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Chapter 22



Overview

Design principle:

• Learn the structure of the graph by systematic exploration.

Proof technique:

• Proof by contradiction

Problems:

• Connected components
• Bipartiteness testing
• Topological sorting
• Strongly connected components
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A graph is an ordered pair G = (V, E).

• V is the set of vertices of G.
• E is the set of edges of G.
• The elements of E are pairs of vertices (v, w).

The endpoints of an edge e are said to be adjacent to each other and incident with e.

The endpoints of an edge (v, w) are v and w.

The degree of a vertex is the number of its incident edges.
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Undirected and Directed Graphs

A graph is undirected if its edges are
unordered pairs, that is, (v, w) = (w, v).

A graph is directed if its edges are ordered
pairs, that is, (v, w) 6= (w, v).

A directed edge (v, w) is an out-edge of v and
an in-edge of w.

The in-degree and out-degree of a vertex are
the numbers of its in-edges and out-edges,
respectively.

in-degree 1
out-degree 2
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A path from a vertex s to a vertex t is a sequence of
vertices 〈x0, x1, . . . , xk〉 such that
• x0 = s,
• xk = t, and
• for all 1 ≤ i ≤ k, (xi–1, xi) is an edge of G.
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Paths and Cycles

A path from a vertex s to a vertex t is a sequence of
vertices 〈x0, x1, . . . , xk〉 such that
• x0 = s,
• xk = t, and
• for all 1 ≤ i ≤ k, (xi–1, xi) is an edge of G.

A cycle is a path from a vertex x back to itself.

A path or cycle is simple if it contains every vertex of G at
most once.
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Connected Graphs, Trees, and Forests

A forest is a graph without cycles.

A tree is a connected forest.

A graph is connected if there exists a
path between every pair of vertices.



Adjacency List Representation

• Doubly-linked list of vertices
• Doubly-linked list of edges
• One doubly-linked adjacency list per vertex
• Pointers from adjacency list entries to vertices
• Cross-pointers between edges and adjacency
list entries
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Representing Rooted Trees

A rooted tree T

• is a tree,
• is a directed graph,
• has one of its vertices, r, designated as a root.

There exists a path from r to every vertex in T.



Representing Rooted Trees

A rooted tree T

• is a tree,
• is a directed graph,
• has one of its vertices, r, designated as a root.

There exists a path from r to every vertex in T.

Tree = root

Every node stores

• an arbitrary key
• a (doubly-linked) list of its children.

Representation:



Standard Tree Orderings
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Preorder:

• Every vertex appears before its children.
• Every vertex appears before its right sibling.
• The vertices in each subtree appear
consecutively.

⇒ [a, b, c, d, e, f, g, h, i, j]

Postorder:

• Every vertex appears after its children.
• Every vertex appears before its right sibling.
• The vertices in each subtree appear
consecutively.
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Standard Tree Orderings

Lemma: It takes linear time to arrange the vertices of a forest in preorder or postorder.
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Preorder:

• Every vertex appears before its children.
• Every vertex appears before its right sibling.
• The vertices in each subtree appear
consecutively.

⇒ [a, b, c, d, e, f, g, h, i, j]

Postorder:

• Every vertex appears after its children.
• Every vertex appears before its right sibling.
• The vertices in each subtree appear
consecutively.

⇒ [c, b, f, e, g, i, j, h, d, a]
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Connected Components and Spanning Forests

A spanning forest of a graph G is a
subgraph F ⊆ G with the same number
of connected components and which is a
forest.

The connected components of a graph G
are its maximal connected subgraphs.

Representation:

• List of graphs or
• Labelling of vertices with component
IDs

Representation: List of rooted trees
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Graph Traversal

We use graph traversal to build a spanning forest of G.

