
CSCI 3110 Review Topics 
• Definitions 

o little and big O, Omega, Theta 
o Design patterns 
o Data structures and basic algorithms 

• Arrays, linked lists, stacks, queues 
• Fundamentals 

o Order of function growth 
o Using limits to prove small o 
o Using constants to Prove O, Omega, Theta 

• Algorithm Analysis 
o What does an algorithm do? 
o Analyze the running time of an algorithm 

• Counting loops 
• Bounding the number of function calls 
• Recurrence relations 
• Amortized analysis 

o Prove correctness 
• Termination 
• Correctness 

§ Contradiction 
§ Induction 
§ Stay-ahead arguments 
§ Loop invariants 

• Algorithm Design 
o Graph Algorithms 

• Graph exploration 
• Undirected/directed, adjacency list, etc 
• Proofs: Contradiction 
• BFS/DFS as building blocks 
• Problems 

§ Connected components 
§ Bipartiteness testing 
§ Topological Sorting 
§ Strongly Connected Components 

o Greedy Algorithms 
• Make progress toward a globally optimal solution by making locally optimal choices 
• Problems 

§ Interval Scheduling 
§ Minimum Spanning Tree 

• Kruskal 
• Prim 

§ Shortest Paths 
• Dijkstra 

§ Minimum-length codes 
• Techniques 



§ Induction 
§ Stay-ahead arguments 
§ Exchange arguments 

• Data Structures 
§ Priority Queue 

• Thin heap 
§ Union-find data structure 

o Divide and Conquer 
• Divide the problem into subproblems, recurse, and combine the solutions 
• Techniques 

§ Induction 
§ Recurrence Relations 

• Problems 
§ Sorting 

• Merge Sort, Quick Sort 
§ Selection 
§ Matrix multiplication 
§ Finding the closest pair 

o Dynamic Programming 
• Recursively break the problem into smaller subproblems 
• Avoid repeatedly solving the same subproblems by caching their solutions 

§ Memoization 
§ Table 

• Techniques 
§ Recurrence relations 

• Problems 
§ Matrix chain multiplication 
§ Weighted interval scheduling 
§ Sequence alignment 
§ Shortest paths 

o Data Structures 
• Use data structures to implement non-trivial steps in algorithms 
• Augmenting data structures 

§ add information to existing data structures so they support additional queries 
• Specific Data structures 

§ (a,b)-trees 
• nodes have (a,b) children (root has (2,b) children) 
• leaves at same depth 
• insert, delete, find, rangefind, predecessor, successor, minimum, maximum 
• rebalance with node fusions and splits 
• logn time or logn +k time operations 

§ Rank-select trees 
• rank and select queries 

• logn time 
• store number of descendant leaves at each node 

§ priority search trees 
• 3-sided range reporting 
• (a,b) tree on x-coordinates 



• add y-coordinate using max heap property 
§ range trees 

• nested (a,b)-trees on x, y, z, etc coordinates 
• Problems 

§ orthogonal and general line segment intersection reporting and counting 
• sweep line 

§ range reporting and counting 
o Randomization 

• do the easy thing and hope it works for most inputs 
• make random choices and hope they are good 
• complicated analysis using statistics 
• expected running time - average running time over all possible inputs 
• Problems 

§ Sorting (quick sort) 
• randomize the input and use simple quicksort 
• randomize the pivot using randomized quicksort 

§ Permuting 
§ Selection 
§ Game tree evaluation 

o NP-hardness 
• Computational (in)tractability 
• Decision problems and optimization problems 
• Decision problems and formal languages 
• The class P 
• Decision and verification 
• The class NP 
• NP hardness and NP completeness 
• Polynomial-time reductions 
• NP-complete problems 

§ Satisfiability 
• naturally NP-hard 

§ Vertex Cover 
• 3-SAT -> vertex cover 

§ Hamiltonian Cycle 
• Vertex Cover -> Hamiltonian Cycle 

§ Subset sum 
• 3-SAT -> Subset sum 

 


