Graph Algorithms

Textbook Reading Chapter 22

Overview

Design principle:

• Learn the structure of the graph by systematic exploration.

Proof technique:

• Proof by contradiction

Problems:

- Connected components
- Bipartiteness testing
- Topological sorting
- Strongly connected components

A graph is an ordered pair G = (V, E).

- V is the set of vertices of G.
- E is the set of edges of G.
- The elements of E are pairs of vertices (v, w).

A graph is an ordered pair G = (V, E).

- V is the set of vertices of G.
- E is the set of edges of G.

• The elements of E are pairs of vertices (v, w).

A graph is an ordered pair G = (V, E).

- V is the set of vertices of G.
- E is the set of edges of G.
- The elements of E are pairs of vertices (v, w).

A graph is an ordered pair G = (V, E).

- V is the set of vertices of G.
- E is the set of edges of G.
- The elements of E are pairs of vertices (v, w).

The endpoints of an edge (v, w) are v and w.

A graph is an ordered pair G = (V, E).

- V is the set of vertices of G.
- E is the set of edges of G.
- The elements of E are pairs of vertices (v, w).

The endpoints of an edge (v, w) are v and w.

The endpoints of an edge e are said to be adjacent to each other and incident with e.

A graph is an ordered pair G = (V, E).

- V is the set of vertices of G.
- E is the set of edges of G.
- The elements of E are pairs of vertices (v, w).

The endpoints of an edge (v, w) are v and w.

The endpoints of an edge e are said to be adjacent to each other and incident with e. The degree of a vertex is the number of its incident edges.

A graph is undirected if its edges are unordered pairs, that is, (v, w) = (w, v).

A graph is undirected if its edges are unordered pairs, that is, (v, w) = (w, v).

A graph is directed if its edges are ordered pairs, that is, $(v, w) \neq (w, v)$.

A graph is undirected if its edges are unordered pairs, that is, (v, w) = (w, v).

A graph is directed if its edges are ordered pairs, that is, $(v, w) \neq (w, v)$.

A directed edge (v, w) is an out-edge of v and an in-edge of w.

A graph is undirected if its edges are unordered pairs, that is, (v, w) = (w, v).

A graph is directed if its edges are ordered pairs, that is, $(v, w) \neq (w, v)$.

A directed edge (v, w) is an out-edge of v and an in-edge of w.

The in-degree and out-degree of a vertex are the numbers of its in-edges and out-edges, respectively.

Paths and Cycles

A path from a vertex s to a vertex t is a sequence of vertices $\langle x_0, x_1, \ldots, x_k \rangle$ such that

- $x_0 = s$,
- $x_k = t$, and
- for all $1 \le i \le k$, (x_{i-1}, x_i) is an edge of G.

Paths and Cycles

A path from a vertex s to a vertex t is a sequence of vertices $\langle x_0, x_1, \ldots, x_k \rangle$ such that

- $x_0 = s$,
- $x_k = t$, and
- for all $1 \le i \le k$, (x_{i-1}, x_i) is an edge of G.

A cycle is a path from a vertex x back to itself.

Paths and Cycles

A path from a vertex s to a vertex t is a sequence of vertices $\langle x_0, x_1, \dots, x_k \rangle$ such that

- $x_0 = s$,
- $x_k = t$, and
- for all $1 \le i \le k$, (x_{i-1}, x_i) is an edge of G.

A cycle is a path from a vertex x back to itself.

A path or cycle is simple if it contains every vertex of G at most once.

A graph is connected if there exists a path between every pair of vertices.

A graph is connected if there exists a path between every pair of vertices.

A graph is connected if there exists a path between every pair of vertices.

A forest is a graph without cycles.

A graph is connected if there exists a path between every pair of vertices.

A forest is a graph without cycles.

A graph is connected if there exists a path between every pair of vertices.

A forest is a graph without cycles.

A tree is a connected forest.

A graph is connected if there exists a path between every pair of vertices.

A forest is a graph without cycles.

A tree is a connected forest.

- Doubly-linked list of vertices
- Doubly-linked list of edges
- One doubly-linked adjacency list per vertex
- Pointers from adjacency list entries to vertices
- Cross-pointers between edges and adjacency list entries

- Doubly-linked list of vertices
- Doubly-linked list of edges
- One doubly-linked adjacency list per vertex
- Pointers from adjacency list entries to vertices
- Cross-pointers between edges and adjacency list entries

- Doubly-linked list of vertices
- Doubly-linked list of edges
- One doubly-linked adjacency list per vertex
- Pointers from adjacency list entries to vertices
- Cross-pointers between edges and adjacency list entries

- Doubly-linked list of vertices
- Doubly-linked list of edges
- One doubly-linked adjacency list per vertex
- Pointers from adjacency list entries to vertices
- Cross-pointers between edges and adjacency list entries

Representing Rooted Trees

A rooted tree T

- is a tree,
- is a directed graph,
- has one of its vertices, r, designated as a root.

There exists a path from r to every vertex in T.

Representing Rooted Trees

A rooted tree T

- is a tree,
- is a directed graph,
- has one of its vertices, r, designated as a root.

There exists a path from r to every vertex in T.

Representation:

Tree = root

Every node stores

- an arbitrary key
- a (doubly-linked) list of its children.

Standard Tree Orderings

Preorder:

- Every vertex appears before its children.
- Every vertex appears before its right sibling.
- The vertices in each subtree appear consecutively.
- $\Rightarrow [a, b, c, d, e, f, g, h, i, j]$

Standard Tree Orderings

Preorder:

- Every vertex appears before its children.
- Every vertex appears before its right sibling.
- The vertices in each subtree appear consecutively.
- \Rightarrow [a, b, c, d, e, f, g, h, i, j]

Postorder:

- Every vertex appears after its children.
- Every vertex appears before its right sibling.
- The vertices in each subtree appear consecutively.
- \Rightarrow [c, b, f, e, g, i, j, h, d, a]

Standard Tree Orderings

Preorder:

- Every vertex appears before its children.
- Every vertex appears before its right sibling.
- The vertices in each subtree appear consecutively.
- \Rightarrow [a, b, c, d, e, f, g, h, i, j]

Postorder:

- Every vertex appears after its children.
- Every vertex appears before its right sibling.
- The vertices in each subtree appear consecutively.
- \Rightarrow [c, b, f, e, g, i, j, h, d, a]

Lemma: It takes linear time to arrange the vertices of a forest in preorder or postorder.

The connected components of a graph *G* are its maximal connected subgraphs.

The connected components of a graph *G* are its maximal connected subgraphs.

A spanning forest of a graph G is a subgraph $F \subseteq G$ with the same number of connected components and which is a forest.

The connected components of a graph *G* are its maximal connected subgraphs.

Representation:

- List of graphs or
- Labelling of vertices with component IDs

A spanning forest of a graph G is a subgraph $F \subseteq G$ with the same number of connected components and which is a forest.

The connected components of a graph G are its maximal connected subgraphs.

Representation:

- List of graphs or
- Labelling of vertices with component IDs

A spanning forest of a graph G is a subgraph $F \subseteq G$ with the same number of connected components and which is a forest.

Representation: List of rooted trees

Graph Traversal

We use graph traversal to build a spanning forest of G.

Graph Traversal

We use graph traversal to build a spanning forest of G.

We use graph traversal to build a spanning forest of G.

Different traversal strategies lead to different spanning forests:

- Breadth-first search
- Depth-first search
- Prim's algorithm for computing minimum spanning trees
- Dijkstra's algorithm for computing shortest paths

- Mark every vertex of G as unexplored
- 2 F = []

1

- 3 for every vertex $u \in G$
- 4 do if not u.explored
- 5 then F.append(TraverseFromVertex(G, u))
- 6 return F

TraverseFromVertex(G, u)

2

3

4

5

6

7

8

9

10

11

12

13

u.explored = True u.tree = Node(u, []) Q = an empty edge collection for every out-edge (u, v) of u **do** Q.add((u, v)) while not Q.isEmpty() **do** (v, w) = Q.remove()if not w.explored then w.explored = True w.tree = Node(w, []) v.tree.children.append(w.tree) for every out-edge (w, x) of v do Q.add((w, x))

14 return u.tree

It computes a subgraph of G because it only adds edges of G to F.

