Average-Case Analysis and Randomization

Textbook readings:

Chapter 2
Interspersed throughout the book
Design principle:
- Make random choices and hope they are good

Analysis techniques:
- Average-case analysis
- Probability theory

Problems:
- Sorting (Quicksort & Bucket Sort)
- Selection
- Space partitions
The problem with deterministic Quicksort:

The running time is $O(n \lg n)$, but the algorithm for finding a pivot is non-trivial.
Quicksort Revisited

The problem with deterministic Quicksort:

The running time is $O(n \lg n)$, but the algorithm for finding a pivot is non-trivial.

Remedy:

Blindly use the first input element as the pivot.
Quicksort Revisited

The problem with deterministic Quicksort:

The running time is $O(n \lg n)$, but the algorithm for finding a pivot is non-trivial.

Remedy:

Blindly use the first input element as the pivot.

```
SIMPLE-QUICKSORT(A)
1  if |A| ≤ 1
2    then return A
3  else $p \leftarrow A[1]$
4  Partition $A$ into three pieces:
   ■ $L = \{x \in A \mid x < p\}$
   ■ $\{p\}$
   ■ $R = \{x \in A \setminus \{p\} \mid x \geq p\}$
5  $L' \leftarrow$ QUICKSORT($L$)
6  $R' \leftarrow$ QUICKSORT($R$)
7  return $L' \circ \{p\} \circ R'$
```
Quicksort Revisited

The problem with deterministic Quicksort:

The running time is $O(n \lg n)$, but the algorithm for finding a pivot is non-trivial.

Remedy:

Blindly use the first input element as the pivot.

SIMPLE-QUICKSORT(A)

```plaintext
1 if |$A|$ $\leq$ 1
2 then return $A$
3 else $p \leftarrow A[1]$
4 Partition $A$ into three pieces:
   - $L = \{x \in A \mid x < p\}$
   - $\{p\}$
   - $R = \{x \in A \setminus \{p\} \mid x \geq p\}$
5 $L' \leftarrow$ QUICKSORT($L$)
6 $R' \leftarrow$ QUICKSORT($R$)
7 return $L' \circ \{p\} \circ R'$
```

Running time:
Quicksort Revisited

The problem with deterministic Quicksort:

The running time is $O(n \lg n)$, but the algorithm for finding a pivot is non-trivial.

Remedy:

Blindly use the first input element as the pivot.

Simple-Quicksort (A)

1. if $|A| \leq 1$
2. then return A
3. else $p \leftarrow A[1]$
4. Partition A into three pieces:
 - $L = \{x \in A \mid x < p\}$
 - $\{p\}$
 - $R = \{x \in A \setminus \{p\} \mid x \geq p\}$
5. $L' \leftarrow \text{Quicksort}(L)$
6. $R' \leftarrow \text{Quicksort}(R)$
7. return $L' \circ \{p\} \circ R'$

Running time:

- Worst case: $O(n^2)$
Quicksort Revisited

The problem with deterministic Quicksort:

The running time is $O(n \lg n)$, but the algorithm for finding a pivot is non-trivial.

Remedy:

Blindly use the first input element as the pivot.

```
SIMPLE-QUICKSORT (A)
1    if |A| ≤ 1
2      then return A
3    else p ← A[1]
4   Partition A into three pieces:
5      L = {x ∈ A | x < p}
6      {p}
7      R = {x ∈ A \ {p} | x ≥ p}
8    L′ ← QUICKSORT (L)
9    R′ ← QUICKSORT (R)
10   return L′ ⊕ {p} ⊕ R′
``` 

Running time:

- Worst case: $O(n^2)$
- Average case: $O(n \lg n)$
Simple-Quicksort

1. if \(|A| \leq 1\) then return \(A\)
2. else \(p \leftarrow A[1]\)
3. Partition \(A\) into three pieces:
 - \(L = \{x \in A \mid x < p\}\)
 - \(\{p\}\)
 - \(R = \{x \in A \setminus \{p\} \mid x \geq p\}\)
4. \(L' \leftarrow \text{QUICKSORT}(L)\)
5. \(R' \leftarrow \text{QUICKSORT}(R)\)
6. return \(L' \circ \{p\} \circ R'\)

Lemma: The expected running time of algorithm Simple-Quicksort is \(O(n \log n)\).
Observation: The running time of Simple-Quicksort is $O(n + X)$, where X is the number of comparisons it performs.
Observation: The running time of Simple-Quicksort is $O(n + X)$, where X is the number of comparisons it performs.

∴ It suffices to show that $E(X) = O(n \log n)$.
Observation: The running time of Simple-Quicksort is $\mathcal{O}(n + X)$, where X is the number of comparisons it performs.

∴ It suffices to show that $E(X) = \mathcal{O}(n \log n)$.

Observation: Any two elements are compared at most once.
Let $a_1 < a_2 < \cdots < a_n$ be the elements in A.