Di�erent traversal strategies lead to di�erent
spanning forests:

• Breadth-first search
• Depth-first search
• Prim’s algorithm for computing minimum
spanning trees
• Dijkstra’s algorithm for computing shortest
paths



Graph Traversal

TraverseGraph(G)

1 Mark every vertex of G as unexplored
2 F = [ ]
3 for every vertex u ∈ G
4 do if not u.explored
5 then F.append(TraverseFromVertex(G, u))
6 return F



Graph Traversal

TraverseFromVertex(G, u)

1 u.explored = True
2 u.tree = Node(u, [ ])
3 Q = an empty edge collection
4 for every out-edge (u, v) of u
5 do Q.add((u, v))
6 while not Q.isEmpty()
7 do (v, w) = Q.remove()
8 if not w.explored
9 then w.explored = True
10 w.tree = Node(w, [ ])
11 v.tree.children.append(w.tree)
12 for every out-edge (w, x) of v
13 do Q.add((w, x))
14 return u.tree
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It computes a subgraph of G because it only adds edges of G to F.
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Graph Traversal Computes a Spanning Forest

It computes a subgraph of G because it only adds edges of G to F.

⇒ F has at least as many connected components as G.

To prove:
• F contains no cycle.
• If u ∼CC(G) v (u and v belong to the same component of G), then u ∼CC(F) v.

Observation: Every edge (u, v) in Q has at least one explored endpoint, namely u.

Corollary: Both endpoints of every edge in F are explored.

Corollary: F contains no cycle.

last edge added to F

Proof by contradiction:

By the time we add the last edge to the cycle,
both its endpoints are explored.

⇒ We would not have added it.
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Graph Traversal Computes a Spanning Forest

Lemma: TraverseFromVertex(G, u) visits all vertices v such that u ∼CC(G) v and only
those.

Proof: By induction on the number of invocations of TraverseFromVertex made so far.

When TraverseFromVertex(G, u) is called, every vertex v such that u ∼CC(G) v is
unexplored.

We visit all vertices v such that u ∼CC(G) v:

We do not visit a vertex v such that u 6∼CC(G) v:

x adds (x, w) to Q.

⇒ We’d visit w.

• v explored because of edge (w, v) ∈ Q.
• w explored before v.
⇒ w ∼CC(G) u.
⇒ v ∼CC(G) u.

path P from u to v

first unexplored vertex on P
u vwx

first explored vertex
such that u 6∼CC(G) v.

u vw
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Lemma: TraverseGraph takes O(n + m + m · (ta + tr)) time, where ta and tr are the costs
of adding and removing an edge from Q, respectively.

TraverseGraph itself takes O(n) time.

TraverseGraph(G)

1 Mark every vertex of G as unexplored
2 F = [ ]
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5 then F.append(TraverseFromVertex(G, u))
6 return F
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Computing Connected Components

• Compute a spanning forest F.
• Collect vertices of trees in F.
• Compute representation of connected components.

CollectComponentVertices(F)

1 L = [ ]
2 for every tree T ∈ F
3 do L.append(CollectDescendantVertices(T))
4 return L

CollectDescendantVertices(T)

1 L = [T.key]
2 for every child T′ of T
3 do L.concat(CollectDescendantVertices(T′))
4 return L

Lemma: Collecting the vertices of all components takes O(n) time.



Computing Connected Components

Representation using vertex labels:

ComponentLabels(L)

1 i = 0
2 for every list L′ ∈ L
3 do i = i + 1
4 for every vertex v ∈ L′

5 do v.cc = i

Cost: O(n)
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Need to partition the vertex and edge lists into vertex and edge lists for the
components.



Computing Connected Components

Representation as list of graphs:

We already have the right adjacency lists for the vertices.
Need to partition the vertex and edge lists into vertex and edge lists for the
components.

Vertex lists:

BuildVertexLists(L)

1 VL = [ ]
2 for every list L′ ∈ L
3 do VL′ = [ ]
4 for every vertex v ∈ L′

5 do VL′.append(v)
6 VL.append(VL′)
7 return VL



Computing Connected Components

Edge lists:

BuildEdgeLists(G, L)

1 EL = [ ]
2 for every edge e ∈ G
3 do e.collected = False
4 for every list L′ ∈ L
5 do EL′ = [ ]
6 for every vertex v ∈ L′

7 do for every edge e incident with v
8 do if not e.collected
9 then e.collected = True
10 EL′.append(e)
11 EL.append(EL′)
12 return EL



Computing Connected Components

Lemma: The connected components of a graph can be computed in O(n + m) time.