It computes a subgraph of G because it only adds adds of G to F TraverseFromVertex(G, u)

> u.explored = True u.tree = Node(u, []) 2 Q = an empty edge collection3 for every out-edge (u, v) of u 4 **do** Q.add((u, v)) 5 while not Q.isEmpty() 6 do(v, w) = Q.remove()7 8 if not w.explored then w.explored = True 9 w.tree = Node(w, []) 10 v.tree.children.append(w.tree) 11 for every out-edge (w, x) of v 12 do Q.add((w, x))13 14 return u.tree

It computes a subgraph of G because it only adds edges of G to F. \Rightarrow F has at least as many connected components as G.

It computes a subgraph of G because it only adds edges of G to F.

 \Rightarrow F has at least as many connected components as G.

To prove:

- F contains no cycle.
- If $u \sim_{CC(G)} v$ (u and v belong to the same component of G), then $u \sim_{CC(F)} v$.

It computes a subgraph of G because it only adds edges of G to F.

 \Rightarrow F has at least as many connected components as G.

To prove:

- F contains no cycle.
- If $u \sim_{CC(G)} v$ (u and v belong to the same component of G), then $u \sim_{CC(F)} v$.

Observation: Every edge (u, v) in Q has at least one explored endpoint, namely u.

It computes a subgraph of G because it only adde addres of G to E TraverseFromVertex(G, u) \Rightarrow F has at least as many con

7

9

10

11

13

14

To prove:

- F contains no cycle.
- If $u \sim_{CC(G)} v$ (u and v belo

Observation: Every edge (u, v

u.explored = Trueu.tree = Node(u, [])2 Q = an empty edge collection3 **4** for every out-edge (u, v) of u and when the second **do** Q.add((u, v)) 5 while not Q.isEmpty() 6 do(v, w) = Q.remove()8 if not w.explored then w.explored = True w.tree = Node(w, []) v.tree.children.append(w.tree) for every out-edge (w, x) of v 12 do Q.add((w, x)) return u.tree

It computes a subgraph of G because it only adds edges of G to F.

 \Rightarrow F has at least as many connected components as G.

To prove:

- F contains no cycle.
- If $u \sim_{CC(G)} v$ (u and v belong to the same component of G), then $u \sim_{CC(F)} v$.

Observation: Every edge (u, v) in Q has at least one explored endpoint, namely u. **Corollary:** Both endpoints of every edge in F are explored.

It computes a subgraph of G because it only adde addres of G to E TraverseFromVertex(G, u) \Rightarrow F has at least as many con

6

7

8

9

10

11

12

13

14

To prove:

- F contains no cycle.
- If $u \sim_{CC(G)} v$ (u and v belo

Observation: Every edge (u, v Corollary: Both endpoints of

u.explored = Trueu.tree = Node(u, [])2 Q = an empty edge collection 3 **4** for every out-edge (u, v) of u en U ~ccr v. **do** Q.add((u, v)) 5 while not Q.isEmpty() do(v, w) = Q.remove()if not w.explored then w.explored = True w.tree = Node(w, []) v.tree.children.append(w.tree) for every out-edge (w, x) of v do Q.add((w, x)) return u.tree

It computes a subgraph of G because it only adds edges of G to F.

 \Rightarrow F has at least as many connected components as G.

To prove:

- F contains no cycle.
- If $u \sim_{CC(G)} v$ (u and v belong to the same component of G), then $u \sim_{CC(F)} v$.

Observation: Every edge (u, v) in Q has at least one explored endpoint, namely u. Corollary: Both endpoints of every edge in F are explored. Corollary: F contains no cycle.

It computes a subgraph of G because it only adds edges of G to F.

 \Rightarrow F has at least as many connected components as G.

To prove:

- F contains no cycle.
- If $u \sim_{CC(G)} v$ (u and v belong to the same component of G), then $u \sim_{CC(F)} v$.

Observation: Every edge (u, v) in Q has at least one explored endpoint, namely u.

Corollary: Both endpoints of every edge in F are explored.

Corollary: F contains no cycle.

Proof by contradiction:

By the time we add the last edge to the cycle, both its endpoints are explored.

 \Rightarrow We would not have added it.

last edge added to F

Lemma: TraverseFromVertex(G, u) visits all vertices v such that $u \sim_{CC(G)} v$ and only those.

Lemma: TraverseFromVertex(G, u) visits all vertices v such that $u \sim_{CC(G)} v$ and only those.

Proof: By induction on the number of invocations of TraverseFromVertex made so far.

Lemma: TraverseFromVertex(G, u) visits all vertices v such that $u \sim_{CC(G)} v$ and only those.

Proof: By induction on the number of invocations of TraverseFromVertex made so far.

When TraverseFromVertex(G, u) is called, every vertex v such that $u \sim_{CC(G)} v$ is unexplored.

Lemma: TraverseFromVertex(G, u) visits all vertices v such that $u \sim_{CC(G)} v$ and only those.

Proof: By induction on the number of invocations of TraverseFromVertex made so far.

When TraverseFromVertex(G, u) is called, every vertex v such that $u \sim_{CC(G)} v$ is unexplored.

We visit all vertices v such that $u \sim_{CC(G)} v$:

Lemma: TraverseFromVertex(G, u) visits all vertices v such that $u \sim_{CC(G)} v$ and only those.

Proof: By induction on the number of invocations of TraverseFromVertex made so far.

When TraverseFromVertex(G, u) is called, every vertex v such that $u \sim_{CC(G)} v$ is unexplored.

We visit all vertices v such that $u \sim_{CC(G)} v$:

path P from u to v

W

first unexplored vertex on P

X

Lemma: TraverseFromVertex(G, u) visits all vertices v such that $u \sim_{CC(G)} v$ and only those.

Proof: By induction on the number of invocations of TraverseFromVertex made so far.

When TraverseFromVertex(G, u) is called, every vertex v such that $u \sim_{CC(G)} v$ is unexplored.

We visit all vertices v such that $u \sim_{CC(G)} v$:

x adds (x, w) to Q. \Rightarrow We'd visit w. path P from u to v

W

first unexplored vertex on P

X

Lemma: TraverseFromVertex(G, u) visits all vertices v such that $u \sim_{CC(G)} v$ and only those.

Proof: By induction on the number of invocations of TraverseFromVertex made so far.

When TraverseFromVertex(G, u) is called, every vertex v such that $u \sim_{CC(G)} v$ is unexplored.

We visit all vertices v such that $u \sim_{CC(G)} v$:

x adds (x, w) to Q.

 \Rightarrow We'd visit w.

We do not visit a vertex v such that u $\mathscr{P}_{CC(G)}$ v:

path P from u to v

W

X

first unexplored vertex on P

Lemma: TraverseFromVertex(G, u) visits all vertices v such that $u \sim_{CC(G)} v$ and only those.

Proof: By induction on the number of invocations of TraverseFromVertex made so far.

When TraverseFromVertex(G, u) is called, every vertex v such that $u \sim_{CC(G)} v$ is unexplored.

We visit all vertices v such that $u \sim_{CC(G)} v$:

x adds (x, w) to Q.

 \Rightarrow We'd visit w.

We do not visit a vertex v such that u $\not\sim_{CC(G)}$ v:

path P from u to v

W

X

first unexplored vertex on P

first explored vertex such that $u \not\sim_{CC(G)} v$.

Lemma: TraverseFromVertex(G, u) visits all vertices v such that $u \sim_{CC(G)} v$ and only those.

Proof: By induction on the number of invocations of TraverseFromVertex made so far.

When TraverseFromVertex(G, u) is called, every vertex v such that $u \sim_{CC(G)} v$ is unexplored.

We visit all vertices v such that $u \sim_{CC(G)} v$:

x adds (x, w) to Q.

 \Rightarrow We'd visit w.

We do not visit a vertex v such that u $\mathscr{V}_{CC(G)}$ v:

- v explored because of edge (w, v) $\in Q$.
- w explored before v.
- \Rightarrow w $\sim_{CC(G)}$ u.
- \Rightarrow v $\sim_{CC(G)}$ u.

path P from u to v

W

X

first unexplored vertex on P

first explored vertex such that u $\not\sim_{CC(G)}$ v.

Lemma: TraverseGraph takes $O(n + m + m \cdot (t_a + t_r))$ time, where t_a and t_r are the costs of adding and removing an edge from Q, respectively.

Lemma: TraverseGraph takes $O(n + m + m \cdot (t_a + t_r))$ time, where t_a and t_r are the costs of adding and removing an edge from Q, respectively.

TraverseGraph itself takes O(n) time.