Let $E_{ij} = \text{“}a_i \text{ and } a_j \text{ are compared}\text{”}$

Let $X_{ij} = I(E_{ij})$
Let $a_1 < a_2 < \cdots < a_n$ be the elements in A.

Let $E_{ij} = \text{“}a_i$ and a_j are compared\text{“}$

Let $X_{ij} = I(E_{ij})$

\[
E(X) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E(X_{ij})
\]
Let \(a_1 < a_2 < \cdots < a_n \) be the elements in \(A \).

Let \(E_{ij} = \) “\(a_i \) and \(a_j \) are compared”

Let \(X_{ij} = I(E_{ij}) \)

\[
E(X) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E(X_{ij})
\]

Lemma: \(E(X_{ij}) = \Pr(E_{ij}) = \frac{2}{j-i+1} \).
Let $a_1 < a_2 < \cdots < a_n$ be the elements in A.

Let $E_{ij} = \text{"}a_i \text{ and } a_j \text{ are compared}\text{"}$

Let $X_{ij} = I(E_{ij})$

$$E(X) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E(X_{ij})$$

Lemma: $E(X_{ij}) = \Pr(E_{ij}) = \frac{2}{j-i+1}$.

Corollary: $E(X) = \mathcal{O}(n \lg n)$.
Can we sort faster than $O(n \lg n)$ time?
Can we sort faster than $O(n \lg n)$ time?

Assumption: Elements are numbers drawn uniformly at random from $(0, 1]$.
Sorting in Linear Time

Can we sort faster than \(\mathcal{O}(n \lg n) \) time?

Assumption: Elements are numbers drawn uniformly at random from \((0, 1]\).

\[
\text{BUCKET-SORT}(A, n)
\]

1. Allocate an array \(B \) of size \(n \); each entry \(B[i] \) stores a pointer to an initially empty linked list.
2. for \(i \leftarrow 1 \) to \(n \)
3. \hspace{0.5cm} do Insert \(A[i] \) into list \(B[\lceil n \cdot A[i] \rceil] \)
4. for \(i \leftarrow 1 \) to \(n \)
5. \hspace{0.5cm} do Sort \(B[i] \) using Insertion Sort
6. Append the sorted list to the output
Can we sort faster than $O(n \lg n)$ time?

Assumption: Elements are numbers drawn uniformly at random from $(0, 1]$.

Bucket-Sort (A, n)
1. Allocate an array B of size n; each entry $B[i]$ stores a pointer to an initially empty linked list.
2. for $i \leftarrow 1$ to n
3. do Insert $A[i]$ into list $B[\lceil n \cdot A[i] \rceil]$
4. for $i \leftarrow 1$ to n
5. do Sort $B[i]$ using Insertion Sort
6. Append the sorted list to the output

Observation: The worst-case running time of Bucket Sort is $O(n^2)$.
Sorting in Linear Time

Can we sort faster than $O(n \log n)$ time?

Assumption: Elements are numbers drawn uniformly at random from $(0, 1]$.

Bucket-Sort (A, n)

1. Allocate an array B of size n; each entry $B[i]$ stores a pointer to an initially empty linked list.
2. for $i \leftarrow 1$ to n
3. do Insert $A[i]$ into list $B[\lceil n \cdot A[i] \rceil]$
4. for $i \leftarrow 1$ to n
5. do Sort $B[i]$ using Insertion Sort
6. Append the sorted list to the output

Observation: The worst-case running time of Bucket Sort is $O(n^2)$.

Lemma: If the elements of A are drawn uniformly at random from $(0, 1]$, the expected running time of Bucket Sort is $O(n)$.

Since the algorithms are deterministic, they have worst-case inputs.

Our analysis *assumes* a uniform distribution over all possible inputs. We don’t know the real distribution.
Randomization

The remedy:

Impose the random distribution.

(Let the algorithm make random choices.)
Randomization

The remedy:

Impose the random distribution.
(Let the algorithm make random choices.)

Benefits:

- No more assumptions about given input distribution.
- Resulting algorithms are still extremely simple.
Randomization

The remedy:

Impose the random distribution.
(Let the algorithm make random choices.)

Benefits:

- No more assumptions about given input distribution.
- Resulting algorithms are still extremely simple.

Issues:

- Random permutations can usually be generated without altering the meaning of the input.
- The distribution of the values of the input elements *cannot* be controlled. (Bucket sort)
Randomized Quicksort

RANDOMIZED-QUICKSORT(A)

1. if |A| ≤ 1
2. then return A
3. else p ← A[RANDOM(1, |A|)]
4.Partition A into three pieces:
 - L = \{x ∈ A | x < p\}
 - \{p\}
 - R = \{x ∈ A \{p\} | x ≥ p\}
5. L' ← QUICKSORT(L)
6. R' ← QUICKSORT(R)
7. return L' ∘ \{p\} ∘ R'

Lemma: The expected running time of algorithm Randomized-Quicksort is \(O(n \lg n)\).
Randomized Selection

Randomized-Select \((A, k)\)

