
Banner number: Name:

Final Exam

CSCI 3110: Design and Analysis of Algorithms

December 13, 2007

Group 1 Group 2 Group 3

Question 1.1

Question 1.2

Question 1.3

Question 2.1

Question 2.2

Question 2.3

Question 3.1

Question 3.2

Question 3.3

∑ ∑ ∑

∑

Instructions:

• The questions are divided into three groups. You have to answer all questions in Groups 1

and 2 and exactly two questions in Group 3. In the above table, put check marks in the

small boxes beside the questions in Group 3 you want me to mark. I will not mark unmarked

questions. If you mark all three questions, I will choose which two to mark at random.

• Provide your answer in the box after each question. If you absolutely need extra space, use the

backs of the pages; but try to avoid it. Keey your answers short and to the point.

• You are not allowed to use a cheat sheet.

• If you are asked to design an algorithm and you cannot design one that achieves the desired

running time, design a slower algorithm that is correct. A correct and slow algorithm earns you

50% of the marks for the algorithm. A fast and incorrect algorithm earns 0 marks.

• When designing an algorithm, you are allowed to use algorithms and data structures you

learned in class as black boxes, without explaining how they work, as long as these algorithms

and data structures do not directly answer the questions.

• Read every question carefully before answering. In particular, do not waste time on an

analysis if none is asked for, and do not forget to provide one if it is required.

• Do not forget to write your banner number and name on the top of this page.

• This exam has 13 pages, including this title page. Notify me immediately if your copy has

fewer than 13 pages.

1

Question 1.1 (Algorithm design paradigms) 10 marks

Name three algorithm design paradigms and explain for each of them what characterizes an algorithm

that is based on this paradigm. At least one of the paradigms you describe should apply to solving

optimization problems.

1.

2.

3.

State which of the above paradigms can be used to solve optimization problems. (If you named more

than one such paradigm above, list all of them here.)

2

Question 1.2 (Randomization) 10 marks

Define the following terms:

Worst-case running time of a deterministic algorithm

Average-case running time of a deterministic algorithm

What is the difference between the average-case running time of a deterministic algorithm and the

expected running time of a randomized algorithm?

What is a possible advantage of a randomized algorithm for a given problem compared to a deter-

ministic algorithm whose worst-case running time is the same as the expected running time of the

randomized algorithm?

3

Question 1.3 (Computational complexity) 10 marks

What is the difference between a decision problem and an optimization problem?

Define the complexity class P.

Define the complexity class NP.

Define the term NP-hard problem and NP-complete problem.

In the following table, put a check mark in row x and column y if problem y belongs to complexity

class x .

NP

P

Sorting Hamiltonian cycle Is there a path of length at most

k from x to y in graph G?

4

Question 2.1 (Correctness proof) 15 marks

Just as a reminder, here is Dijkstra’s algorithm:

DIJKSTRA(G, s)

1 mark every vertex v ∈ G as unexplored

2 d(v)← +∞, for all v ∈ G

3 d(s)← 0

4 insert every vertex v ∈ G into a priority queue Q, with priority d(v)

5 while Q 6= ;

6 do v← DELETEMIN(Q)

7 mark v as explored

8 for every out-neighbor w of G

9 if d(w) > d(v) +w(vw)

10 then d(w)← d(v) +w(vw)

11 DECREASEKEY(Q, w, d(w))

Prove that, when this procedure finishes, d(v) is the length of a shortest path from s to v in G,

provided that all edges in G have non-negative weights.

5

Question 2.2 (Analysis of algorithms) 15 marks

The following algorithm is an algorithm for multiplying two square matrices in subcubic time. In the

description of the algorithm, we use n to denote the number of rows and columns in the two input

matrices, and mi, j denotes the entry in row i and column j of matrix M . We assume that n is a power

of 2. If n ≥ 2, we use M1,1, M1,2, M2,1, and M2,2 to denote the top-left, top-right, bottom-left, and

bottom-right quarter of matrix M , respectively.

STRASSEN(A, B)

1 if n = 1

2 then return a1,1 · b1,1

3 M1← STRASSEN(A1,1+ A2,2, B1,1 + B2,2)

4 M2← STRASSEN(A2,1+ A2,2, B1,1)

5 M3← STRASSEN(A1,1, B1,2 − B2,2)

6 M4← STRASSEN(A2,2, B2,1 − B1,1)

7 M5← STRASSEN(A1,1+ A1,2, B2,2)

8 M6← STRASSEN(A2,1− A1,1, B1,1 + B1,2)

9 M7← STRASSEN(A1,2− A2,2, B2,1 + B2,2)

10 C1,1← M1 +M4−M5+M7

11 C1,2← M3 +M5

12 C2,1← M2 +M4

13 C2,2← M1 −M2+M3+M6

14 return C

Analyze the running time of this algorithm, that is, provide an expression T (n) = Θ(f (n)) and prove

that this is indeed the right bound for the running time of the algorithm.

6

Question 2.3 (Lower bounds) 10 marks

The idea behind every NP-hardness proof we discussed in class was that of a polynomial-time reduc-

tion. A similar idea can be used to prove lower bounds for the running times of algorithms or data

structure operations. In class, I mentioned that, using comparisons only to determine the correct

order of elements, it is impossible to sort in o(n log n) time. Using this fact, prove that it is impos-

sible to construct a comparison-based dictionary data structure that supports INSERT and SUCCESSOR

operations in o(log n) time and the MINIMUM operation in o(n log n) time. (Hint: Assume that you had

such a dictionary. Can you use it to design a comparison-based sorting algorithm that runs in o(n log n)

time? This would lead to a contradiction.)

7

Question 3.1 (Divide and conquer) 15 marks

Given a sequence of numbers S = (x1, x2, . . . , xn), define the largest smaller predecessor (LSP) of x i to

be max({x j | j < i and x j < x i} ∪ {−∞}). Develop an O(n log n)-time algorithm that determines the

LSP of every element in S. Provide a discussion of your algorithm that establishes its correctness and

running time.

8

Question 3.1 (Continued)

9

Question 3.2 (Dynamic programming) 15 marks

Here is a problem closely related to the sequence alignment problem discussed in class: Given two

strings X = x1x2 . . . xm and Y = y1 y2 . . . yn, a common substring of X and Y is a string Z = z1z2 . . . zk

that can be obtained from both X and Y by removing an appropriate set of letters. Formally, we have

zh = x ih
= y jh

, for appropriate indices 1 ≤ i1 < i2 < · · · < ik ≤ m and 1 ≤ j1 < j2 < · · · < jk ≤ n. Z is a

longest common substring (LCS) of X and Y if there is no common substring of X and Y that is longer

than Z . Develop an algorithm that finds an LCS of X and Y in O(mn) time.

10

Question 3.2 (Continued)

11

Question 3.3 (Graph algorithms) 15 marks

In class, we discussed the Bellman-Ford shortest path algorithm, which computes correct shortest

paths from a source vertex s to all other vertices in a directed graph G even in the presence of negative

edge weights. Of course, distances are well defined only if G does not contain a negative cycle (ie, a

directed cycle whose total edge weight is negative). Therefore, it would be useful to be able to detect

when G contains a negative cycle. Using the Bellman-Ford algorithm as a starting point, develop an

algorithm that correctly decides whether G contains a negative cycle. Your algorithm doesn’t have to

report a negative cycle, only give a correct yes/no answer. The running time of your algorithm should

be O(nm). Prove that your algorithm is correct.

12

Question 3.3 (Continued)

13

