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Abstract

Any real number @ € (0, 1] can be represented as a unique Pierce series

1 1 1

q1 q192 q19293

The series is finite if and only if the number z is rational. This paper dis-
cusses the length of the series and the final results are a new upper bound
(Theorem 2) and a new lower bound (Theorem 3) on the length.

The numerical computations concerning the length are done by computer
and the algorithms used and results are presented. The numerical results are
an extension to the tables previously published.
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1 Introduction
Let the generalized binary operations div and mod be defined for all pairs
of positive real numbers in the following way:

(Va,b e RT) a div b

a mod b

max{n € Z : bn < a},
a — (a div b)b.

N
N

The result of the div operation is a nonnegative integer and the result of the
mod operation is a nonnegative real number. Using the previous definitions
it 1s easy to check that the following statements are true:

b > amodb >0, (1)
a = b(a div b) + a mod b, and (2)
%:adivb—l—am;db. (3)

Remark: The priority of the operations div and mod is the same as the
priority of multiplication or division.

Now, let & be any real number from the interval (0, 1]. If we denote 2y = =
and calculate

q = 1div zo and £, = 1 mod g

then using the relations (2) and (3) we have

1 (3 1 1 (1 1 )
T = o= = —_ — -
T l/ze  atmi/ze @ @ @tz /no
1 ql—|—£B1/ZBO—ql 1 1 L1 (2) 1 1

= — — =—— — . ——— = — — — ..

q1 q1(q1 + z1/%0) B @1 Q1 xoqrt+ 1 1 Q1

Also, using inequalities (1) and 1 > z, we can state

0<aq, x =x9>x; >0, and
1 1

T=—— —-21.
q1 q1
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If 1 1s not zero then we can repeat the process by calculating
g2 =1 div 2, and s = 1 mod z;.
We have
(2) = @oqr+z1=1=21qs+ @ UL g < T1ge 2B g < o

In an analogous way to the previous step, we conclude

0<q1 <qo, T =x9 > > T2 >0, and

1 1 1 1 1 1 1
$:_——(———$2):_——+—ZB2

q1 q1 g2 q2 q1 q192 q192

If x5 is nonzero then we can repeat the iteration and if z3 is nonzero do it
again, and so on. After k steps (if we succeed in making them) we will have
k integers 0 < g1 < g < ... < q and k real numbers ; > x5 > ... > 2z, > 0
(x; <x9<1,i=1...k) such that

1 1 1 (—1)k+1 (—1)*

r=———+ -+ + - T, (4)
q1 q192 419293 q192 - - - 4k q192 - - - gk

If the process stops at some point, i.e. z; = 0 for some k, then we know
that = is a rational number and

k )z—l—l
Therefore, for all irrational numbers ¢ the process continues forever. The
equality gry1 = 1 div 2, implies < 1/qg,1, which gives

9192 - q

A .
—1)*t 1 1
:13—2 (=1) = T < ————— <
i—1 192 - -4 9192 - - - Gk q192 - - - qk+1
<1 0 (ko)
=kt 1) o)

so we can write

. NE Vi

i—1 9192 - g
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We still do not know whether there is a rational number z such that
the process does not stop after a finite number of steps. To analyze this
situation, let us assume that # = b/a < 1 for some positive integers a and b
(the case @ = 1 is trivial). In this case, the previous iteration looks like this:

b b
g = ldiveg=1div—=max{n€Z : n-— <1}
a a
= max{n € Z : nb<a}
= adiv b,
£ = lmodazy=1— (1 div z¢)
_ l—é(adivb):a_b(adwb)
a a
~ amodb
= —

If we denote by = b and b; = a mod by then ¢ = a div by and z; = by/a. If
by is not zero (i.e. z; is not zero) we can repeat the iteration, obtain bs, g2,
and x5 = by/a, and so on. Thus, in case that * = b/a is a rational number,
the ¢th iteration can be written as

b =amodb,_y, ¢ =adivb_;, and z;=20b;/a. (5)

The sequence {z;} is strictly decreasing. Since z; = b;/a, the sequence {b;}
1s also decreasing. Actually, it is a decreasing sequence of positive integers,
so 1t has to be finite, 1.e. after a finite number of iterations we will get b, = 0.
Hence, if @ is a rational number the sequence {;} is finite.