1 N 2 F

Lemma: TraverseGraph takes O of adding and removing an ed TraverseGraph itself takes O(n

TraverseGraph(G)

- Mark every vertex of G as unexplored
- 2 F = []
- 3 for every vertex $u \in G$ 4 do if not u.explored5556677788999<
- 6 e return F

Lemma: TraverseGraph takes $O(n + m + m \cdot (t_a + t_r))$ time, where t_a and t_r are the costs of adding and removing an edge from Q, respectively.

TraverseGraph itself takes O(n) time.

Every edge is added to Q at most once. \Rightarrow The cost of the for-loops in TraverseFromVertex is O(m · (1 + t_a)).

Lemma: TraverseGraph takes of adding and removing an ed

TraverseGraph itself takes O(n

Every edge is added to Q at n \Rightarrow The cost of the for-loops i

TraverseFromVertex(G, u)

- u.explored = True
- 2 u.tree = Node(u, [])
- 3 Q = an empty edge collection and that the costs
- 4 for every out-edge (u, v) of u
 - **do** Q.add((u, v))

5

7

10

11

12

13

- 6 while not Q.isEmpty()
 - do (v, w) = Q.remove()
- 8 once. if not w.explored
- 9 verse then w.explored = True
 - w.tree = Node(w, [])
 v.tree.children.append(w.tree)
 - for every out-edge (w, x) of v

do Q.add((w, x))

14 return u.tree

Lemma: TraverseGraph takes $O(n + m + m \cdot (t_a + t_r))$ time, where t_a and t_r are the costs of adding and removing an edge from Q, respectively.

TraverseGraph itself takes O(n) time.

Every edge is added to Q at most once. \Rightarrow The cost of the for-loops in TraverseFromVertex is O(m · (1 + t_a)).

Every edge that is removed must be added first. \Rightarrow The cost of the while-loop in TraverseFromVertex is O(m · (1 + t_r)).

Lemma: TraverseGraph takes of adding and removing an ed TraverseGraph itself takes O(n 7 Every edge is added to Q at no 8 once if not w.explored \Rightarrow The cost of the for-loops i 9 then w.explored = True 10 Every edge that is removed m \Rightarrow The cost of the while-loop 12 13

TraverseFromVertex(G, u)

- u.explored = True
- u.tree = Node(u, [])2
- Q = an empty edge collection3
- for every out-edge (u, v) of u 4
- **do** Q.add((u, v)) 5
- 6 while not Q.isEmpty()
 - do(v, w) = Q.remove()
- w.tree = Node(w, []) v.tree.children.append(w.tree) for every out-edge (w, x) of v
 - do Q.add((w, x))
- 14 return u.tree

Lemma: TraverseGraph takes $O(n + m + m \cdot (t_a + t_r))$ time, where t_a and t_r are the costs of adding and removing an edge from Q, respectively.

TraverseGraph itself takes O(n) time.

Every edge is added to Q at most once. \Rightarrow The cost of the for-loops in TraverseFromVertex is O(m · (1 + t_a)).

Every edge that is removed must be added first. \Rightarrow The cost of the while-loop in TraverseFromVertex is O(m · (1 + t_r)).

- Compute a spanning forest F.
- Collect vertices of trees in F.
- Compute representation of connected components.

- Compute a spanning forest F.
- Collect vertices of trees in F.
- Compute representation of connected components.

CollectComponentVertices(F)

- 1 L = []
- **2** for every tree $T \in F$
- **do** L.append(CollectDescendantVertices(T))
- 4 return L

- Compute a spanning forest F.
- Collect vertices of trees in F.
- Compute representation of connected components.

CollectComponentVertices(F)

- 1 L = []
- **2** for every tree $T \in F$
- 3 do L.append(CollectDescendantVertices(T))
- 4 return L

CollectDescendantVertices(T)

- L = [T.key]
- 2 for every child T' of T
- **do** L.concat(CollectDescendantVertices(T'))
- 4 return L

- Compute a spanning forest F.
- Collect vertices of trees in F.
- Compute representation of connected components.

CollectComponentVertices(F)

- 1 L = []
- **2** for every tree $T \in F$
- **do** L.append(CollectDescendantVertices(T))
- 4 return L

CollectDescendantVertices(T)

- L = [T.key]
- 2 for every child T' of T
- **do** L.concat(CollectDescendantVertices(T'))
- 4 return L

Lemma: Collecting the vertices of all components takes O(n) time.

2

Representation using vertex labels:

ComponentLabels(L)

i = 0 $for every list L' \in L$ do i = i + 1 $for every vertex v \in L'$ do v.cc = i

Cost: O(n)

Representation as list of graphs:

We already have the right adjacency lists for the vertices. Need to partition the vertex and edge lists into vertex and edge lists for the components.

Representation as list of graphs:

We already have the right adjacency lists for the vertices. Need to partition the vertex and edge lists into vertex and edge lists for the components.

Vertex lists:

BuildVertexLists(L)

VL = []
 for every list L' ∈ L
 do VL' = []
 for every vertex v ∈ L'
 do VL'.append(v)
 VL.append(VL')
 return VL

Edge lists:

BuildEdgeLists(G, L)

EL = [] for every edge $e \in G$ 2 3 **do** e.collected = False for every list $L' \in L$ 4 **do** EL' = [] 5 for every vertex $v \in L'$ 6 do for every edge e incident with v 7 do if not e.collected 8 9 then e.collected = True EL'.append(e) 10 EL.append(EL')11 return EL 12

Lemma: The connected components of a graph can be computed in O(n + m) time.

- Building a spanning forest takes $O(n + m + m \cdot (t_a + t_r))$ time.
- Computing the vertex labelling or list of graphs then takes O(n + m) time.
- Using a stack or queue to represent Q, we get $t_a \in O(I)$ and $t_r \in O(I)$.

Breadth-First Search

Breadth-first search (BFS) = graph traversal using a queue to implement Q. Queue:

Breadth-First Search

Breadth-first search (BFS) = graph traversal using a queue to implement Q.

Q.enqueue(x)

Queue:

Constant-time implementations:

- Doubly-linked list
- Singly-linked list with tail pointer
- "Circular" array (amortized constant cost)
- Pair of singly-linked lists (functional)

Breadth-First Search

Breadth-first search (BFS) = graph traversal using a queue to implement Q.

Q.enqueue(x)

Queue:

Constant-time implementations:

- Doubly-linked list
- Singly-linked list with tail pointer
- "Circular" array (amortized constant cost)
- Pair of singly-linked lists (functional)

Lemma: Breadth-first search takes O(n + m) time.

BFS forest = spanning forest computed using BFS

Let the depth $d_F(v)$ of a vertex v in a rooted forest F be the distance from the root of its tree.

Lemma: BFS visits the vertices of each component of F in order of increasing depth.

BFS forest = spanning forest computed using BFS

Let the depth $d_F(v)$ of a vertex v in a rooted forest F be the distance from the root of its tree.

Lemma: BFS visits the vertices of each component of F in order of increasing depth.

Assume $d_F(v) < d_F(w)$ and w is visited before v.

BFS forest = spanning forest computed using BFS

Let the depth $d_F(v)$ of a vertex v in a rooted forest F be the distance from the root of its tree.

Lemma: BFS visits the vertices of each component of F in order of increasing depth.

Assume $d_F(v) < d_F(w)$ and w is visited before v. Choose such a pair (v, w) so that $d_F(w)$ is minimized.

BFS forest = spanning forest computed using BFS

Let the depth $d_F(v)$ of a vertex v in a rooted forest F be the distance from the root of its tree.

Lemma: BFS visits the vertices of each component of F in order of increasing depth.

Assume $d_F(v) < d_F(w)$ and w is visited before v. Choose such a pair (v, w) so that $d_F(w)$ is minimized. $w \neq u$ because $d_F(w) > d_F(v) \ge 0$ and $d_F(u) = 0$.

BFS forest = spanning forest computed using BFS

Let the depth $d_F(v)$ of a vertex v in a rooted forest F be the distance from the root of its tree.

Lemma: BFS visits the vertices of each component of F in order of increasing depth.

Assume $d_F(v) < d_F(w)$ and w is visited before v. Choose such a pair (v, w) so that $d_F(w)$ is minimized. $w \neq u$ because $d_F(w) > d_F(v) \ge 0$ and $d_F(u) = 0$. $v \neq u$ because u is visited before any other vertex in the same tree.

BFS forest = spanning forest computed using BFS

Let the depth $d_F(v)$ of a vertex v in a rooted forest F be the distance from the root of its tree.