• Building a spanning forest takes O(n + m + m · (ta + tr)) time.
• Computing the vertex labelling or list of graphs then takes O(n + m) time.

• Using a stack or queue to represent Q, we get ta ∈ O(1) and tr ∈ O(1).
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Breadth-first search (BFS) = graph traversal using a queue to implement Q.
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Breadth-First Search
Breadth-first search (BFS) = graph traversal using a queue to implement Q.
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Queue:

Lemma: Breadth-first search takes O(n + m) time.

Constant-time implementations:

• Doubly-linked list
• Singly-linked list with tail pointer
• “Circular” array (amortized constant cost)
• Pair of singly-linked lists (functional)

Q.enqueue(x)Q.dequeue()
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Let the depth dF(v) of a vertex v in a rooted
forest F be the distance from the root of its tree.

BFS forest = spanning forest computed using BFS

Lemma: BFS visits the vertices of each
component of F in order of increasing depth.

Assume dF(v) < dF(w) and w is visited before v.
Choose such a pair (v, w) so that dF(w) is minimized.
w 6= u because dF(w) > dF(v) ≥ 0 and dF(u) = 0.
v 6= u because u is visited before any other vertex in the same tree.
⇒ parent(v) and parent(w) exist and

dF(parent(v)) = dF(v) – 1 < dF(w) – 1 = dF(parent(w)).
⇒ parent(v) is visited before parent(w).
⇒ The edge (parent(v), v) is enqueued before the edge (parent(w), w).
⇒ The edge (parent(v), v) is dequeued before the edge (parent(w), w).
⇒ v is visited before w, a contradiction.
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A Property of Undirected BFS Forests

Lemma: For every edge (v, w) of G and any BFS forest F of G, the depths of v and w
in F di�er by at most one.

w is unexplored when the edge (parent(w), w) is dequeued.

⇒ w is unexplored when the edge (v, w) is dequeued.

⇒ w would be added to the list of v’s children, a contradiction.

Assume dF(w) > dF(v) + 1.

⇒ dF(parent(w)) > dF(v).

⇒ v is visited before parent(w).

⇒ The edge (v, w) is enqueued before the edge (parent(w), w).

⇒ The edge (v, w) is dequeued before the edge (parent(w), w).
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A graph is bipartite if its vertices can be partitioned into two sets (U,W) such that
every edge has one endpoint in U and one endpoint in W.

Lemma: A graph is bipartite if and only if it contains no odd cycle.

Let F be a BFS forest of G.

Add vertices on odd levels to U, on even
levels to W.

This is the only partition that satisfies the
edges of F!

⇒ G is bipartite if and only if there is no
edge with both endpoints on the same
level.

If there is such an edge, there’s an odd
cycle.



Bipartite Graphs

A graph is bipartite if its vertices can be partitioned into two sets (U,W) such that
every edge has one endpoint in U and one endpoint in W.

Lemma: A graph is bipartite if and only if it contains no odd cycle.

Lemma: Given a BFS forest F of G, G is bipartite if and only if there is no edge in G
with both endpoints on the same level in F.



Bipartiteness Testing

• Compute BFS forest F of G.
• Collect vertices on alternating levels of F into two sets (U,W).
• Test whether any edge has both endpoints in the same set, U or W.
• If so, report the odd cycle induced by such an edge.
• Otherwise, report the bipartition (U,W).

AlternatingLevels(F)

1 U = W = [ ]
2 for every tree T in F
3 do AlternatingLevels′(T, U,W)
4 return (U,W)

AlternatingLevels′(T, U,W)

1 U.append(T.key)
2 for every child T′ of T
3 do AlternatingLevels′(T′, W, U)

Collecting vertices on alternating levels:



Bipartiteness Testing

• Compute BFS forest F of G.
• Collect vertices on alternating levels of F into two sets (U,W).
• Test whether any edge has both endpoints in the same set, U or W.
• If so, report the odd cycle induced by such an edge.
• Otherwise, report the bipartition (U,W).