We saw that any real number ¢ € (0,1] can be represented as a fi-
nite or infinite sum 3;(—1)"*'/(q1q2...¢). A natural question is: if a
strictly increasing sequence of positive integers {¢;} is given, how does the
series 3;(—1)"*1/(q1qs . .. ¢;) behave? Since that series is alternating with
the decreasing sequence of absolute values of its summands converging to 0
the series converges. The odd and even partial sums of that series are upper
and lower bounds of its sum, respectively, so it is easy to see that the sum is
in the interval (0, 1].
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The next question is: should we pose more constraints on the sequence
of positive integers {¢;}, besides ¢; < g;41, in order to guarantee uniqueness
of that sequence when the number z is fixed?

Suppose that the number € (0, 1] can be expressed in two ways

=yt oy

9192 - mymsy. ..M,

)z—l—l )z—l—l

where {¢;} and {m;} are two distinct, finite or infinite, increasing sequences
of positive integers. Then, there exists an integer j such that ¢; = m; for
© < j, and ¢; # m;. We have

(-1 (-1

> — =) —— &
; 4192 --4; T MaMa . ..My
—1)+1 —1)+1
)R o S oV A
i>; 4192 -4 >y MMma ... M;
_1 141 _1 14+1
Gl I Z¥©
i>; Gdi+1--- i =7 MG T
1 z - 1 Yy
9 4%+1 m; MMy

where z and y are real numbers from the interval [0,1]. If ¢;41 or m;41 or
both do not exist we can assume ¢;11 = ¢; + 1 or mjr; = m; + 1 (because
z=0ory=0). If we denote w = 1/q; — z/(q1g;j+1), then w is a positive real
number and

gw = 1-— <1,
qj+1
1 1 1 1
(G+lw = 1- 4 =" >1- — 4~
G+1 4G 29+t G+1 9 995+
1 1 1

_I_ -
TS q;(q; +1)

We have two cases: if (¢;+1)w > 1 then ¢; = 1 mod w; otherwise, (¢;+1)w =
1 and ¢; = 1 mod w — 1. The second case will happen if and only if the
sum is finite, z = 1, and ¢;41 = ¢; + 1. The analogous statement can be
maid about m;. We can assume ¢; < m;. This implies ¢; = 1 mod w — 1,
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m; = ¢j+1 = 1 mod w, ¢;41 is the last element of the sequence {¢;}, and m; is
the last element of the sequence {m;}. In this and only in this situation, two
distinct sequences {¢;} and {m;} can represent the same number z. Since we
want our algorithm (5) to always work, we will choose the shorter option, i.e.
we will put the condition that if the sequence {¢;} is finite (i.e. 1 <4 < k)
then ¢ — qr_1 > 1.

Finally, we can define that for any real number € (0, 1] the expansion

1 1 1
r=——-—+
q1 q192 q19293

L (6)

where {g;} is a strictly increasing sequence of positive integers, is called the
Pierce expansion. The series on the right side of equation (6) is called the
Pierce series. The expansion (6) can be finite or infinite. If the expansion
is finite then one more condition on the sequence {¢;} has to be satisfied:
qr — qr—1 > 1 where ¢ is the last element of the sequence.

The facts proven in this section can be gathered in the following theorem:

Theorem 1 Every real number in the interval (0,1] has a unique Pierce
expansion. The rational numbers have finite Pierce expansions and the irra-
tional numbers have infinite Pierce expansions. Any increasing sequence of
positive numbers {q;}, finite or infinite (if finite then the condition qx—qr—1 >
1 is satisfied), represents the Pierce expansion of a real number from the in-
terval (0,1].

The sequence {q;} which determines the Pierce expansion of a number
can be obtained using the recursive formulae

zo=o, x;=1modz;_;, and g =1divz;_,; (t=1,2,...).