Lemma: BFS visits the vertices of each component of F in order of increasing depth.

Assume $d_F(v) < d_F(w)$ and w is visited before v. Choose such a pair (v, w) so that $d_F(w)$ is minimized. $w \neq u$ because $d_F(w) > d_F(v) \ge 0$ and $d_F(u) = 0$. $v \neq u$ because u is visited before any other vertex in the same tree. \Rightarrow parent(v) and parent(w) exist and $d_F(parent(v)) = d_F(v) - 1 < d_F(w) - 1 = d_F(parent(w))$.

BFS forest = spanning forest computed using BFS

Let the depth $d_F(v)$ of a vertex v in a rooted forest F be the distance from the root of its tree.

Lemma: BFS visits the vertices of each component of F in order of increasing depth.

Assume $d_F(v) < d_F(w)$ and w is visited before v. Choose such a pair (v, w) so that $d_F(w)$ is minimized. $w \neq u$ because $d_F(w) > d_F(v) \ge 0$ and $d_F(u) = 0$. $v \neq u$ because u is visited before any other vertex in the same tree. \Rightarrow parent(v) and parent(w) exist and $d_F(parent(v)) = d_F(v) - 1 < d_F(w) - 1 = d_F(parent(w))$. \Rightarrow parent(v) is visited before parent(w).

parent(v)

parent(w)

BFS forest = spanning forest computed using BFS

Let the depth $d_F(v)$ of a vertex v in a rooted forest F be the distance from the root of its tree.

Lemma: BFS visits the vertices of each component of F in order of increasing depth.

Assume $d_F(v) < d_F(w)$ and w is visited before v. Choose such a pair (v, w) so that $d_F(w)$ is minimized. $w \neq u$ because $d_F(w) > d_F(v) \ge 0$ and $d_F(u) = 0$.

parent(w)

- $v \neq u$ because u is visited before any other vertex in the same tree.
- \Rightarrow parent(v) and parent(w) exist and
 - $d_F(parent(v)) = d_F(v) 1 < d_F(w) 1 = d_F(parent(w)).$
- \Rightarrow parent(v) is visited before parent(w).
- \Rightarrow The edge (parent(v), v) is enqueued before the edge (parent(w), w).

BFS forest = spanning forest computed using BFS

Let the depth $d_F(v)$ of a vertex v in a rooted forest F be the distance from the root of its tree.

Lemma: BFS visits the vertices of each component of F in order of increasing depth.

Assume $d_F(v) < d_F(w)$ and w is visited before v. Choose such a pair (v, w) so that $d_F(w)$ is minimized. $w \neq u$ because $d_F(w) > d_F(v) \ge 0$ and $d_F(u) = 0$.

 $v \neq u$ because u is visited before any other vertex in the same tree.

- \Rightarrow parent(v) and parent(w) exist and
 - $d_F(parent(v)) = d_F(v) 1 < d_F(w) 1 = d_F(parent(w)).$
- \Rightarrow parent(v) is visited before parent(w).

 \Rightarrow The edge (parent(v), v) is enqueued before the edge (parent(w), w).

 \Rightarrow The edge (parent(v), v) is dequeued before the edge (parent(w), w).

BFS forest = spanning forest computed using BFS

Let the depth $d_F(v)$ of a vertex v in a rooted forest F be the distance from the root of its tree.

Lemma: BFS visits the vertices of each component of F in order of increasing depth.

Assume $d_F(v) < d_F(w)$ and w is visited before v. Choose such a pair (v, w) so that $d_F(w)$ is minimized. $w \neq u$ because $d_F(w) > d_F(v) \ge 0$ and $d_F(u) = 0$.

parent(w)

- $v \neq u$ because u is visited before any other vertex in the same tree.
- \Rightarrow parent(v) and parent(w) exist and
 - $d_F(parent(v)) = d_F(v) 1 < d_F(w) 1 = d_F(parent(w)).$
- \Rightarrow parent(v) is visited before parent(w).
- \Rightarrow The edge (parent(v), v) is enqueued before the edge (parent(w), w).
- \Rightarrow The edge (parent(v), v) is dequeued before the edge (parent(w), w).
- \Rightarrow v is visited before w, a contradiction.

Lemma: For every edge (v, w) of G and any BFS forest F of G, the depths of v and w in F differ by at most one.

Lemma: For every edge (v, w) of G and any BFS forest F of G, the depths of v and w in F differ by at most one.

Assume $d_F(w) > d_F(v) + 1$.

Lemma: For every edge (v, w) of G and any BFS forest F of G, the depths of v and w in F differ by at most one.

Assume $d_F(w) > d_F(v) + 1$. $\Rightarrow d_F(parent(w)) > d_F(v)$.

Lemma: For every edge (v, w) of G and any BFS forest F of G, the depths of v and w in F differ by at most one.

Assume $d_F(w) > d_F(v) + 1$.

 \Rightarrow d_F(parent(w)) > d_F(v).

 \Rightarrow v is visited before parent(w).

Lemma: For every edge (v, w) of G and any BFS forest F of G, the depths of v and w in F differ by at most one.

Assume $d_F(w) > d_F(v) + 1$.

- \Rightarrow d_F(parent(w)) > d_F(v).
- \Rightarrow v is visited before parent(w).
- \Rightarrow The edge (v, w) is enqueued before the edge (parent(w), w).

Lemma: For every edge (v, w) of G and any BFS forest F of G, the depths of v and w in F differ by at most one.

Assume $d_F(w) > d_F(v) + 1$.

- \Rightarrow d_F(parent(w)) > d_F(v).
- \Rightarrow v is visited before parent(w).
- \Rightarrow The edge (v, w) is enqueued before the edge (parent(w), w).
- \Rightarrow The edge (v, w) is dequeued before the edge (parent(w), w).

Lemma: For every edge (v, w) of G and any BFS forest F of G, the depths of v and w in F differ by at most one.

Assume $d_F(w) > d_F(v) + 1$.

- \Rightarrow d_F(parent(w)) > d_F(v).
- \Rightarrow v is visited before parent(w).
- \Rightarrow The edge (v, w) is enqueued before the edge (parent(w), w).
- \Rightarrow The edge (v, w) is dequeued before the edge (parent(w), w).

w is unexplored when the edge (parent(w), w) is dequeued.

Lemma: For every edge (v, w) of G and any BFS forest F of G, the depths of v and w in F differ by at most one.

Assume $d_F(w) > d_F(v) + 1$.

- \Rightarrow d_F(parent(w)) > d_F(v).
- \Rightarrow v is visited before parent(w).
- \Rightarrow The edge (v, w) is enqueued before the edge (parent(w), w).
- \Rightarrow The edge (v, w) is dequeued before the edge (parent(w), w).

w is unexplored when the edge (parent(w), w) is dequeued.

 \Rightarrow w is unexplored when the edge (v, w) is dequeued.

Lemma: For every edge (v, w) of G and any BFS forest F of G, the depths of v and w in F differ by at most one.

Assume $d_F(w) > d_F(v) + 1$.

- \Rightarrow d_F(parent(w)) > d_F(v).
- \Rightarrow v is visited before parent(w).
- \Rightarrow The edge (v, w) is enqueued before the edge (parent(w), w).
- \Rightarrow The edge (v, w) is dequeued before the edge (parent(w), w).

w is unexplored when the edge (parent(w), w) is dequeued.

- \Rightarrow w is unexplored when the edge (v, w) is dequeued.
- \Rightarrow w would be added to the list of v's children, a contradiction.

A graph is bipartite if its vertices can be partitioned into two sets (U, W) such that every edge has one endpoint in U and one endpoint in W.

A graph is bipartite if its vertices can be partitioned into two sets (U, W) such that every edge has one endpoint in U and one endpoint in W.

Lemma: A graph is bipartite if and only if it contains no odd cycle.

A graph is bipartite if its vertices can be partitioned into two sets (U, W) such that every edge has one endpoint in U and one endpoint in W.

Lemma: A graph is bipartite if and only if it contains no odd cycle.

Assume there exists an odd cycle in G.

A graph is bipartite if its vertices can be partitioned into two sets (U, W) such that every edge has one endpoint in U and one endpoint in W.

Lemma: A graph is bipartite if and only if it contains no odd cycle.

Let F be a BFS forest of G.

A graph is bipartite if its vertices can be partitioned into two sets (U, W) such that every edge has one endpoint in U and one endpoint in W.

Lemma: A graph is bipartite if and only if it contains no odd cycle.

