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In many of the questions on this assignment you are asked to describe an algorithm. This
means to explain in words how your algorithm would solve the problem and then give a
brief justification that your method has the claimed running time and is correct. You may
give pseudocode but it is not necessary.

1. Consider the following task.

Input: A connected, undirected graph G.

Question: Is there an edge you can remove from G while still leaving G connected?

(a) (10 pts) Describe a linear-time (O (n + m)) algorithm for solving this question.

(b) (Bonus: 5 pts) Can you reduce the running time of your algorithm to O (n)?

2. Consider the interval scheduling problem discussed in class. Suppose that instead of
always selecting the interval that ends first, we instead select the interval that starts
last and is compatible with all previously selected intervals. Explain how this
approach is a greedy algorithm and prove that it yields an optimal solution by
induction.

3. Consider an undirected graph G = (V,E) with distinct nonnegative edge weights
we ≥ 0. Suppose that you have computed a minimum spanning tree of G, and that
you have also computed shortest paths to all nodes from a particular node s ∈ V .

Now suppose each edge weight is increased by 1: the new weights are w′
e = we + 1.

(a) (10 pts) Does the minimum spanning tree change? Give an example where it
changes or prove it cannot change.

(b) (10 pts) Do the shortest paths change? Give an example where they change or
prove they cannot change.

4. Here is a problem that occurs in automatic program analysis. For a set of variables
x1, . . . , xn, you are given some equality constraints, of the form xi = xj and some
disequality constraints, of the form xi 6= xj. Is it possible to satisfy all of them? For
instance, the constraints x1 = x2, x2 = x3, x3 = x4, x1 6= x4 cannot be satisfied.

(a) (10 pts) Describe an O (m + n lg n) time algorithm that takes as input m
constraints over n variables and decides whether the constraints can be satisfied.

(b) (Bonus: 5 pts) Can you reduce the running time of your algorithm to O (n + m)?