If the number x is rational, i.e. @ = b/a for some positive integers a and b
(a > b), then the previous algorithm (in form of formulae) can be rephrased

as
bop=>0, b;=amodb;,_;, ¢ =advb,_q,

)

b
d z=2  (i=12..).
and =z , (¢ )
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If the number z is rational, i.e. * = b/a for some positive integers b
and a (b < a), then the number of elements in the finite Pierce expansion
of #, i.e. the number of elements of the finite sequence {¢;} is called the length
of that expansion, i.e. the length of that series, and is denoted as P(a,b).
The number zp(,p)—1 is the last element of the sequence {z;}. We will denote
P(a) = max{P(a,b) : 1 <b<a}. Itiseasy toseethat foralln (1 <n <
P(a)) there exists such a number b (1 < b < a) such that n = P(a,b). That
is the reason why we are primarily interested in P(a) when talking about the
“length of the Pierce series.”

This type of series was analyzed by Sierpiriski in 1911 [8]. The expansion
is due to Pierce in 1929 [4]. He made a short analysis of the expansion and
showed how the expansion can be used to obtain approximations of the ir-
rational roots of algebraic equations. Shallit gave the two above algorithms
in 1983 (published 1986) [6]. In that paper, a thorough analysis of the Pierce
expansions (more precisely, the metric theory of Pierce expansions) is given
and we will refer to some of its results in the text that follows. Mays in 1985
(published 1987) [3] discussed indirectly the finite Pierce expansion and its
length. Mays does not explicitly mention the Pierce expansion but his Algo-
rithm 6 is basically the algorithm for producing the finite Pierce expansion
and was given in [6]. We will refer to some of the results from that paper, too.
The last paper discussing the matter is a 1991 paper [1] of Erdés and Shallit.
In that paper, new lower and upper bounds are determined for the finite
Pierce series and a table for the “Worst Cases for Pierce Expansions” up to
a < 830939 (originally a is denoted as b) and P(a) < 43 is given.

2 Geometrical Representation

If we define a function f: (0,1] — [0,1] to be f(z) = 1 mod z, then the
sequence {z;} can be simply expressed in terms of an iterative process:

g = I,
z; = f(zi_1) fori=1,2...

or we can write



2 GEOMETRICAL REPRESENTATION 7

2/5 35 N 1 ye 1
Figure 1: Geometrical representation

This approach gives us means to graphically illustrate the described algo-
rithm (in general case). The illustration is given in Figure 1. The graph of
the function f is a set of semi-open line segments

1 1
1z, f e(—,—]. 7
f(z) ne or x w1 n (7)
The arrows on the figure represent the open ends of line segments. The
limitations of the physical world do not allow us to print the complete graph,
but we can get an idea. The figure also shows the sequences {z;} obtained
in the Pierce expansions of numbers 3/5 and 1 — e~!. The representation

of the sequence {¢;} is associated with relation z; € {1/(qi+1 + 1), l/qi_|_1).
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The number 1 — e~! is unique in the sense that ¢; = 7, i.e. that the numbers

Lo, T1, Ta, ... “hit” each segment of the form [1/(i+1),1/7). Intuitively, this
means that the sequence {z;} obtained in the expansion of 1 —e™! decreases
with the slowest possible rate.

Since, the process stops if x; reaches zero, without any harm to our anal-
ysis we can define

£(0) = 0.
This will save us from some distracting technical details.

If we note that £([0,1]) =[0,1/2), £([0,1/2)) =[0,1/3),... or, in general,
£0,1/i)) = [0,1/{ + 1)), then we get

()= 1)

In the special case 1 = 1, we have

P t)

which implies
1

e, = f"(z) < ——

foralln =1,2,... .