Testing for an “odd edge”:

OddEdge(G, U,W)

1 A = an array of size n
2 for every vertex u ∈ U
3 do A[u] = “U”
4 for every vertex w ∈ W
5 do A[w] = “W”
6 for every edge (u, w) ∈ G
7 do if A[u] = A[w]
8 then return (u, w)
9 return Nothing



Bipartiteness Testing

• Compute BFS forest F of G.
• Collect vertices on alternating levels of F into two sets (U,W).
• Test whether any edge has both endpoints in the same set, U or W.
• If so, report the odd cycle induced by such an edge.
• Otherwise, report the bipartition (U,W).

Finding the ancestor edges of all vertices:

AncestorEdges(F)

1 L = an empty list of vertex-vertex list pairs
2 for every tree T ∈ F
3 do AncestorEdges′(T, [ ], L)
4 return L

AncestorEdges′(T, A, L)

1 L = L.append([(T.key, A)])
2 for every child T′ of T
3 do AncestorEdges′(T′, [(T.key, T′.key)] ++ A, L)



Bipartiteness Testing

• Compute BFS forest F of G.
• Collect vertices on alternating levels of F into two sets (U,W).
• Test whether any edge has both endpoints in the same set, U or W.
• If so, report the odd cycle induced by such an edge.
• Otherwise, report the bipartition (U,W).

Reporting an odd cycle:

OddCycle(L, (u, w))

1 Find (u, Au) and (w, Aw) in L
2 Cu = Cw = [ ]
3 while Au.head 6= Aw.head
4 do Cu.append(Au.head)
5 Cw.append(Aw.head)
6 Au = Au.tail
7 Aw = Aw.tail
8 Cu.reverse().concat([(u, w)]).concat(Cw)
9 return Cu



Bipartiteness Testing

• Compute BFS forest F of G.
• Collect vertices on alternating levels of F into two sets (U,W).
• Test whether any edge has both endpoints in the same set, U or W.
• If so, report the odd cycle induced by such an edge.
• Otherwise, report the bipartition (U,W).

Lemma: It takes linear time to test whether a graph G is bipartite and either report a
valid bipartition or an odd cycle in G.
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Depth-First Search
Depth-first search (DFS) = graph traversal using a stack to implement Q.

Lemma: Depth-first search takes O(n + m) time.

Constant-time implementations:

• Singly-linked list
• Resizeable array (amortized constant cost)

Stack: Q.push(x)Q.pop()
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Depth-First Search and Preorder

Lemma: Depth-first search visits the vertices of the spanning forest it creates in
preorder.

It visits the children of every node in left-to-right order.
(That’s how we define this order.)

It visits every node after its parent:

• v is visited when the edge (parent(v), v) is popped.
• The edge (parent(v), v) must be pushed before this can happen.
• The edge (parent(v), v) is pushed when parent(v) is visited.

It visits the vertices in each subtree consecutively.

Observation: An edge with one explored and one unexplored endpoint is on the
stack.
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• y is visited before some descendant z.

Choose y and z so that

• y is the first visited vertex satisfying the above conditions and
• y is visited after parent(z).
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• y is not a descendant of x,
• y is visited after x, and
• y is visited before some descendant z.

Choose y and z so that

• y is the first visited vertex satisfying the above conditions and
• y is visited after parent(z).

Case 1: y is a root.

Cannot happen because the edge (parent(z), z) is on the stack when y is visited and
the stack is empty when a root is visited.
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Assume there exist two vertices x and y such that

• y is not a descendant of x,
• y is visited after x, and
• y is visited before some descendant z.

Choose y and z so that

• y is the first visited vertex satisfying the above conditions and
• y is visited after parent(z).

Case 2: y has a parent parent(y).

