(a)\right| \leq\left|C^{*}\left(a^{\prime}\right)\right|$ and $\left|C^{*}(\mathrm{~b})\right| \leq\left|C^{*}\left(\mathrm{~b}^{\prime}\right)\right|$.

Now assume $f(a) \leq f(b)$ and $f\left(a^{\prime}\right) \leq f\left(b^{\prime}\right)$.
Let $\mathrm{C}(\cdot)$ be the code such that \mathcal{T}_{C} is obtained from $\mathcal{T}_{\mathrm{C}^{*}}$ by swapping a and a^{\prime}, and b and b^{\prime}.

We prove that $|C(T)| \leq\left|C^{*}(T)\right|$, that is, $C(\cdot)$ is an optimal prefix-free code for T .

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $C(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Let $\mathrm{C}^{*}(\cdot)$ be an optimal code for T .
The sibling b^{\prime} of the deepest leaf a^{\prime} in $\mathcal{T}_{C^{*}}$ is also a leaf.

We have $\left|C^{*}(a)\right| \leq\left|C^{*}\left(a^{\prime}\right)\right|$ and $\left|C^{*}(b)\right| \leq\left|C^{*}\left(b^{\prime}\right)\right|$.

Now assume $f(a) \leq f(b)$ and $f\left(a^{\prime}\right) \leq f\left(b^{\prime}\right)$.
Let $\mathrm{C}(\cdot)$ be the code such that \mathcal{T}_{C} is obtained from $\mathcal{T}_{\mathrm{C}^{*}}$ by swapping a and a^{\prime}, and b and b^{\prime}.

We prove that $|C(T)| \leq\left|C^{*}(T)\right|$, that is, $C(\cdot)$ is an optimal prefix-free code for T .

Since a and b are siblings in \mathcal{T}_{C}, this proves the claim.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $C(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Given: $\left|C^{*}(a)\right| \leq\left|C^{*}\left(a^{\prime}\right)\right|,\left|C^{*}(b)\right| \leq\left|C^{*}\left(b^{\prime}\right)\right|, f(a) \leq f(b)$, and $f\left(a^{\prime}\right) \leq f\left(b^{\prime}\right)$.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $C(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Given: $\left|C^{*}(a)\right| \leq\left|C^{*}\left(a^{\prime}\right)\right|,\left|C^{*}(b)\right| \leq\left|C^{*}\left(b^{\prime}\right)\right|, f(a) \leq f(b)$, and $f\left(a^{\prime}\right) \leq f\left(b^{\prime}\right)$.
$\Rightarrow \mathrm{f}(\mathrm{a}) \leq \mathrm{f}\left(\mathrm{a}^{\prime}\right)$ and $\mathrm{f}(\mathrm{b}) \leq \mathrm{f}\left(\mathrm{b}^{\prime}\right)$.

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $C(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Given: $\left|C^{*}(a)\right| \leq\left|C^{*}\left(a^{\prime}\right)\right|,\left|C^{*}(b)\right| \leq\left|C^{*}\left(b^{\prime}\right)\right|, f(a) \leq f(b)$, and $f\left(a^{\prime}\right) \leq f\left(b^{\prime}\right)$.
$\Rightarrow \mathrm{f}(\mathrm{a}) \leq \mathrm{f}\left(\mathrm{a}^{\prime}\right)$ and $\mathrm{f}(\mathrm{b}) \leq \mathrm{f}\left(\mathrm{b}^{\prime}\right)$.

$$
\begin{aligned}
|C(T)|-\left|C^{*}(T)\right|= & f(a)|C(a)|+f(b)|C(b)|+f\left(a^{\prime}\right)\left|C\left(a^{\prime}\right)\right|+f\left(b^{\prime}\right)\left|C\left(b^{\prime}\right)\right|- \\
& f(a)\left|C^{*}(a)\right|-f(b)\left|C^{*}(b)\right|-f\left(a^{\prime}\right)\left|C^{*}\left(a^{\prime}\right)\right|-f\left(b^{\prime}\right)\left|C^{*}\left(b^{\prime}\right)\right|
\end{aligned}
$$

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $C(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Given: $\left|C^{*}(a)\right| \leq\left|C^{*}\left(a^{\prime}\right)\right|,\left|C^{*}(b)\right| \leq\left|C^{*}\left(b^{\prime}\right)\right|, f(a) \leq f(b)$, and $f\left(a^{\prime}\right) \leq f\left(b^{\prime}\right)$.
$\Rightarrow f(a) \leq f\left(a^{\prime}\right)$ and $f(b) \leq f\left(b^{\prime}\right)$.

