Average-Case Analysis and Randomization

CSci 3110

Textbook readings:

Chapter 2
Interspersed throughout the book
Hamiltonian cycle
Overview

Design principle:
- Make random choices and hope they are good

Analysis techniques:
- Average-case analysis
- Probability theory

Problems:
- Sorting (Quicksort & Bucket Sort)
- Selection
- Space partitions
Selection

partition on the mean

\[L \leq x \leq R \]

search where the rank should be!

\[> \frac{3}{10} - 6 \]

\[\sim \frac{2}{10} \]
Quicksort Revisited

The problem with deterministic Quicksort:

The running time is $\mathcal{O}(n \lg n)$, but the algorithm for finding a pivot is non-trivial.
Quicksort Revisited

The problem with deterministic Quicksort:

The running time is $O(n \lg n)$, but the algorithm for finding a pivot is non-trivial.

Remedy:

Blindly use the first input element as the pivot.
The problem with deterministic Quicksort:

The running time is $O(n \log n)$, but the algorithm for finding a pivot is non-trivial.

Remedy:

Blindly use the first input element as the pivot.

```
SIMPLE-QUICKSORT(A)
1  if |A| ≤ 1
2     then return A
3  else p ← A[1]
4  Partition A into three pieces:
5     L = {x ∈ A | x < p}
6     {p}
7     R = {x ∈ A \ {p} | x ≥ p}
5  L' ← QUICKSORT(L)
6  R' ← QUICKSORT(R)
7  return L' o {p} o R'
```
Quicksort Revisited

The problem with deterministic Quicksort:

The running time is $O(n \lg n)$, but the algorithm for finding a pivot is non-trivial.

Remedy:

Blindly use the first input element as the pivot.

```
SIMPLE-QUICKSORT(A)
1  if |A| ≤ 1
2    then return A
3  else $p \leftarrow A[1]$
4  Partition $A$ into three pieces:
5      $L = \{ x \in A \mid x < p \}$
6      $\{p\}$
7      $R = \{ x \in A \setminus \{p\} \mid x \geq p \}$
8  $L' \leftarrow$ QUICKSORT($L$)
9  $R' \leftarrow$ QUICKSORT($R$)
10 $\text{return } L' \circ \{p\} \circ R'$
```

Running time:
Quicksort Revisited

The problem with deterministic Quicksort:

The running time is $O(n \lg n)$, but the algorithm for finding a pivot is non-trivial.

Remedy:

Blindly use the first input element as the pivot.

```
SIMPLE-QUICKSORT(A)
1   if |A| ≤ 1
2       then return A
3   else $p \leftarrow A[1]$
4   Partition A into three pieces:
5       $L = \{x \in A \mid x < p\}$
6       $\{p\}$
7       $R = \{x \in A \setminus \{p\} \mid x \geq p\}$
8   $L' \leftarrow \text{QUICKSORT}(L)$
9   $R' \leftarrow \text{QUICKSORT}(R)$
10  return $L' \circ \{p\} \circ R'$
```

Running time:

- Worst case: $O(n^2)$
Quicksort Revisited

The problem with deterministic Quicksort:

The running time is $O(n \log n)$, but the algorithm for finding a pivot is non-trivial.

Remedy:

Blindly use the first input element as the pivot.

```
SIMPLE-QUICKSORT(A)
1  if |A| ≤ 1
2    then return A
3  else $p \leftarrow A[1]$
4  Partition A into three pieces:
5    $L = \{x \in A \mid x < p\}$
6    $\{p\}$
7    $R = \{x \in A \setminus \{p\} \mid x \geq p\}$
8  $L' \leftarrow$ QUICKSORT($L$)
9  $R' \leftarrow$ QUICKSORT($R$)
10 return $L' \circ \{p\} \circ R'$
```

Running time:

- Worst case: $O(n^2)$
- Average case: $O(n \log n)$
Average-Case Analysis of Simple-Quicksort

Simple-Quicksort (A)

1. **if** $|A| \leq 1$
2. **then return** A
3. **else** $p \leftarrow A[1]$
4. Partition A into three pieces:
 - $L = \{x \in A \mid x < p\}$
 - $\{p\}$
 - $R = \{x \in A \setminus \{p\} \mid x \geq p\}$
5. $L' \leftarrow \text{QUICKSORT}(L)$
6. $R' \leftarrow \text{QUICKSORT}(R)$
7. **return** $L' \circ \{p\} \circ R'$

Lemma: The expected running time of algorithm Simple-Quicksort is $O(n \lg n)$.