Let F be a BFS forest of G. Add vertices on odd levels to U, on even levels to W.

A graph is bipartite if its vertices can be partitioned into two sets (U, W) such that every edge has one endpoint in U and one endpoint in W.

Lemma: A graph is bipartite if and only if it contains no odd cycle.

Let F be a BFS forest of G.

Add vertices on odd levels to U, on even levels to W.

This is the only partition that satisfies the edges of F!

A graph is bipartite if its vertices can be partitioned into two sets (U, W) such that every edge has one endpoint in U and one endpoint in W.

Lemma: A graph is bipartite if and only if it contains no odd cycle.

Let F be a BFS forest of G.

Add vertices on odd levels to U, on even levels to W.

This is the only partition that satisfies the edges of F!

 \Rightarrow G is bipartite if and only if there is no edge with both endpoints on the same level.

A graph is bipartite if its vertices can be partitioned into two sets (U, W) such that every edge has one endpoint in U and one endpoint in W.

Lemma: A graph is bipartite if and only if it contains no odd cycle.

Let F be a BFS forest of G.

Add vertices on odd levels to U, on even levels to W.

This is the only partition that satisfies the edges of F!

 \Rightarrow G is bipartite if and only if there is no edge with both endpoints on the same level.

A graph is bipartite if its vertices can be partitioned into two sets (U, W) such that every edge has one endpoint in U and one endpoint in W.

0

d

2

Lemma: A graph is bipartite if and only if it contains no odd cycle.

Let F be a BFS forest of G.

Add vertices on odd levels to U, on even levels to W.

This is the only partition that satisfies the edges of F!

 \Rightarrow G is bipartite if and only if there is no edge with both endpoints on the same level.

If there is such an edge, there's an odd cycle.

A graph is bipartite if its vertices can be partitioned into two sets (U, W) such that every edge has one endpoint in U and one endpoint in W.

Lemma: A graph is bipartite if and only if it contains no odd cycle.

Lemma: Given a BFS forest F of G, G is bipartite if and only if there is no edge in G with both endpoints on the same level in F.

- Compute BFS forest F of G.
- Collect vertices on alternating levels of F into two sets (U, W).
- Test whether any edge has both endpoints in the same set, U or W.
- If so, report the odd cycle induced by such an edge.
- Otherwise, report the bipartition (U, W).

Collecting vertices on alternating levels:

AlternatingLevels(F)

- I U = W = []
- 2 for every tree T in F
- **do** AlternatingLevels'(T, U, W)
- 4 return (U, W)

AlternatingLevels'(T, U, W)

- U.append(T.key)
- 2 for every child T' of T
- **do** AlternatingLevels'(T', W, U)

Vy~

- Compute BFS forest F of G.
- Collect vertices on alternating levels of F into two sets (U, W).
- - If so, report the odd cycle induced by such an edge.
 - Otherwise, report the bipartition (U, W).

Testing for an "odd edge":

OddEdge(G, U, W)

A = an array of size nfor every vertex $u \in U$ 2 3 **do** A[u] = "U"for every vertex $w \in W$ 4 **do** A[w] = "W"5 for every edge $(u, w) \in G$ 6 **do if** A[u] = A[w]7 then return (u, w) 8 return Nothing 9

- Compute BFS forest F of G.
- Collect vertices on alternating levels of F into two sets (U, W).
- Test whether any edge has both endpoints in the same set, U or W.

4ppth

- If so, report the odd cycle induced by such an edge.
- Otherwise, report the bipartition (U, W).

Finding the ancestor edges of all vertices:

AncestorEdges(F)

- L = an empty list of vertex-vertex list pairs
- 2 for every tree $T \in F$
- 3 do AncestorEdges'(T, [], L)
- 4 return L

AncestorEdges'(T, A, L)

- L = L.append([(T.key, A)])
- 2 for every child T' of T
- 3 do AncestorEdges'(T', [(T.key, T'.key)] ++ A, L)

- Compute BFS forest F of G.
- Collect vertices on alternating levels of F into two sets (U, W).
- Test whether any edge has both endpoints in the same set, U or W.
- If so, report the odd cycle induced by such an edge.
- Otherwise, report the bipartition (U, W).

Reporting an odd cycle:

OddCycle(L, (u, w))

- Find (u, A_u) and (w, A_w) in L
- 2 $C_u = C_w = []$
- 3 while A_u .head $\neq A_w$.head \checkmark
- 4 **do** C_u .append(A_u .head)
- 5 $C_w.append(A_w.head)$
- $A_{u} = A_{u}.tail$
- 7 $A_w = A_w.tail$
- 8 C_u .reverse().concat([(u, w)]).concat(C_w)
- 9 return C_u

- Compute BFS forest F of G.
- Collect vertices on alternating levels of F into two sets (U, W).
- Test whether any edge has both endpoints in the same set, U or W.
- If so, report the odd cycle induced by such an edge.
- Otherwise, report the bipartition (U, W).

Lemma: It takes linear time to test whether a graph G is bipartite and either report a valid bipartition or an odd cycle in G.

Depth-First Search

Depth-first search (DFS) = graph traversal using a stack to implement Q.

Stack:

Q.pop()	— Q.push(x

Depth-First Search

Depth-first search (DFS) = graph traversal using a stack to implement Q.

Stack:

Constant-time implementations:

- Singly-linked list
- Resizeable array (amortized constant cost)

Depth-First Search

Depth-first search (DFS) = graph traversal using a stack to implement Q.

Stack:

Constant-time implementations:

- Singly-linked list
- Resizeable array (amortized constant cost)

Lemma: Depth-first search takes O(n + m) time.

Lemma: Depth-first search visits the vertices of the spanning forest it creates in preorder.

Lemma: Depth-first search visits the vertices of the spanning forest it creates in preorder.

It visits the children of every node in left-to-right order. (That's how we define this order.)

Lemma: Depth-first search visits the vertices of the spanning forest it creates in preorder.

It visits the children of every node in left-to-right order. (That's how we define this order.)

It visits every node after its parent:

- v is visited when the edge (parent(v), v) is popped.
- The edge (parent(v), v) must be pushed before this can happen.
- The edge (parent(v), v) is pushed when parent(v) is visited.

Lemma: Depth-first search visits the vertices of the spanning forest it creates in preorder.

It visits the children of every node in left-to-right order. (That's how we define this order.)

It visits every node after its parent:

- v is visited when the edge (parent(v), v) is popped.
- The edge (parent(v), v) must be pushed before this can happen.
- The edge (parent(v), v) is pushed when parent(v) is visited.

It visits the vertices in each subtree consecutively.

Lemma: Depth-first search visits the vertices of the spanning forest it creates in preorder.

It visits the children of every node in left-to-right order. (That's how we define this order.)

It visits every node after its parent:

- v is visited when the edge (parent(v), v) is popped.
- The edge (parent(v), v) must be pushed before this can happen.
- The edge (parent(v), v) is pushed when parent(v) is visited.

It visits the vertices in each subtree consecutively.

Observation: An edge with one explored and one unexplored endpoint is on the stack.

Assume there exist two vertices x and y such that

- y is not a descendant of x,
- y is visited after x, and
- y is visited before some descendant z.

Choose y and z so that

- y is the first visited vertex satisfying the above conditions and
- y is visited after parent(z).

Assume there exist two vertices x and y such that

- y is not a descendant of x,
- y is visited after x, and
- y is visited before some descendant z.

Choose y and z so that

- y is the first visited vertex satisfying the above conditions and
- y is visited after parent(z).

Case I: y is a root.

Cannot happen because the edge (parent(z), z) is on the stack when y is visited and the stack is empty when a root is visited.

Assume there exist two vertices x and y such that

- y is not a descendant of x,
- y is visited after x, and
- y is visited before some descendant z.

Choose y and z so that

- y is the first visited vertex satisfying the above conditions and
- y is visited after parent(z).

Case 2: y has a parent parent(y).

Assume there exist two vertices x and y such that

- y is not a descendant of x,
- y is visited after x, and
- y is visited before some descendant z.

Choose y and z so that

- y is the first visited vertex satisfying the above conditions and
- y is visited after parent(z).

Case 2: y has a parent parent(y).

parent(y) is visited before x and thus before parent(z).

Assume there exist two vertices x and y such that

- y is not a descendant of x,
- y is visited after x, and
- y is visited before some descendant z.

Choose y and z so that

- y is the first visited vertex satisfying the above conditions and
- y is visited after parent(z).

