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1. You are given a string of n characters s[1 . . . n], which you believe to be a corrupted
text document in which all punctuation has vanished (so that it looks something like
“itwasthebestoftimes. . . ” ). You wish to reconstruct the document using a dictionary,
which is available in the form of a Boolean function dict(·) : for any string w,

dict(w) =

{
true if w is a valid word

false otherwise.

(a) (10 pts) Give a dynamic programming algorithm that determines whether the
string s[·] can be reconstituted as a sequence of valid words. The running time
should be at most O (n2), assuming calls to dict take unit time. Start by describing
the problem as an array d[·] and then provide a recurrence for d[i] in terms of d[j]
where j < i. Then determine the dynamic programming order that solves this
recurrence efficiently and give pseudocode that does this.

(b) (Bonus: 5 pts) In the event that the string is valid, make your algorithm output
the corresponding sequence of words. Use a choice array to record the optimal
choices made by your algorithm and then use a backtracking algorithm to output
the sequence of words.

2. Time and space complexity of dynamic programming. Our dynamic program-
ming algorithm for computing the sequence alignment edit distance between strings
of length m and n creates a table of size n×m and therefore needs O (nm) time and
space. In practice, it will run out of space long before it runs out of time. How can
this space requirement be reduced?

(a) (5 pts) Show that if we just want to compute the value of the edit distance (rather
than the optimal sequence of edits), then only O (n) space is needed, because only
a small portion of the table needs to be maintained at any given time.

(b) (5 pts) Now suppose that we also want the optimal sequence of edits. This problem
can be recast in terms of a corresponding grid-shaped directed acylic graph, in
which the goal is to find the optimal path from node (0, 0) to node (n,m). It
will be convenient to work with this formulation, and while we’re talking about
convenience, we might as well also assume that m is a power of 2. Let’s start with
a small addition to the edit distance algorithm that will turn out to be very useful.
The optimal path in the directed acylic graph must pass through an intermediate
node (k,m/2) for some k; show how the algorithm can be modified to also return
this value k.

(c) (5 pts) Now consider a recursive scheme:

Find-Path((0, 0) → (n,m))
1 compute the value k above
2 Find-Path((0, 0)→ (k,m/2))
3 Find-Path((k,m/2)→ (n,m))
4 concatenate these two paths, with k in the middle

Show that this scheme can be made to run in O (nm) time and O (n) space.