$$
\begin{aligned}
|C(T)|-\left|C^{*}(T)\right|= & f(a)|C(a)|+f(b)|C(b)|+f\left(a^{\prime}\right)\left|C\left(a^{\prime}\right)\right|+f\left(b^{\prime}\right)\left|C\left(b^{\prime}\right)\right|- \\
& f(a)\left|C^{*}(a)\right|-f(b)\left|C^{*}(b)\right|-f\left(a^{\prime}\right)\left|C^{*}\left(a^{\prime}\right)\right|-f\left(b^{\prime}\right)\left|C^{*}\left(b^{\prime}\right)\right| \\
= & f(a)\left|C^{*}\left(a^{\prime}\right)\right|+f(b)\left|C^{*}\left(b^{\prime}\right)\right|+f\left(a^{\prime}\right)\left|C^{*}(a)\right|+f\left(b^{\prime}\right)\left|C^{*}(b)\right|- \\
& f(a)\left|C^{*}(a)\right|-f(b)\left|C^{*}(b)\right|-f\left(a^{\prime}\right)\left|C^{*}\left(a^{\prime}\right)\right|-f\left(b^{\prime}\right)\left|C^{*}\left(b^{\prime}\right)\right|
\end{aligned}
$$

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $\mathrm{C}(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Given: $\left|C^{*}(a)\right| \leq\left|C^{*}\left(a^{\prime}\right)\right|,\left|C^{*}(b)\right| \leq\left|C^{*}\left(b^{\prime}\right)\right|, f(a) \leq f(b)$, and $f\left(a^{\prime}\right) \leq f\left(b^{\prime}\right)$.
$\Rightarrow \mathrm{f}(\mathrm{a}) \leq \mathrm{f}\left(\mathrm{a}^{\prime}\right)$ and $\mathrm{f}(\mathrm{b}) \leq \mathrm{f}\left(\mathrm{b}^{\prime}\right)$.

$$
\begin{aligned}
|C(T)|-\left|C^{*}(T)\right|= & f(a)|C(a)|+f(b)|C(b)|+f\left(a^{\prime}\right)\left|C\left(a^{\prime}\right)\right|+f\left(b^{\prime}\right)\left|C\left(b^{\prime}\right)\right|- \\
& f(a)\left|C^{*}(a)\right|-f(b)\left|C^{*}(b)\right|-f\left(a^{\prime}\right)\left|C^{*}\left(a^{\prime}\right)\right|-f\left(b^{\prime}\right)\left|C^{*}\left(b^{\prime}\right)\right| \\
= & f(a)\left|C^{*}\left(a^{\prime}\right)\right|+f(b)\left|C^{*}\left(b^{\prime}\right)\right|+f\left(a^{\prime}\right)\left|C^{*}(a)\right|+f\left(b^{\prime}\right)\left|C^{*}(b)\right|- \\
& f(a)\left|C^{*}(a)\right|-f(b)\left|C^{*}(b)\right|-f\left(a^{\prime}\right)\left|C^{*}\left(a^{\prime}\right)\right|-f\left(b^{\prime}\right)\left|C^{*}\left(b^{\prime}\right)\right| \\
= & \left.\left(f(a)-f\left(a^{\prime}\right)\right)\right)\left(\left|C^{*}\left(a^{\prime}\right)\right|-\left|C^{*}(a)\right| \mid+\left(f(b)-f\left(b^{\prime}\right)\right)\right)\left(\left|C^{*}\left(b^{\prime}\right)\right|-\left|C^{*}(b)\right|\right)
\end{aligned}
$$

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $\mathrm{C}(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Given: $\left|C^{*}(a)\right| \leq\left|C^{*}\left(a^{\prime}\right)\right|,\left|C^{*}(b)\right| \leq\left|C^{*}\left(b^{\prime}\right)\right|, f(a) \leq f(b)$, and $f\left(a^{\prime}\right) \leq f\left(b^{\prime}\right)$.
$\Rightarrow f(a) \leq f\left(a^{\prime}\right)$ and $f(b) \leq f\left(b^{\prime}\right)$.