Case 2: y has a parent parent(y).

parent(y) is visited before x and thus before parent(z).

 \Rightarrow The edge (parent(y), y) is on the stack when parent(z) is visited and thus when the edge (parent(z), z) is pushed.

Assume there exist two vertices x and y such that

- y is not a descendant of x,
- y is visited after x, and
- y is visited before some descendant z.

Choose y and z so that

- y is the first visited vertex satisfying the above conditions and
- y is visited after parent(z).

Case 2: y has a parent parent(y).

parent(y) is visited before x and thus before parent(z).

- \Rightarrow The edge (parent(y), y) is on the stack when parent(z) is visited and thus when the edge (parent(z), z) is pushed.
- \Rightarrow The edge (parent(z), z) is popped before the edge (parent(y), y).

Assume there exist two vertices x and y such that

- y is not a descendant of x,
- y is visited after x, and
- y is visited before some descendant z.

Choose y and z so that

- y is the first visited vertex satisfying the above conditions and
- y is visited after parent(z).

Case 2: y has a parent parent(y).

parent(y) is visited before x and thus before parent(z).

- \Rightarrow The edge (parent(y), y) is on the stack when parent(z) is visited and thus when the edge (parent(z), z) is pushed.
- \Rightarrow The edge (parent(z), z) is popped before the edge (parent(y), y).
- \Rightarrow z is visited before y, contradiction.

Three types of edges:

- Tree edge (u, w): u is w's parent in F.
- Cross edge (u, w): Neither u nor w is an ancestor of the other.
- Back edge (u, w): u is an ancestor of w but not its parent.

Three types of edges:

- Tree edge (u, w): u is w's parent in F.
- Cross edge (u, w): Neither u nor w is an ancestor of the other.
- Back edge (u, w): u is an ancestor of w but not its parent.

Lemma: All edges of an undirected graph G are tree or back edges with respect to a DFS forest of G.

Three types of edges:

- Tree edge (u, w): u is w's parent in F.
- Cross edge (u, w): Neither u nor w is an ancestor of the other.
- Back edge (u, w): u is an ancestor of w but not its parent.

Lemma: All edges of an undirected graph G are tree or back edges with respect to a DFS forest of G.

Let a be the LCA of u and v and let u' and v' be the children of a that are ancestors of u and v. Assume u < v in preorder.

Three types of edges:

- Tree edge (u, w): u is w's parent in F.
- Cross edge (u, w): Neither u nor w is an ancestor of the other.
- Back edge (u, w): u is an ancestor of w but not its parent.

Lemma: All edges of an undirected graph G are tree or back edges with respect to a DFS forest of G.

Let a be the LCA of u and v and let u' and v' be the children of a that are ancestors of u and v. Assume u < v in preorder.

 \Rightarrow Vertices a, u', u, v', v are visited in this order.

Three types of edges:

- Tree edge (u, w): u is w's parent in F.
- Cross edge (u, w): Neither u nor w is an ancestor of the other.
- Back edge (u, w): u is an ancestor of w but not its parent.

Lemma: All edges of an undirected graph G are tree or back edges with respect to a DFS forest of G.

Let a be the LCA of u and v and let u' and v' be the children of a that are ancestors of u and v. Assume u < v in preorder.

- \Rightarrow Vertices a, u', u, v', v are visited in this order.
- \Rightarrow The edge (a, v') is pushed before u is visited and popped after u is visited.

Three types of edges:

- Tree edge (u, w): u is w's parent in F.
- Cross edge (u, w): Neither u nor w is an ancestor of the other.
- Back edge (u, w): u is an ancestor of w but not its parent.

Lemma: All edges of an undirected graph G are tree or back edges with respect to a DFS forest of G.

Let a be the LCA of u and v and let u' and v' be the children of a that are ancestors of u and v. Assume u < v in preorder.

- \Rightarrow Vertices a, u', u, v', v are visited in this order.
- \Rightarrow The edge (a, v') is pushed before u is visited and popped after u is visited.
- \Rightarrow The edge (u, v) is pushed after (a, v') is pushed and before (a, v') is popped.

Three types of edges:

- Tree edge (u, w): u is w's parent in F.
- Cross edge (u, w): Neither u nor w is an ancestor of the other.
- Back edge (u, w): u is an ancestor of w but not its parent.

Lemma: All edges of an undirected graph G are tree or back edges with respect to a DFS forest of G.

Let a be the LCA of u and v and let u' and v' be the children of a that are ancestors of u and v. Assume u < v in preorder.

- \Rightarrow Vertices a, u', u, v', v are visited in this order.
- \Rightarrow The edge (a, v') is pushed before u is visited and popped after u is visited.
- \Rightarrow The edge (u, v) is pushed after (a, v') is pushed and before (a, v') is popped.

 \Rightarrow The edge (u, v) is popped before (a, v') is popped.

Three types of edges:

- Tree edge (u, w): u is w's parent in F.
- Cross edge (u, w): Neither u nor w is an ancestor of the other.
- Back edge (u, w): u is an ancestor of w but not its parent.

Lemma: All edges of an undirected graph G are tree or back edges with respect to a DFS forest of G.

(۲

Let a be the LCA of u and v and let u' and v' be the children of a that are ancestors of u and v. Assume u < v in preorder.

- \Rightarrow Vertices a, u', u, v', v are visited in this order.
- \Rightarrow The edge (a, v') is pushed before u is visited and popped after u is visited.
- \Rightarrow The edge (u, v) is pushed after (a, v') is pushed and before (a, v') is popped.
- \Rightarrow The edge (u, v) is popped before (a, v') is popped.
- \Rightarrow v is unexplored when the edge (u, v) is popped, a contradiction.

Five types of edges:

- Tree edge (u, w): u is w's parent in F.
- Forward edge (u, w): u is an ancestor of w.
- Back edge (u, w): w is an ancestor of u.
- Forward cross edge (u, w): Neither u nor w is an ancestor of the other, u < w in preorder/postorder.
- Backward cross edge (u, w): Neither u nor w is an ancestor of the other, w < u in preorder/postorder.

Five types of edges:

- Tree edge (u, w): u is w's parent in F.
- Forward edge (u, w): u is an ancestor of w.
- Back edge (u, w): w is an ancestor of u.
- Forward cross edge (u, w): Neither u nor w is an ancestor of the other, u < w in preorder/postorder.
- Backward cross edge (u, w): Neither u nor w is an ancestor of the other, w < u in preorder/postorder.

Lemma: A directed graph G does not contain any forward cross edges with respect to a DFS forest of G.

Topological Sorting

A topological ordering of a directed graph is an ordering < of the vertex set of G such that u < v for every edge $(u, v) \in G$.

A topological ordering of a directed graph is an ordering < of the vertex set of G such that u < v for every edge $(u, v) \in G$.

Lemma: A graph G has a topological ordering if and only if it contains no directed cycle.

A topological ordering of a directed graph is an ordering < of the vertex set of G such that u < v for every edge $(u, v) \in G$.

Lemma: A graph G has a topological ordering if and only if it contains no directed cycle.

If there's a cycle, there is no topological ordering.

maximum vertex

A topological ordering of a directed graph is an ordering < of the vertex set of G such that u < v for every edge $(u, v) \in G$.

Lemma: A graph G has a topological ordering if and only if it contains no directed cycle.

We prove that, if there is no cycle, there is always a source (vertex of in-degree 0).

A topological ordering of a directed graph is an ordering < of the vertex set of G such that u < v for every edge $(u, v) \in G$.

Lemma: A graph G has a topological ordering if and only if it contains no directed cycle.

We prove that, if there is no cycle, there is always a source (vertex of in-degree 0).

 \Rightarrow The following algorithm produces a topological ordering:

- Give s the smallest number.
- Recursively number the rest of the vertices.

Cannot contain a cycle since G contains no cycle.

A topological ordering of a directed graph is an ordering < of the vertex set of G such that u < v for every edge $(u, v) \in G$.

Lemma: A graph G has a topological ordering if and only if it contains no directed cycle.

We prove that, if there is no cycle, there is always a source (vertex of in-degree 0). Let R(v) be the set of vertices reachable from v.

A topological ordering of a directed graph is an ordering < of the vertex set of G such that u < v for every edge $(u, v) \in G$.

Lemma: A graph G has a topological ordering if and only if it contains no directed cycle.

We prove that, if there is no cycle, there is always a source (vertex of in-degree 0).

Let R(v) be the set of vertices reachable from v.