⇒ The edge (parent(z), z) is popped before the edge (parent(y), y).

⇒ The edge (parent(y), y) is on the stack when parent(z) is visited and thus when the
edge (parent(z), z) is pushed.
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Depth-First Seach and Preorder

Assume there exist two vertices x and y such that

• y is not a descendant of x,
• y is visited after x, and
• y is visited before some descendant z.

Choose y and z so that

• y is the first visited vertex satisfying the above conditions and
• y is visited after parent(z).

Case 2: y has a parent parent(y).

⇒ z is visited before y, contradiction.

⇒ The edge (parent(z), z) is popped before the edge (parent(y), y).

⇒ The edge (parent(y), y) is on the stack when parent(z) is visited and thus when the
edge (parent(z), z) is pushed.

parent(y) is visited before x and thus before parent(z).



A Property of Undirected DFS Forests
Three types of edges:

• Tree edge (u, w): u is w’s parent in F.
• Cross edge (u, w): Neither u nor w is an ancestor of the other.
• Back edge (u, w): u is an ancestor of w but not its parent.



A Property of Undirected DFS Forests
Three types of edges:

• Tree edge (u, w): u is w’s parent in F.
• Cross edge (u, w): Neither u nor w is an ancestor of the other.
• Back edge (u, w): u is an ancestor of w but not its parent.

Lemma: All edges of an undirected graph G are tree or back edges with respect to a
DFS forest of G.



A Property of Undirected DFS Forests

u v

a

u′ v′

Three types of edges:

• Tree edge (u, w): u is w’s parent in F.
• Cross edge (u, w): Neither u nor w is an ancestor of the other.
• Back edge (u, w): u is an ancestor of w but not its parent.

Lemma: All edges of an undirected graph G are tree or back edges with respect to a
DFS forest of G.

Let a be the LCA of u and v and let u′ and v′ be the
children of a that are ancestors of u and v.
Assume u < v in preorder.
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Three types of edges:

• Tree edge (u, w): u is w’s parent in F.
• Cross edge (u, w): Neither u nor w is an ancestor of the other.
• Back edge (u, w): u is an ancestor of w but not its parent.

Lemma: All edges of an undirected graph G are tree or back edges with respect to a
DFS forest of G.

Let a be the LCA of u and v and let u′ and v′ be the
children of a that are ancestors of u and v.
Assume u < v in preorder.

⇒ Vertices a, u′, u, v′, v are visited in this order.

⇒ The edge (a, v′) is pushed before u is visited
and popped after u is visited.

⇒ The edge (u, v) is pushed after (a, v′) is pushed
and before (a, v′) is popped.



A Property of Undirected DFS Forests

u v

a

u′ v′

Three types of edges:

• Tree edge (u, w): u is w’s parent in F.
• Cross edge (u, w): Neither u nor w is an ancestor of the other.
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u′ v′

Three types of edges:

• Tree edge (u, w): u is w’s parent in F.
• Cross edge (u, w): Neither u nor w is an ancestor of the other.
• Back edge (u, w): u is an ancestor of w but not its parent.

Lemma: All edges of an undirected graph G are tree or back edges with respect to a
DFS forest of G.

⇒ The edge (u, v) is popped before (a, v′) is popped.

⇒ v is unexplored when the edge (u, v) is popped, a contradiction.

Let a be the LCA of u and v and let u′ and v′ be the
children of a that are ancestors of u and v.
Assume u < v in preorder.

⇒ Vertices a, u′, u, v′, v are visited in this order.

⇒ The edge (a, v′) is pushed before u is visited
and popped after u is visited.

⇒ The edge (u, v) is pushed after (a, v′) is pushed
and before (a, v′) is popped.
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w is an ancestor of the other, w < u in
preorder/postorder.



A Property of Directed DFS Forests

Five types of edges:

• Tree edge (u, w): u is w’s parent in F.
• Forward edge (u, w): u is an ancestor of w.
• Back edge (u, w): w is an ancestor of u.
• Forward cross edge (u, w): Neither u nor w
is an ancestor of the other, u < w in
preorder/postorder.
• Backward cross edge (u, w): Neither u nor
w is an ancestor of the other, w < u in
preorder/postorder.