CSci 3110 • Average-Case Analysis and Randomization • 4/18
Observation: The running time of Simple-Quicksort is $O(n + X)$, where X is the number of comparisons it performs.

$\sum_{i=0}^{n} \text{ constants for each pivot}$

$n \sim n^2$
Observation: The running time of Simple-Quicksort is $O(n + X)$, where X is the number of comparisons it performs.

\[\therefore \text{It suffices to show that } E(X) = O(n \log n). \]
Observation: The running time of Simple-Quicksort is $O(n + X)$, where X is the number of comparisons it performs.

∴ It suffices to show that $E(X) = O(n \lg n)$.

Observation: Any two elements are compared at most once.
Let $a_1 < a_2 < \cdots < a_n$ be the elements in A.

Let $E_{ij} = \text{“}a_i \text{ and } a_j \text{ are compared”}$

Let $X_{ij} = I(E_{ij})$
Let \(a_1 < a_2 < \cdots < a_n \) be the elements in \(A \).

Let \(E_{ij} = \) “\(a_i \) and \(a_j \) are compared”

Let \(X_{ij} = I(E_{ij}) \)

\[
E(X) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E(X_{ij})
\]
Let \(a_1 < a_2 < \cdots < a_n \) be the elements in \(A \).

Let \(E_{ij} = \text{“} a_i \text{ and } a_j \text{ are compared”} \)

Let \(X_{ij} = I(E_{ij}) \)

\[
E(X) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E(X_{ij})
\]

Lemma: \(E(X_{ij}) = \Pr(E_{ij}) = \frac{2}{j-i+1} \).
\[
\frac{2}{2} \cdot (n-1) + \frac{2}{3} \cdot (n-2) + \frac{2}{4} \cdot (n-3) + \frac{2}{5} \cdot (n-4) + \frac{2}{6} \cdot (n-5)
\]
\[
+ \frac{2}{7} \cdot n - 6 + \frac{2}{8} \cdot n - 7
\]

\[
\langle 2n \rangle \quad \langle \frac{1}{2} \cdot 4 \cdot n \rangle \leq 2n \quad \geq 2n
\]

\[
\text{first 2} \quad \text{next 4} \quad \text{next 8}
\]
$$\sum_{i=0}^{\log n} 2^n = \Theta(n \log n)$$
Let \(a_1 < a_2 < \cdots < a_n \) be the elements in \(A \).

Let \(E_{ij} = "a_i \text{ and } a_j \text{ are compared}" \)

Let \(X_{ij} = I(E_{ij}) \)

\[
E(X) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E(X_{ij})
\]

Lemma: \(E(X_{ij}) = Pr(E_{ij}) = \frac{2}{j-i+1} \).

Corollary: \(E(X) = \mathcal{O}(n \lg n) \).
Can we sort faster than $\mathcal{O}(n \lg n)$ time?
Can we sort faster than $O(n \lg n)$ time?

Assumption: Elements are numbers drawn uniformly at random from $(0, 1]$.

Sorting in Linear Time

Can we sort faster than $O(n \lg n)$ time?

Assumption: Elements are numbers drawn uniformly at random from $(0, 1]$.

Bucket-Sort(A, n)

1. Allocate an array B of size n; each entry $B[i]$ stores a pointer to an initially empty linked list.
2. For $i \leftarrow 1$ to n
3. Do Insert $A[i]$ into list $B[{\lceil n \cdot A[i] \rceil}]$
4. For $i \leftarrow 1$ to n
5. Do Sort $B[i]$ using Insertion Sort
6. Append the sorted list to the output

$n = 5$

\[
\begin{array}{cccccc}
0.2 & 0.5 & 0.55 & 0.3 & 0.7 \\
\end{array}
\]

\[
\begin{array}{cccccc}
0.2 & 0.3 & 0.5 & 0.55 & 0.7 \\
\end{array}
\]
Can we sort faster than $O(n \lg n)$ time?

Assumption: Elements are numbers drawn uniformly at random from $(0, 1]$.