For an edge (u, v),

- $R(u) \supseteq R(v)$
- $u \in R(u)$
- $u \not\in R(v)$ (otherwise there'd be a cycle)
- \Rightarrow R(u) \supset R(v).

A topological ordering of a directed graph is an ordering < of the vertex set of G such that u < v for every edge $(u, v) \in G$.

Lemma: A graph G has a topological ordering if and only if it contains no directed cycle.

We prove that, if there is no cycle, there is always a source (vertex of in-degree 0). Let R(v) be the set of vertices reachable from v.

For an edge (u, v),

- $R(u) \supseteq R(v)$
- $u \in R(u)$
- $u \notin R(v)$ (otherwise there'd be a cycle)
- $\Rightarrow \mathsf{R}(\mathsf{u}) \supset \mathsf{R}(\mathsf{v}).$

Pick a vertex s such that $|R(s)| \ge |R(v)|$ for all $v \in G$.

A topological ordering of a directed graph is an ordering < of the vertex set of G such that u < v for every edge $(u, v) \in G$.

ot · · · ·

Lemma: A graph G has a topological ordering if and only if it contains no directed cycle.

We prove that, if there is no cycle, there is always a source (vertex of in-degree 0).

Let R(v) be the set of vertices reachable from v.

For an edge (u, v),

- $R(u) \supseteq R(v)$
- $u \in R(u)$
- $u \not\in R(v)$ (otherwise there'd be a cycle)
- $\Rightarrow \mathsf{R}(\mathsf{u}) \supset \mathsf{R}(\mathsf{v}).$

Pick a vertex s such that $|R(s)| \ge |R(v)|$ for all $v \in G$.

If s had an in-neighbour u, then |R(u)| > |R(s)|, a contradiction.

 \Rightarrow s is a source.

Lemma: A topological ordering of a directed acyclic graph G can be computed in O(n + m) time. $Q \subseteq V \mid v \mid X \mid X$

T() = 0

 $\left| \left[\left({}_{n} \right) \right] \right|$

J (w)=0

- (x) =

I(x)=0 I(y)=

SimpleTopSort(G)

Q = an empty queuefor every vertex $v \in G$ 2 **do** label v with its in-degree 3 4 if in-deg(v) = 05 then Q.enqueue(v) 6 O = []while not Q.isEmpty() 7 do v = Q.dequeue()8 9 O.append(v) for every out-neighbour w of v 10 do in-deg(w) = in-deg(w) -111 if in-deg(w) = 012 then Q.enqueue(w) 13 return O 14

Edges in a DFS forest:

- Tree edge (u, w): u is w's parent in F.
- Forward edge (u, w): u is an ancestor of w.
- Back edge (u, w): w is an ancestor of u.
- Backward cross edge (u, w): Neither u nor w is an ancestor of the other, w < u in postorder.

Edges in a DFS forest:

- Tree edge (u, w): u is w's parent in F.
- Forward edge (u, w): u is an ancestor of w.
- Back edge (u, w): w is an ancestor of u.
- Backward cross edge (u, w): Neither u nor w is an ancestor of the other, w < u in postorder.

Edges in a DFS forest:

- Tree edge (u, w): u is w's parent in F.
- Forward edge (u, w): u is an ancestor of w.
- Back edge (u, w): w is an ancestor of u.
- Backward cross edge (u, w): Neither u nor w is an ancestor of the other, w < u in postorder.

For tree, forward, and backward cross edges (u, v), u > v in postorder.

Edges in a DFS forest:

- Tree edge (u, w): u is w's parent in F.
- Forward edge (u, w): u is an ancestor of w.
- Back edge (u, w): w is an ancestor of u.
- Backward cross edge (u, w): Neither u nor w is an ancestor of the other, w < u in postorder.

For tree, forward, and backward cross edges (u, v), u > v in postorder.

- \Rightarrow Topological sorting algorithm:
 - Compute a DFS forest of G.
 - Arrange the vertices in reverse postorder.

Ć

This takes O(n + m) time.

A graph is strongly connected if there exists a path from u to w and from w to u for every pair of vertices $u, w \in G$.

A graph is strongly connected if there exists a path from u to w and from w to u for every pair of vertices $u, w \in G$.

A graph is strongly connected if there exists a path from u to w and from w to u for every pair of vertices $u, w \in G$.

The strongly connected components of G are its maximal strongly connected subgraphs.

A graph is strongly connected if there exists a path from u to w and from w to u for every pair of vertices $u, w \in G$.

The strongly connected components of G are its maximal strongly connected subgraphs.

Lemma: For a DFS forest F of G and any two vertices u and w of G, u $\sim_{SCC(G)} w \Rightarrow u \sim_{CC(F)} w$. (The vertices of each strongly connected component of G belong to the same tree of any DFS forest F of G.)

A graph is strongly connected if there exists a path from u to w and from w to u for every pair of vertices $u, w \in G$.

The strongly connected components of G are its maximal strongly connected subgraphs.

Lemma: For a DFS forest F of G and any two vertices u and w of G, u $\sim_{SCC(G)} w \Rightarrow u \sim_{CC(F)} w$. (The vertices of each strongly connected component of G belong to the same tree of any DFS forest F of G.)

Let C be the strongly connected component containing u and w and let x be the first vertex in C visited during the construction of F.

A graph is strongly connected if there exists a path from u to w and from w to u for every pair of vertices $u, w \in G$.

The strongly connected components of G are its maximal strongly connected subgraphs.

Lemma: For a DFS forest F of G and any two vertices u and w of G, u $\sim_{SCC(G)} w \Rightarrow u \sim_{CC(F)} w$. (The vertices of each strongly connected component of G belong to the same tree of any DFS forest F of G.)

Let C be the strongly connected component containing u and w and let x be the first vertex in C visited during the construction of F.

It suffices to prove that $x \sim_{CC(F)} v$ for every $v \in C$.

A graph is strongly connected if there exists a path from u to w and from w to u for every pair of vertices $u, w \in G$.

The strongly connected components of G are its maximal strongly connected subgraphs.

Lemma: For a DFS forest F of G and any two vertices u and w of G, u $\sim_{SCC(G)} w \Rightarrow u \sim_{CC(F)} w$. (The vertices of each strongly connected component of G belong to the same tree of any DFS forest F of G.)

Let C be the strongly connected component containing u and w and let x be the first vertex in C visited during the construction of F.

It suffices to prove that $x \sim_{CC(F)} v$ for every $v \in C$.

This follows from

Lemma: If there exists a path from x to v consisting of vertices that are unexplored when x is visited, then v is a descendant of x in F.

Lemma: If there exists a path from x to v consisting of vertices that are unexplored when x is visited, then v is a descendant of x in F.

Lemma: If there exists a path from x to v consisting of vertices that are unexplored when x is visited, then v is a descendant of x in F.

Let $P = \langle x = x_0, x_1, \dots, x_k = v \rangle$ be such a path from x to v and assume v is not a descendant of x.

Lemma: If there exists a path from x to v consisting of vertices that are unexplored when x is visited, then v is a descendant of x in F.

Let $P = \langle x = x_0, x_1, \dots, x_k = v \rangle$ be such a path from x to v and assume v is not a descendant of x.

Since x is a descendant of x, there exists a maximal index $0 \le i < k$ such that x_0, x_1, \ldots, x_i are descendants of x and x_{i+1} is not.

Lemma: If there exists a path from x to v consisting of vertices that are unexplored when x is visited, then v is a descendant of x in F.

Let $P = \langle x = x_0, x_1, \dots, x_k = v \rangle$ be such a path from x to v and assume v is not a descendant of x.

Since x is a descendant of x, there exists a maximal index $0 \le i < k$ such that x_0, x_1, \ldots, x_i are descendants of x and x_{i+1} is not.

Since x_{i+1} is visited after x and all descendants of x have consecutive preorder numbers, we have $x_i < x_{i+1}$ in preorder.

Lemma: If there exists a path from x to v consisting of vertices that are unexplored when x is visited, then v is a descendant of x in F.

Let P = $\langle x = x_0, x_1, \dots, x_k = v \rangle$ be such a path from x to v and assume v is not a descendant of x.

Since x is a descendant of x, there exists a maximal index $0 \le i < k$ such that x_0, x_1, \ldots, x_i are descendants of x and x_{i+1} is not.

Since x_{i+1} is visited after x and all descendants of x have consecutive preorder numbers, we have $x_i < x_{i+1}$ in preorder.

Since x_{i+1} is no descendant of x, it is not a descendant of x_i .