Lemma: A directed graph G does not contain any
forward cross edges with respect to a DFS forest of G.
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Topological Sorting

A topological ordering of a directed graph is an ordering < of the vertex set of G such
that u < v for every edge (u, v) ∈ G.

Lemma: A graph G has a topological ordering if and only if it contains no directed
cycle.

If there’s a cycle, there is no
topological ordering.
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We prove that, if there is no cycle, there is always a source (vertex of in-degree 0).



Topological Sorting

A topological ordering of a directed graph is an ordering < of the vertex set of G such
that u < v for every edge (u, v) ∈ G.

Lemma: A graph G has a topological ordering if and only if it contains no directed
cycle.

• Give s the smallest number.
• Recursively number the rest
of the vertices. s

Cannot contain a cycle since
G contains no cycle.

We prove that, if there is no cycle, there is always a source (vertex of in-degree 0).

⇒ The following algorithm produces a topological ordering:
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Topological Sorting

A topological ordering of a directed graph is an ordering < of the vertex set of G such
that u < v for every edge (u, v) ∈ G.

Lemma: A graph G has a topological ordering if and only if it contains no directed
cycle.

We prove that, if there is no cycle, there is always a source (vertex of in-degree 0).

Let R(v) be the set of vertices reachable from v.

For an edge (u, v),
• R(u) ⊇ R(v)
• u ∈ R(u)
• u 6∈ R(v) (otherwise there’d be a cycle)
⇒ R(u) ⊃ R(v).

Pick a vertex s such that |R(s)| ≥ |R(v)| for all v ∈ G.

If s had an in-neighbour u, then |R(u)| > |R(s)|, a contradiction.

⇒ s is a source.



Topological Sorting

Lemma: A topological ordering of a directed acyclic graph G can be computed in
O(n + m) time.

SimpleTopSort(G)

1 Q = an empty queue
2 for every vertex v ∈ G
3 do label v with its in-degree
4 if in-deg(v) = 0
5 then Q.enqueue(v)
6 O = [ ]
7 while not Q.isEmpty()
8 do v = Q.dequeue()
9 O.append(v)
10 for every out-neighbour w of v
11 do in-deg(w) = in-deg(w) – 1
12 if in-deg(w) = 0
13 then Q.enqueue(w)
14 return O



Topological Sorting Using DFS

Edges in a DFS forest:

• Tree edge (u, w): u is w’s parent in F.
• Forward edge (u, w): u is an ancestor of w.
• Back edge (u, w): w is an ancestor of u.
• Backward cross edge (u, w): Neither u nor
w is an ancestor of the other, w < u in
postorder.
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Topological Sorting Using DFS

For tree, forward, and backward cross edges
(u, v), u > v in postorder.

⇒ Topological sorting algorithm:

• Compute a DFS forest of G.
• Arrange the vertices in reverse postorder.

This takes O(n + m) time.

Edges in a DFS forest:

• Tree edge (u, w): u is w’s parent in F.
• Forward edge (u, w): u is an ancestor of w.
• Back edge (u, w): w is an ancestor of u.
• Backward cross edge (u, w): Neither u nor
w is an ancestor of the other, w < u in
postorder.
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Strongly Connected Components

A graph is strongly connected if there exists a path from u to w and from w to u for
every pair of vertices u, w ∈ G.

The strongly connected components of G are its maximal strongly connected
subgraphs.

Lemma: For a DFS forest F of G and any two vertices u and w of G,
u ∼SCC(G) w⇒ u ∼CC(F) w. (The vertices of each strongly connected component of G
belong to the same tree of any DFS forest F of G.)

Let C be the strongly connected component containing u and w and let x be the first
vertex in C visited during the construction of F.

It su�ces to prove that x ∼CC(F) v for every v ∈ C.

