Stable Marriages: An Introductory Example (1)

Given:
- n women w_1, w_2, \ldots, w_n
- n men m_1, m_2, \ldots, m_n
- n marriages $(w_{i_1}, m_{j_1}), (w_{i_2}, m_{j_2}), \ldots, (w_{i_n}, m_{j_n})$
PROPOSAL-ALGORITHM(M, W)
1 while there is an unmarried man m
2 do m chooses his favourite woman w he has not proposed to yet
3 m proposes to w
4 if w is not married or likes m better than her current partner m'
5 then w divorces m'
6 w marries m

- Is there always a set of n stable marriages?
- Does the algorithm ever terminate?
- Does the algorithm always produce a correct answer?
- How efficient is the algorithm? Can we give an upper bound on its running time?
Linear Time (1)

Example: Merging two sorted sequences

- **Base case:** \(n=0\), \(k=1\)
- IH: first \(k\) elements are sorted and smaller than anything in \(A \cup B\)

1. Assume \(A_{i:j} \subset C_{b:c}\)
2. \(A_{i:j} < A_{s-j} \forall s > i\) since \(A\) is sorted
3. \(A_{i:j} < B_{k:j} \forall k \leq B\) since \(B\) is sorted and \(A_{i:j} \subset C_{b:c}\)

By IH: \(C_{e:j} < A_{i:j} \forall e\)

IH holds
Linear Time (2)

MERGE\((A, B)\)

1. \(C \leftarrow \emptyset\)
2. **while** \(A\) and \(B\) are non-empty
3. **do** Let \(a\) be the first element in \(A\)
4. Let \(b\) be the first element in \(B\)
5. **if** \(a < b\)
6. **then** Remove \(a\) from \(A\)
7. Append \(a\) to \(C\)
8. **else** Remove \(b\) from \(B\)
9. Append \(b\) to \(C\)
10. **if** \(A\) is non-empty
11. **then** Append \(A\) to \(C\)
12. **else** Append \(B\) to \(C\)
13. **return** \(C\)
Linear Time (3)

MERGE\((A, p, q, r)\)

1. \(n_1 \leftarrow q - p + 1\)
2. \(n_2 \leftarrow r - q\)
3. **for** \(i \leftarrow 1\) **to** \(n_1\)
 4. **do** \(L[i] \leftarrow A[p + i - 1]\)
5. **for** \(i \leftarrow 1\) **to** \(n_2\)
6. **do** \(R[i] \leftarrow A[q + i]\)
7. \(L[n_1 + 1] \leftarrow \infty\)
8. \(R[n_2 + 1] \leftarrow \infty\)
9. \(i \leftarrow 1\)
10. \(j \leftarrow 1\)
11. **for** \(k \leftarrow 1\) **to** \(r - p + 1\)
12. **do if** \(L[i] < R[j]\)
13. **then** \(A[k] \leftarrow L[i]\)
14. \(i \leftarrow i + 1\)
15. **else** \(A[k] \leftarrow R[j]\)
16. \(j \leftarrow j + 1\)
Example: Closest pair

Given a set P of n points, find the two points in P whose distance is smallest.

Proof by contradiction:

Assumption: p_i and q_j are not the smallest distance.

- p_iq_j are closer together.

But, we look at all pairs of points so we would have chosen p_xq_y.

\therefore contradiction!
Quadratic Time (2)

\[
\text{CLOSESTPAIR}(P)
\]

1. \(d \leftarrow +\infty \)
2. \textbf{for} every point \(p \in P \)
3. \textbf{do for} every point \(q \in P \) such that \(q \neq p \)
4. \quad \textbf{do if} \(\text{dist}(p, q) < d \)
5. \qquad \textbf{then} \(d \leftarrow \text{dist}(p, q) \)
6. \qquad \text{pair} \leftarrow (p, q)
7. \textbf{return} \text{pair}
Quadratic Time (2)

CLOSESTPAIR\((P)\)

1. \(d \leftarrow +\infty\)
2. **for** every point \(p \in P\)
3. **do for** every point \(q \in P\) such that \(q \neq p\)
4. **do if** \(\text{dist}(p, q) < d\)
5. **then** \(d \leftarrow \text{dist}(p, q)\)
6. **pair** \(\leftarrow (p, q)\)
7. **return** pair

Comments:
- Quadratic time is easy to recognize here because there are two nested loops iterating over the whole input.
- Clever use of divide-and-conquer and geometric insight leads to an \(O(n \log n)\) solution.