1. In this problem we will develop a divide-and-conquer algorithm for the following geometric task.

Closest Pair

Input: A set of points in the plane, \(\{ p_1 = (x_1, y_1), p_2 = (x_2, y_2), \ldots, p_n = (x_n, y_n) \} \)

Output: The closest pair of points: that is, the pair \(p_i \neq p_j \) for which the distance between \(p_i \) and \(p_j \), that is,

\[
\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2},
\]

is minimized.

For simplicity, assume that \(n \) is a power of two, and that all the \(x \)-coordinates \(x_i \) are distinct, as are the \(y \)-coordinates.

Here’s a high-level overview of the algorithm:

- If we have two points we simply return those points. Otherwise, we:
- Find a value \(x_m \) for which exactly half the points have \(x_i \leq x_m \), and half have \(x_i > x_m \). On this basis, split the points into two groups, \(L \) and \(R \).
- Recursively find the closest pair in \(L \) and in \(R \). Say these pairs are \(\{ p_L, q_L \} \in L \) and \(\{ p_R, q_R \} \in R \), with distances \(d_L \) and \(d_R \) respectively. Let \(d \) be the smaller of these two distances.
- It remains to be seen whether there is a point in \(L \) and a point in \(R \) that are less than distance \(d \) apart from each other. To this end, discard all points with \(x_i < x_m - d \) or \(x_i > x_m + d \) and sort the remaining points by \(y \)-coordinate.
- Now go through this sorted list, and for each point, compute its distance to the seven subsequent points in the list. Let \(\{ p_M, q_M \} \) be the closest pair found in this way.
- The answer is one of the three pairs \(\{ p_L, q_L \}, \{ p_R, q_R \}, \{ p_M, q_M \} \), whichever is closest.
(a) (10 pts) In order to prove the correctness of this algorithm, start by showing the following property: any square of size $d \times d$ in the plane contains at most four points of L.

Answer: To show this property, we will try to create a square of size $d \times d$ with five points that are at least a distance of d apart. Assume, without loss of generality, that the square covers the range $0 \leq x \leq d$, $0 \leq y \leq d$. We can start by placing one point in the corner (d,d) of this square—as far away from the other points as possible. Now no other point can be placed within a circle of radius d from this point. Thus we need to place four points in an area contained in the triangle formed by $(0,0)$, $(0,d)$, and $(d,0)$. So let us first try to place the four points into this triangle. Again, we put the next point into a corner as far away from the other points as possible—$(0,0)$. We again cannot place any point within the circle of radius d of this point, so we are left with an area contained by the triangle $(0,0)$, $(d/2,d/2)$, and $(d,0)$. Continuing this process, we place a point at $(d,0)$ and are left with only the ability to place a fourth point at $(0,0)$. Therefore, any square of size $d \times d$ in a plane contains at most four points of distance at least d apart (and thus at most four points of L).

(b) (10 pts) Now show that the algorithm is correct using induction. The only case which needs careful consideration is when the closest pair is split between L and R.

Answer: Let our inductive hypothesis be that the algorithm correctly returns the closest pair of points from a set of points of size less than n. Our base case occurs when we have two points and the algorithm correctly returns them. By the inductive hypothesis, (p_L,q_L) is the closest pair contained in L and (p_R,q_R) is the closest pair contained in R, so the algorithm is correct when the closest pair is not split between L and R.