This follows from

Lemma: If there exists a path from x to v consisting of vertices that are unexplored
when x is visited, then v is a descendant of x in F.
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Lemma: If there exists a path from x to v consisting of vertices that are unexplored
when x is visited, then v is a descendant of x in F.

Let P = 〈x = x0, x1, . . . , xk = v〉 be such a path from x to v and assume v is not a
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Since x is a descendant of x, there exists a maximal index 0 ≤ i < k such that
x0, x1, . . . , xi are descendants of x and xi+1 is not.

Since xi+1 is visited after x and all descendants of x have consecutive preorder
numbers, we have xi < xi+1 in preorder.

Since xi+1 is no descendant of x, it is not a descendant of xi.



Strongly Connected Components

Lemma: If there exists a path from x to v consisting of vertices that are unexplored
when x is visited, then v is a descendant of x in F.

Let P = 〈x = x0, x1, . . . , xk = v〉 be such a path from x to v and assume v is not a
descendant of x.

Since x is a descendant of x, there exists a maximal index 0 ≤ i < k such that
x0, x1, . . . , xi are descendants of x and xi+1 is not.

Since xi+1 is visited after x and all descendants of x have consecutive preorder
numbers, we have xi < xi+1 in preorder.

Since xi+1 is no descendant of x, it is not a descendant of xi.

Since xi < xi+1 in preorder, this implies that (xi, xi+1) is a forward cross edge, a
contradiction.
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Strongly Connected Components

For a graph G = (V, E), let Gr = (V, Er), where Er = {(v, u) | (u, v) ∈ E}.

Lemma: u ∼SCC(G) v⇔ u ∼SCC(Gr) v.

Proof: We have u G v if and only if v Gr u.
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For a graph G = (V, E), let Gr = (V, Er), where Er = {(v, u) | (u, v) ∈ E}.

Lemma: u ∼SCC(G) v⇔ u ∼SCC(Gr) v.

Proof: We have u G v if and only if v Gr u.

Let F be a DFS forest of G and let < be the postorder of F.
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Strongly Connected Components

For a graph G = (V, E), let Gr = (V, Er), where Er = {(v, u) | (u, v) ∈ E}.

Lemma: u ∼SCC(G) v⇔ u ∼SCC(Gr) v.

Proof: We have u G v if and only if v Gr u.

Let F be a DFS forest of G and let < be the postorder of F.

Let Fr> be the DFS forest of Gr obtained by calling TraverseFromVertex on unexplored
vertices in the opposite order to <.
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Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

For a graph G = (V, E), let Gr = (V, Er), where Er = {(v, u) | (u, v) ∈ E}.
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Strongly Connected Components

Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

For a graph G = (V, E), let Gr = (V, Er), where Er = {(v, u) | (u, v) ∈ E}.

⇒ Kosaraju’s strong connectivity algorithm:
• Compute a DFS forest F of G.
• Compute Gr and arrange the vertices in reverse postorder w.r.t. F.
• Compute a DFS forest Fr of Gr.
• Extract a component labelling of the vertices or the strongly connected

components themselves from Fr (almost) as we did for computing connected
components.

This takes O(n + m) time.

Lemma: u ∼SCC(G) v⇔ u ∼SCC(Gr) v.

Proof: We have u G v if and only if v Gr u.

Let F be a DFS forest of G and let < be the postorder of F.

Let Fr> be the DFS forest of Gr obtained by calling TraverseFromVertex on unexplored
vertices in the opposite order to <.
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Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

Assume the contrary. Then there exists an
edge (u, v) ∈ Fr> such that u 6∼SCC(G) v.

⇒ (v, u) ∈ G.
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Strongly Connected Components

Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

Assume the contrary. Then there exists an
edge (u, v) ∈ Fr> such that u 6∼SCC(G) v.

Choose this edge so that each of its
ancestor edges (x, y) satisfies x ∼SCC(G) y.

⇒ (v, u) ∈ G.
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Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

Assume the contrary. Then there exists an
edge (u, v) ∈ Fr> such that u 6∼SCC(G) v.