Bucket-Sort (A, n)

1. Allocate an array B of size n; each entry $B[i]$ stores a pointer to an initially empty linked list.
2. for $i \leftarrow 1$ to n
3. do Insert $A[i]$ into list $B[\lceil n \cdot A[i] \rceil]$
4. for $i \leftarrow 1$ to n
5. do Sort $B[i]$ using Insertion Sort
6. Append the sorted list to the output

Observation: The worst-case running time of Bucket Sort is $O(n^2)$.

CSci 3110 • Average-Case Analysis and Randomization • 7/18
Sorting in Linear Time

Can we sort faster than $\mathcal{O}(n \lg n)$ time?

Assumption: Elements are numbers drawn uniformly at random from $(0, 1]$.

Bucket-Sort(A, n)

1. Allocate an array B of size n; each entry $B[i]$ stores a pointer to an initially empty linked list.
2. for $i \leftarrow 1$ to n
3. do Insert $A[i]$ into list $B[\lceil n \cdot A[i] \rceil]$
4. for $i \leftarrow 1$ to n
5. do Sort $B[i]$ using Insertion Sort
6. Append the sorted list to the output

Observation: The worst-case running time of Bucket Sort is $\mathcal{O}(n^2)$.

Lemma: If the elements of A are drawn uniformly at random from $(0, 1]$, the expected running time of Bucket Sort is $\mathcal{O}(n)$.
Since the algorithms are deterministic, they have worst-case inputs.

Our analysis **assumes** a uniform distribution over all possible inputs. We don’t know the real distribution.
Randomization

The remedy:

Impose the random distribution.

(Let the algorithm make random choices.)
Randomization

The remedy:

Impose the random distribution.
(Let the algorithm make random choices.)

Benefits:

- No more assumptions about given input distribution.
- Resulting algorithms are still extremely simple.
Randomization

The remedy:

Impose the random distribution.
(Let the algorithm make random choices.)

Benefits:

- No more assumptions about given input distribution.
- Resulting algorithms are still extremely simple.

Issues:

- Random permutations can usually be generated without altering the meaning of the input.
- The distribution of the values of the input elements *cannot* be controlled. (Bucket sort)
Randomized Quicksort

\textbf{RANDOMIZED-QUICKSORT}(A)
\begin{enumerate}
\item \textbf{if} $|A| \leq 1$
\item \textbf{then return} A
\item \textbf{else} $p \leftarrow A[\text{RANDOM}(1, |A|)]$
\item \text{Partition} A \text{into three pieces:}
\begin{itemize}
\item $L = \{x \in A \mid x < p\}$
\item $\{p\}$
\item $R = \{x \in A \setminus \{p\} \mid x \geq p\}$
\end{itemize}
\item $L' \leftarrow \text{QUICKSORT}(L)$
\item $R' \leftarrow \text{QUICKSORT}(R)$
\item \textbf{return} $L' \circ \{p\} \circ R'$
\end{enumerate}

\textbf{Lemma:} The expected running time of algorithm Randomized-Quicksort is $O(n \lg n)$.
\(\frac{2}{4} \)
Randomized Selection

Randomized-Select \((A, k)\)

1. if \(|A| = 1\) then return \(A[1]\)
2. \(p \leftarrow A[\text{Random}(1, |A|)]\)
3. Partition \(A\) into three pieces:
 - \(L = \{x \in A \mid x < p\}\)
 - \(\{p\}\)
 - \(R = \{x \in A \setminus \{p\} \mid x \geq p\}\)
4. if \(k = |L| + 1\) then return \(p\)
5. else if \(k < |L| + 1\) then return **Randomized-Select**\((L, k)\)
6. else return **Randomized-Select**\((R, k - |L| - 1)\)

Lemma: The expected running time of algorithm Randomized-Select is \(\mathcal{O}(n)\).
1 3 6 7 9 8 10 5 2 4

Select the median

Something is a good pivot if its rank is between $1/4n$ and $3/4n$.