Now assume, for the purpose of obtaining a contradiction, that the closest pair is $\{(x_i,y_i),(x_j,y_j)\} \neq \{p_M,q_M\}$. Then the distance between p_Z and q_Z is less than d. This implies that $x_j - x_i < d$, so their x-coordinates do not differ from x_m by more than d and neither point can have been discarded. If there were fewer than 7 points with a y-coordinate between y_i and y_j that were not discarded then the algorithm would have considered the closest pair and returned it, so there must be 7 points with y coordinates between y_i and y_j. This means that there are 9 points in the rectangle covering $x_m - d \leq x \leq x_m + d$, $y_i \leq y \leq y_j$ which is a rectangle of size at most $2d \times d$. Then there must be 5 points in one half of this rectangle, a square of size $d \times d$, contradicting the property we proved in part (a).
(c) (10 pts) Write down the pseudocode for the algorithm, and show that its running time is given by the recurrence:

\[T(n) = 2T(n/2) + O(n \log n). \]

ANSWER:

```plaintext
Closest-Pair(P)
1   if |P| = 2
2       then Return \{P[1], P[2]\}
3   else \( x_m \) ← the median \( x \)-coordinate
4       Partition \( P \) into two pieces:
5           \( L = \{(x_i, x_j) \in P \mid x_i \leq x_m\} \)
6           \( R = \{(x_i, x_j) \in P \mid x_i > x_m\} \)
7           \{p_L, q_L\} ← Closest-Pair(L)
8           \{p_R, q_R\} ← Closest-Pair(R)
9       \( P = L \cup R \)
10       if Distance(p_L, q_L) < Distance(p_R, q_R)
11           then \( c \leftarrow \{p_L, q_L\} \)
12               \( d \leftarrow \text{Distance}(p_L, q_L) \)
13           else \( c \leftarrow \{p_R, q_R\} \)
14               \( d \leftarrow \text{Distance}(p_R, q_R) \)
15       Discard points:
16           \( P = \{(x_i, x_j) \in P \mid x_m - d < x_i < x_m + d\} \)
17       Sort \( P \) by \( y \)-coordinate
18       for \( i \leftarrow 1 \) to |\( P \)|
19           do for \( j \leftarrow i + 1 \) to \( i + 7 \) and \( j < |P| \)
20               do if Distance(P[i], P[j]) < \( d \)
21                   then \( c \leftarrow \{P[i], P[j]\} \)
22                       \( d \leftarrow \text{Distance}(P[i], P[j]) \)
23       Return \( c \)
```

To find the recurrence we just add up all of the steps. The only recursion is on two subproblems with \(n/2 \) points, so we have \(2T(n/2) \) in the recurrence. Finding the median \(x \)-coordinate, partitioning \(P \) into \(L \) and \(R \), discarding points, and comparing each point with its 7 successors takes linear time. Sorting takes \(O(n \log n) \) time. Thus we have the recurrence \(T(n) = 2T(n/2) + O(n \log n) \).
(d) (10 pts) Show that the solution to this recurrence is O \((n \log^2 n) \).

ANSWER: We prove this using substitution. For our base case, we have that
\[
T(n) \leq c \leq cn \log^2 n \text{ for } n \leq 4 \text{ and a large enough value of } c.
\]
We then have
\[
T(n) = 2T(n/2) + O(n \log n)
\]
\[
\leq 2cn \frac{n}{2} \log^2 \frac{n}{2} + dn \log n
\]
\[
\leq cn \log^2 \frac{n}{2} + dn \log n
\]
\[
\leq cn \log n \log \frac{n}{2} + dn \log n
\]
\[
\leq cn \log n (\log n - \log 2) + dn \log n
\]
\[
\leq cn \log n (\log n - 1) + dn \log n
\]
\[
\leq cn \log^2 n - cn \log n + dn \log n
\]
\[
\leq cn \log^2 n - (c - d)n \log n \quad \text{for } c \geq d
\]

(e) (10 pts) How can the running time be reduced to \(O(n \log n) \)?

ANSWER: If we did not have to sort the points by \(y \)-coordinate then we would have the recurrence \(T(n) = 2T(n/2) + O(n) = O(n \log n) \). As with the recursion counting algorithm in class, we can simply keep the points sorted by \(y \)-coordinate and merge the two sorted lists of points \(L \) and \(R \) on Line 7 of the algorithm to get the list of points sorted by \(y \)-coordinate in \(O(n) \) time.