1. if \(|A| = 1\) then return \(A[1]\)
2. \(p \leftarrow A[\text{RANDOM}(1, |A|)]\)
3. Partition \(A\) into three pieces:
 - \(L = \{x \in A \mid x < p\}\)
 - \(\{p\}\)
 - \(R = \{x \in A \setminus \{p\} \mid x \geq p\}\)
4. if \(k = |L| + 1\) then return \(p\)
5. else if \(k < |L| + 1\) then return Randomized-Select\((L, k)\)
6. else return Randomized-Select\((R, k - |L| - 1)\)

Lemma: The expected running time of algorithm Randomized-Select is \(\mathcal{O}(n)\).
Rendering Scenes

Rendering a 3D scene on screen:

- Some objects hide other objects from view.
- Simplest algorithm: “Painter’s algorithm” = Render objects back to front and paint over
Rendering a 3D scene on screen:

- Some objects hide other objects from view.
- Simplest algorithm: “Painter’s algorithm” = Render objects back to front and paint over

Problem: How to decide quickly in which order to render objects. What’s “back to front” for a given viewpoint?
Rendering Scenes

Rendering a 3D scene on screen:

- Some objects hide other objects from view.
- Simplest algorithm: “Painter’s algorithm” = Render objects back to front and paint over

Problem: How to decide quickly in which order to render objects. What’s “back to front” for a given viewpoint?
Binary Space Partitions

- Recursively partition the plane using lines.
- Represent partition using rooted tree.
- Every internal node v corresponds to a region $R(v)$.
- Leaves below v store (pieces of) line segments contained in $R(v)$.
Binary Space Partitions
The lines used to partition the plane are spanned by the line segments.

Every node in the partition tree represents a (piece of a) line segment s, a region $R(s)$, and the line $\ell(s)$ spanned by s.

The descendants of a node s store all (pieces of) line segments contained in $R(s)$.
The lines used to partition the plane are spanned by the line segments.

Every node in the partition tree represents a (piece of a) line segment s, a region $R(s)$, and the line $\ell(s)$ spanned by s.

The descendants of a node s store all (pieces of) line segments contained in $R(s)$.

Goal: Compute a small autopartition for a set S of line segments.
Computing a Small Autopartition

AUTOPARTITION(S)
1. Permute the elements in S uniformly at random.
2. Rec-Autopartition(S)

Rec-Autopartition(S)
1. Create a node r with $s(r) = S[1]$
2. $\ell \leftarrow$ the line spanned by $S[1]$
3. $S_l \leftarrow$ all segments in S to the left of ℓ
4. $S_r \leftarrow$ all segments in S to the right of ℓ
5. $S_i \leftarrow$ all segments in S that intersect ℓ
6. $S_l \leftarrow S_l \cup S_i$
7. $S_r \leftarrow S_r \cup S_i$
8. **if** $|S_l| > 0$
9. **then** left(r) \leftarrow Rec-Autopartition(S_l)
10. **if** $|S_r| > 0$
11. **then** right(r) \leftarrow Rec-Autopartition(S_r)
12. **return** r
Observation: The size of the computed partition is $O(n + I)$, where I is the number of intersections.
Observation: The size of the computed partition is $O(n + I)$, where I is the number of intersections.

Lemma: The expected number of intersections is $O(n \lg n)$.
Observation: The size of the computed partition is $O(n + I)$, where I is the number of intersections.

Lemma: The expected number of intersections is $O(n \lg n)$.

Corollary: Algorithm Autopartition computes an autopartition of expected size $O(n \lg n)$.
Generating Uniform Random Permutations

\textbf{RANDOM-PERMUTATION}(A, n)

1. for \texttt{i} ← 1 to \texttt{n} − 1
2. do swap \texttt{A[i]} ↔ \texttt{A[random(\texttt{i}, \texttt{n})]}
Generating Uniform Random Permutations

Algorithm: Random-Permutation

1. for $i \leftarrow 1$ to $n - 1$
2. do swap $A[i] \leftrightarrow A[\text{random}(i, n)]$

Observation: Algorithm Random-Permutation takes linear time.
Generating Uniform Random Permutations

RANDOM-PERMUTATION(\(A, n\))

1. for \(i \leftarrow 1\) to \(n - 1\)
2. do swap \(A[i] \leftrightarrow A[\text{random}(i, n)]\)

Observation: Algorithm Random-Permutation takes linear time.

Lemma: Algorithm Random-Permutation produces any permutation with probability \(1/n!\).
Summary

Average-case analysis analyzes the expected running time of deterministic algorithms, assuming a suitable random distribution of the inputs.

Randomized algorithms make random choices.

Their expected running time depends on the random choices, not on any input distribution.

Benefits:
- Randomized algorithms have no worst-case inputs. (An adversary is powerless.)
- Randomized algorithms are often simpler than equally efficient deterministic algorithms.
- Randomized algorithms are often faster than comparable deterministic algorithms.

Drawback:
- In the worst case, a randomized algorithm may be very slow.