$$
\begin{aligned}
|C(T)|-\left|C^{*}(T)\right|= & f(a)|C(a)|+f(b)|C(b)|+f\left(a^{\prime}\right)\left|C\left(a^{\prime}\right)\right|+f\left(b^{\prime}\right)\left|C\left(b^{\prime}\right)\right|- \\
& f(a)\left|C^{*}(a)\right|-f(b)\left|C^{*}(b)\right|-f\left(a^{\prime}\right)\left|C^{*}\left(a^{\prime}\right)\right|-f\left(b^{\prime}\right)\left|C^{*}\left(b^{\prime}\right)\right| \\
& =f(a)\left|C^{*}\left(a^{\prime}\right)\right|+f(b)\left|C^{*}\left(b^{\prime}\right)\right|+f\left(a^{\prime}\right)\left|C^{*}(a)\right|+f\left(b^{\prime}\right)\left|C^{*}(b)\right|- \\
& f(a)\left|C^{*}(a)\right|-f(b)\left|C^{*}(b)\right|-f\left(a^{\prime}\right)\left|C^{*}\left(a^{\prime}\right)\right|-f\left(b^{\prime}\right)\left|C^{*}\left(b^{\prime}\right)\right| \\
& =\underbrace{\left(f(a)-f\left(a^{\prime}\right)\right)}_{\leq 0} \underbrace{\left(C^{*}\left(a^{\prime}\right)\left|-\left|C^{*}(a)\right|\right)\right.}_{\geq 0}+\underbrace{\left(f(b)-f\left(b^{\prime}\right)\right)}_{\leq 0} \underbrace{\left(C^{*}\left(b^{\prime}\right)\left|-\left|C^{*}(b)\right|\right)\right.}_{\geq 0}
\end{aligned}
$$

Correctness of Huffman's Algorithm

Claim: There exists an optimal prefix-free code $\mathrm{C}(\cdot)$ for T such that the two least frequent characters a and b in T are siblings in \mathcal{T}_{C}.

Given: $\left|C^{*}(a)\right| \leq\left|C^{*}\left(a^{\prime}\right)\right|,\left|C^{*}(b)\right| \leq\left|C^{*}\left(b^{\prime}\right)\right|, f(a) \leq f(b)$, and $f\left(a^{\prime}\right) \leq f\left(b^{\prime}\right)$.
$\Rightarrow f(a) \leq f\left(a^{\prime}\right)$ and $f(b) \leq f\left(b^{\prime}\right)$.

$$
\begin{aligned}
|C(T)|-\left|C^{*}(T)\right|= & f(a)|C(a)|+f(b)|C(b)|+f\left(a^{\prime}\right)\left|C\left(a^{\prime}\right)\right|+f\left(b^{\prime}\right)\left|C\left(b^{\prime}\right)\right|- \\
& f(a)\left|C^{*}(a)\right|-f(b)\left|C^{*}(b)\right|-f\left(a^{\prime}\right)\left|C^{*}\left(a^{\prime}\right)\right|-f\left(b^{\prime}\right)\left|C^{*}\left(b^{\prime}\right)\right| \\
= & f(a)\left|C^{*}\left(a^{\prime}\right)\right|+f(b)\left|C^{*}\left(b^{\prime}\right)\right|+f\left(a^{\prime}\right)\left|C^{*}(a)\right|+f\left(b^{\prime}\right)\left|C^{*}(b)\right|- \\
& f(a)\left|C^{*}(a)\right|-f(b)\left|C^{*}(b)\right|-f\left(a^{\prime}\right)\left|C^{*}\left(a^{\prime}\right)\right|-f\left(b^{\prime}\right)\left|C^{*}\left(b^{\prime}\right)\right| \\
& =\underbrace{\left(f(a)-f\left(a^{\prime}\right)\right)}_{\leq 0} \underbrace{\left(\left|C^{*}\left(a^{\prime}\right)\right|-\left|C^{*}(a)\right|\right)}_{\leq 0}+\underbrace{\left(f(b)-f\left(b^{\prime}\right)\right)}_{\geq 0} \underbrace{\left(C^{*}\left(b^{\prime}\right)\left|-\left|C^{*}(b)\right|\right)\right.}_{\leq 0} \\
& \leq 0
\end{aligned}
$$

Summary

Greedy algorithms make natural local choices in their search for a globally optimal solution.

Many good heuristics are greedy:

- Simple
- Work well in practice

Proof that a greedy algorithm finds an optimal solution:

- Induction
- Exchange argument

Useful data structures:

- Union-find data structure
- Thin Heap

Analysis of a sequence of data structure operations:

- Amortized analysis
- Potential functions