$1/4n$ $3/4n$
\[\frac{n}{2} \text{ "good" pivots} \]

50% of picking a good pivot

Look at 2 recursive calls \(E(x) \) where \(x \) is the number of good pivots chosen,

\[\frac{x}{2} \cdot \frac{1}{2} = 1 \]

So expect 1 good pivot every 2 iterations expected \(O(n) \) running time
Rendering Scenes

Rendering a 3D scene on screen:

- Some objects hide other objects from view.
- Simplest algorithm: “Painter’s algorithm” = Render objects back to front and paint over
Rendering Scenes

Rendering a 3D scene on screen:

- Some objects hide other objects from view.
- Simplest algorithm: “Painter’s algorithm” = Render objects back to front and paint over

Problem: How to decide quickly in which order to render objects. What’s “back to front” for a given viewpoint?
Rendering Scenes

Rendering a 3D scene on screen:

- Some objects hide other objects from view.
- Simplest algorithm: “Painter’s algorithm” = Render objects back to front and paint over

Problem: How to decide quickly in which order to render objects. What’s “back to front” for a given viewpoint?
Recursively partition the plane using lines.

Represent partition using rooted tree.

Every internal node v corresponds to a region $R(v)$.

Leaves below v store (pieces of) line segments contained in $R(v)$.
Binary Space Partitions
The lines used to partition the plane are spanned by the line segments.

Every node in the partition tree represents a (piece of a) line segment s, a region $R(s)$, and the line $\ell(s)$ spanned by s.

The descendants of a node s store all (pieces of) line segments contained in $R(s)$.
The lines used to partition the plane are spanned by the line segments.

Every node in the partition tree represents a (piece of a) line segment s, a region $R(s)$, and the line $\ell(s)$ spanned by s.

The descendants of a node s store all (pieces of) line segments contained in $R(s)$.

Goal: Compute a small autopartition for a set S of line segments.
Computing a Small Autopartition

Autopartition(*S*)
1. Permute the elements in *S* uniformly at random.
2. Rec-Autopartition(*S*)

Rec-Autopartition(*S*)
1. Create a node *r* with *s*(r) = *S*[1]
2. ℓ ← the line spanned by *S*[1]
3. *S*_l ← all segments in *S* to the left of ℓ
4. *S*_r ← all segments in *S* to the right of ℓ
5. *S*_i ← all segments in *S* that intersect ℓ
6. *S*_l ← *S*_l ∪ *S*_i
7. *S*_r ← *S*_r ∪ *S*_i
8. if |*S*_l| > 0
 9. then left(*r*) ← Rec-Autopartition(*S*_l)
10. if |*S*_r| > 0
 11. then right(*r*) ← Rec-Autopartition(*S*_r)
12. return *r*
Size of the Computed Partition

Observation: The size of the computed partition is $O(n + I)$, where I is the number of intersections.
Observation: The size of the computed partition is $O(n + I)$, where I is the number of intersections.

Lemma: The expected number of intersections is $O(n \lg n)$.
Observation: The size of the computed partition is $O(n + I)$, where I is the number of intersections.

Lemma: The expected number of intersections is $O(n \lg n)$.

Corollary: Algorithm Autopartition computes an autopartition of expected size $O(n \lg n)$.
Generating Uniform Random Permutations

Random-Permutation \((A, n)\)

1. for \(i \leftarrow 1\) to \(n - 1\)
2. do swap \(A[i] \leftrightarrow A[\text{random}(i, n)]\)

\[\begin{array}{c}
12345 \\
\hline
32145 \\
34125 \\
34521 \\
34512
\end{array}\]

\(n!\) permutations
Generating Uniform Random Permutations

Algorithm: Random-Permutation

```plaintext
RANDOM-PERMUTATION(A, n)
1 for i ← 1 to n − 1
2 do swap A[i] ↔ A[random(i, n)]
```

Observation: Algorithm Random-Permutation takes linear time.
Generating Uniform Random Permutations

Random-Permutation \((A, n)\)

1. for \(i \leftarrow 1\) to \(n - 1\)
2. do swap \(A[i] \leftrightarrow A[\text{random}(i, n)]\)

Observation: Algorithm Random-Permutation takes linear time.

Lemma: Algorithm Random-Permutation produces any permutation with probability \(1/n!\).
12345... n

n-1, n-2, n-3

n(n-1)(n-2)(n-3)... n!}

12345

21345
Summary

Average-case analysis analyzes the expected running time of deterministic algorithms, assuming a suitable random distribution of the inputs.

Randomized algorithms make random choices.

Their expected running time depends on the random choices, not on any input distribution.

Benefits:
- Randomized algorithms have no worst-case inputs. (An adversary is powerless.)
- Randomized algorithms are often simpler than equally efficient deterministic algorithms.
- Randomized algorithms are often faster than comparable deterministic algorithms.

Drawback:
- In the worst case, a randomized algorithm may be very slow.