Fundamentals of asymptotic notation

$$o(1) \leq O(1) \subseteq \Theta$$

Limits to prove $f(n) = o(g(n))$

Provide constants to prove $f(n) = \Theta(g(n))$

Algorithm Analysis

What does a specific algorithm do?

Analyze the running time of an algorithm

- Counting loops and operations
- Bounding the number of function calls
- Recurrence relations
- BFS
Recurrence relation:

\[T(n) = \begin{cases} & T(n/2) + n \quad \text{merge sort} \\ & \text{master theorem} \\ & \text{Substitution} \\ & \text{recursion tree} \end{cases} \]

- Amortized analysis
- Prim's algorithm \(O(m \log n) \) amortized using the heap
 potential functions

Prove correctness:
- Termination
 - Usually simple
 - Bounded number of steps
 - e.g., looking at every element of an array
 - Look at any one element at most \(\log n \) times
- Correctness
 - Contradiction
- Contradiction
 - assume simplest case

- induction
 - base case
 - inductive step
 - termination

- Stay ahead arguments (greedy)
 - similar to induction
 - on termination
 - argue your set size is the same length as optimal

- loop invariants
 - form of induction
 - show that an "invariant" holds at every step of a loop

Greedy Algorithms
Greedy Algorithms
make progress with local choices to obtain
global optimum
problems: interval scheduling
 MST - Kruskal, Prim
 union-find, priority queues (e.g., heap)
huffman coding, Dijkstra's algorithm

Graph Exploration
definitions
 vertices, edges, adjacency list
 undirected, directed
proofs: contradiction
BFS/DFS as building blocks
connected components, top sort
 bipartiteness, strongly connected components

Divide and Conquer
recursively break problem into smaller
subproblems, solve, and combine the solutions
 e.g., mergesort, quicksort
 techniques: induction
techniques: induction

recurrence relations

\[T(n) = aT\left(\frac{n}{b}\right) + \Theta(n) \]

running time \# subproblems size of subproblems

merge sort \[T(n) = 2T\left(\frac{n}{2}\right) + \Theta(n) \]

closed form \[T(n) = \Theta(n \log n) \]

problems: selection, matrix multiplication, closest pair

Dynamic Programming

recursively break into smaller subproblems

techniques: recurrence relations

provide answer, not running time

problems:

chain matrix multiplication, weighted interval scheduling, sequence alignment, shortest paths
shortest paths
how to handle negative weighted
Floyd-Warshall
all-pairs shortest paths