Lemma: If there exists a path from x to v consisting of vertices that are unexplored when x is visited, then v is a descendant of x in F.

Let $P = \langle x = x_0, x_1, \dots, x_k = v \rangle$ be such a path from x to v and assume v is not a descendant of x.

Since x is a descendant of x, there exists a maximal index $0 \le i < k$ such that x_0, x_1, \ldots, x_i are descendants of x and x_{i+1} is not.

Since x_{i+1} is visited after x and all descendants of x have consecutive preorder numbers, we have $x_i < x_{i+1}$ in preorder.

Since x_{i+1} is no descendant of x, it is not a descendant of x_i .

Since $x_i < x_{i+1}$ in preorder, this implies that (x_i, x_{i+1}) is a forward cross edge, a contradiction.

For a graph G = (V, E), let $G^r = (V, E^r)$, where $E^r = \{(v, u) \mid (u, v) \in E\}$.

For a graph G = (V, E), let $G^r = (V, E^r)$, where $E^r = \{(v, u) \mid (u, v) \in E\}$.

G^r

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{SCC(G^r)} v$.

G

For a graph G = (V, E), let $G^r = (V, E^r)$, where $E^r = \{(v, u) \mid (u, v) \in E\}$.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{SCC(G^r)} v$.

Proof: We have $u \rightsquigarrow_G v$ if and only if $v \rightsquigarrow_{G^r} u$.

For a graph G = (V, E), let $G^r = (V, E^r)$, where $E^r = \{(v, u) \mid (u, v) \in E\}$.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{SCC(G^r)} v$.

Proof: We have $u \rightsquigarrow_G v$ if and only if $v \rightsquigarrow_{G^r} u$.

Let F be a DFS forest of G and let < be the postorder of F.

For a graph G = (V, E), let $G^r = (V, E^r)$, where $E^r = \{(v, u) \mid (u, v) \in E\}$.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{SCC(G^r)} v$.

Proof: We have $u \rightsquigarrow_G v$ if and only if $v \rightsquigarrow_{G^r} u$.

Let F be a DFS forest of G and let < be the postorder of F. Let F^r be the DFS forest of G^r obtained by calling TraverseFromVertex on unexplored

G

vertices in the opposite order to <.

2

5

8

G

For a graph G = (V, E), let $G^r = (V, E^r)$, where $E^r = \{(v, u) \mid (u, v) \in E\}$.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{SCC(G^r)} v$.

Proof: We have $u \rightsquigarrow_G v$ if and only if $v \rightsquigarrow_{G^r} u$.

Let F be a DFS forest of G and let < be the postorder of F.

Let $F_{>}^{r}$ be the DFS forest of G^{r} obtained by calling TraverseFromVertex on unexplored vertices in the opposite order to <.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

For a graph G = (V, E), let $G^r = (V, E^r)$, where $E^r = \{(v, u) \mid (u, v) \in E\}$.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{SCC(G^r)} v$.

Proof: We have $u \rightsquigarrow_G v$ if and only if $v \rightsquigarrow_{G^r} u$.

Let F be a DFS forest of G and let < be the postorder of F.

Let $F_{>}^{r}$ be the DFS forest of G^{r} obtained by calling TraverseFromVertex on unexplored vertices in the opposite order to <.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{s}^{r})} v$.

 \Rightarrow Kosaraju's strong connectivity algorithm:

- Compute a DFS forest F of G.
- Compute G^r and arrange the vertices in reverse postorder w.r.t. F.
- Compute a DFS forest F^r of G^r.
- Extract a component labelling of the vertices or the strongly connected components themselves from F^r (almost) as we did for computing connected components.

This takes O(n + m) time.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

Assume the contrary. Then there exists an edge $(u, v) \in F_{>}^{r}$ such that $u \not\sim_{SCC(G)} v$.

F

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

Assume the contrary. Then there exists an edge (u, v) $\in F_{>}^{r}$ such that u $\swarrow_{SCC(G)}$ v.

E'

 \Rightarrow (v, u) \in G.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

Assume the contrary. Then there exists an edge (u, v) $\in F_{>}^{r}$ such that u $\swarrow_{SCC(G)}$ v.

 \Rightarrow (v, u) \in G.

Choose this edge so that each of its ancestor edges (x, y) satisfies $x \sim_{SCC(G)} y$.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

Assume the contrary. Then there exists an edge (u, v) $\in F_{>}^{r}$ such that u $\swarrow_{SCC(G)}$ v.

 $|\Rightarrow$ (v, u) \in G.

Choose this edge so that each of its ancestor edges (x, y) satisfies $x \sim_{SCC(G)} y$.

In particular, $u \sim_{SCC(G)} r$, where r is the root of the tree containing u and v.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

Assume the contrary. Then there exists an edge $(u, v) \in F_{>}^{r}$ such that $u \not\sim_{SCC(G)} v$.

 \Rightarrow (v, u) \in G.

Choose this edge so that each of its ancestor edges (x, y) satisfies $x \sim_{SCC(G)} y$.

In particular, $u \sim_{SCC(G)} r$, where r is the root of the tree containing u and v.

All vertices in C are descendants of r in $F_{>}^{r}$ and $x \leq r$ for all $x \in C$.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

Assume the contrary. Then there exists an edge $(u, v) \in F_{>}^{r}$ such that $u \not\sim_{SCC(G)} v$.

 \Rightarrow (v, u) \in G.

Choose this edge so that each of its ancestor edges (x, y) satisfies $x \sim_{SCC(G)} y$.

In particular, $u \sim_{SCC(G)} r$, where r is the root of the tree containing u and v.

All vertices in C are descendants of r in $F_{>}^{r}$ and $x \leq r$ for all $x \in C$.

Also, v < r because v is a descendant of r in $F_{>}^{r}$.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

Assume the contrary. Then there exists an edge $(u, v) \in F_{>}^{r}$ such that $u \not\sim_{SCC(G)} v$.

 \Rightarrow (v, u) \in G.

Choose this edge so that each of its ancestor edges (x, y) satisfies $x \sim_{SCC(G)} y$.

In particular, $u \sim_{SCC(G)} r$, where r is the root of the tree containing u and v.

All vertices in C are descendants of r in $F_{>}^{r}$ and $x \leq r$ for all $x \in C$.

Also, v < r because v is a descendant of r in $F_{>}^{r}$.

In F, all vertices in C are descendants of some vertex $r' \in C$ and $x \leq r'$ for all $x \in C$.

F

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

Assume the contrary. Then there exists an edge $(u, v) \in F_{>}^{r}$ such that $u \not\sim_{SCC(G)} v$.

 \Rightarrow (v, u) \in G.

Choose this edge so that each of its ancestor edges (x, y) satisfies $x \sim_{SCC(G)} y$.

In particular, $u \sim_{SCC(G)} r$, where r is the root of the tree containing u and v.

All vertices in C are descendants of r in $F_{>}^{r}$ and $x \leq r$ for all $x \in C$.

Also, v < r because v is a descendant of r in $F_{>}^{r}$.

In F, all vertices in C are descendants of some vertex $r' \in C$ and $x \leq r'$ for all $x \in C$.

 \Rightarrow **r** = **r**' and **u** \leq **r**.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

F

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

F

F

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

If v is a descendant of r in F, then $u \sim_{SCC(G)} v$, a contradiction.

If v is not a descendant of r in F, then v is not a descendant of u because u is a descendant of r.

F

F

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

If v is a descendant of r in F, then $u \sim_{SCC(G)} v$, a contradiction.

If v is not a descendant of r in F, then v is not a descendant of u because u is a descendant of r.

Since $u \le r$, v < r, and the descendants of r are numbered consecutively, we have v < u.

F

F

Lemma: $u \sim_{SCC(G)} v \Leftrightarrow u \sim_{CC(F_{>}^{r})} v$.

If v is a descendant of r in F, then $u \sim_{SCC(G)} v$, a contradiction.

If v is not a descendant of r in F, then v is not a descendant of u because u is a descendant of r.

Since $u \le r$, v < r, and the descendants of r are numbered consecutively, we have v < u.

 \Rightarrow (v, u) is a forward cross edge w.r.t. F, a contradiction.

Summary

Graphs are fundamental in Computer Science:

Many problems are quite natural to express as graph problems:

- Matching problems
- Scheduling problems
- ...

Data structures are graphs whose nodes store useful information.

Graph exploration lets us learn the structure of a graph:

- Connectivity problems
- Distances between vertices
- Planarity
- ...