Choose this edge so that each of its
ancestor edges (x, y) satisfies x ∼SCC(G) y.

In particular, u ∼SCC(G) r, where r is the
root of the tree containing u and v.

⇒ (v, u) ∈ G.
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Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

Assume the contrary. Then there exists an
edge (u, v) ∈ Fr> such that u 6∼SCC(G) v.

Choose this edge so that each of its
ancestor edges (x, y) satisfies x ∼SCC(G) y.

In particular, u ∼SCC(G) r, where r is the
root of the tree containing u and v.

All vertices in C are descendants of r in Fr>
and x ≤ r for all x ∈ C.

⇒ (v, u) ∈ G.
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Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

Assume the contrary. Then there exists an
edge (u, v) ∈ Fr> such that u 6∼SCC(G) v.

Choose this edge so that each of its
ancestor edges (x, y) satisfies x ∼SCC(G) y.

In particular, u ∼SCC(G) r, where r is the
root of the tree containing u and v.

All vertices in C are descendants of r in Fr>
and x ≤ r for all x ∈ C.

⇒ (v, u) ∈ G.

Also, v < r because v is a descendant of r in Fr>.
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Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

Assume the contrary. Then there exists an
edge (u, v) ∈ Fr> such that u 6∼SCC(G) v.

Choose this edge so that each of its
ancestor edges (x, y) satisfies x ∼SCC(G) y.

In particular, u ∼SCC(G) r, where r is the
root of the tree containing u and v.

All vertices in C are descendants of r in Fr>
and x ≤ r for all x ∈ C.

In F, all vertices in C are descendants of some
vertex r′ ∈ C and x ≤ r′ for all x ∈ C.

⇒ (v, u) ∈ G.
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Strongly Connected Components

Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

Assume the contrary. Then there exists an
edge (u, v) ∈ Fr> such that u 6∼SCC(G) v.

Choose this edge so that each of its
ancestor edges (x, y) satisfies x ∼SCC(G) y.

In particular, u ∼SCC(G) r, where r is the
root of the tree containing u and v.

All vertices in C are descendants of r in Fr>
and x ≤ r for all x ∈ C.

In F, all vertices in C are descendants of some
vertex r′ ∈ C and x ≤ r′ for all x ∈ C.

⇒ r = r′ and u ≤ r.

⇒ (v, u) ∈ G.

Also, v < r because v is a descendant of r in Fr>. C
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If v is a descendant of r in F, then
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Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

If v is a descendant of r in F, then
u ∼SCC(G) v, a contradiction.
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Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

If v is a descendant of r in F, then
u ∼SCC(G) v, a contradiction.
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Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

If v is a descendant of r in F, then
u ∼SCC(G) v, a contradiction.
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Strongly Connected Components

Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

If v is a descendant of r in F, then
u ∼SCC(G) v, a contradiction.

If v is not a descendant of r in F, then v is
not a descendant of u because u is a
descendant of r.
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Strongly Connected Components

Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

If v is a descendant of r in F, then
u ∼SCC(G) v, a contradiction.

If v is not a descendant of r in F, then v is
not a descendant of u because u is a
descendant of r.

Since u ≤ r, v < r, and the descendants of r
are numbered consecutively, we have v < u.
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Strongly Connected Components

Lemma: u ∼SCC(G) v⇔ u ∼CC(Fr>) v.

If v is a descendant of r in F, then
u ∼SCC(G) v, a contradiction.

If v is not a descendant of r in F, then v is
not a descendant of u because u is a
descendant of r.

Since u ≤ r, v < r, and the descendants of r
are numbered consecutively, we have v < u.

⇒ (v, u) is a forward cross edge w.r.t. F, a
contradiction.
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Summary

Graphs are fundamental in Computer Science:

Many problems are quite natural to express as graph problems:

• Matching problems
• Scheduling problems
• . . .

Data structures are graphs whose nodes store useful information.

Graph exploration lets us learn the structure of a graph:

• Connectivity problems
• Distances between vertices
• Planarity
• . . .