If we take any real number y € (0,1), then we have
Fw—1<1§Fw:>71 >y2L.
y vy~ ly [1/y] =1 [1/y]

Using inequality (8), we get

Y > o > e (9)

1
[1/y]

3 Upper Bound

In this section, we will set an upper bound on the function P(a) (P: N — N).
Since P(a/a) = P(1) = 1, we will not always make special remarks when a
statement does not hold only for that case.
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Let # = b/a € (0,1) (i.e. @ > b > 0) be a rational number where a
and b are positive integers (not necessarily relatively prime). We will use the
same notation as in the first section, i.e. the following sequences will have
the same definitions: {b;}:=2, {z;}i=¢ and {g;}r,, where P(a,b) = k (b_1,
zr—1 and g are the last nonzero elements obtained in the algorithm (5)).
Knowing that all elements of the strictly decreasing sequence {b;} are from
the finite set {1,2,... ,a — 1}, we easily conclude that there are no more
than a — 1 elements in that sequence. That means P(a,b) = k < a — 1 which
implies our first upper bound

P(a) <a-—1.

If we take a look at Figure 1 or at the inequality (8) we can note that
the sequence {z,,} decreases very fast in the beginning. We have not used
that fact when we got the previous upper bound. In order to use it, we can
choose any real number y € (0,1) and write

Pla.b)=3{w; : 12 0) =3{w; : m >y} +#{zi 2 <y,

(10)
where # X means: the number of elements of the finite set X. The inequal-
ity (9) implies

1 1
#{a;, : x; >y} < {—-‘ —-1< - (11)
Y Y
On the other hand

#{zi + w<y}l=
MO Byl b <an) < ay
since b;’s are distinct positive integers. Now, using the last two inequalities
and (10), we have
P(a,b) < i + ay.

In order to choose the best value of y (so that the last bound reaches mini-
mum), we calculate the derivation

Tl =L taz0my=2
dy'y T T T
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and we get the second upper bound

P(a,b) < 2v/a,
1.e.

P(a) < 2v/a.
This bound was proved by Shallit [6].

If P(a,b) were close to the last upper bound then the set {b; : b; < ay}
would contain many close integers. The argument that follows does not allow
that and we can get a better upper bound.

Let us denote

A, = x—xig fore=0,1,... . k—2,

Apor = zpo1,
r; = by — by forte=0,1,... .k —2, and
Th—1 = Dbr_1.

Then A; = 7;/a. The definition of 7_; and Aj_; is natural, since we can
always assume xj, = by, = 0 and it will not affect the following analysis.

If we recall the algorithm (5) for the finite Pierce series from the first
section, we have
Ti:bi—bi_|_1 = bi—ri :bi_|_1 :amodbi
= b | a—(bi—ri) =a-+r;—b
= b | a—+r;.
Since there are not too many divisors of a 4 r;, we cannot have too many

r;’s being equal. In order to use this limitation, we will choose two real
numbers 1/a < z < y < 1 and reformulate the equality (10):

P(a,b) = #{x; : z; >y} +
#{w, i<y NA <z} #{x, 0w <yNA > z}h (12)

It j =#{x; : z; <yAA; >z} and we list all elements of that set

Y> Ty >y > Ty > >x >0
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then
J
Yy o> w2 my A > w, AL AL > >0+ ) AL > g
=1

:>j<g:>#{wi:wi<y/\Ai2z}<y. (13)
z z
We showed above that b; | a 4+ r;. If we note that
5
Ai<z=>—<z=>r<az
a

then we have

b;
— € {z i <yAhNA; <z}
a

= b; divides a + r;, where 7; is an integer and 0 < r; < az

= b; divides a number from interval {a +1,a+ [az]| — 1}.
Since all numbers b; are different we have

#H{ae;, : zi<yANA; <z} §d({a—|—1,a—|—2,... ya+ [az] —1})
(14)
where d(A) = #{n € N : (Ja € A) n|a} (d(0) = 0).
To make a bound on the function d, we can use a result from [2] (Theo-

rem 315, page 260):
d(n) = O(n),
where d(n) is the number of divisors of n and § is any positive real number.

This means that if we choose a positive real number 4, then there is a positive

real constant c¢; such that
d(n) < e

for all n. Using (14) and this fact we get
#{z; : :Bi<y/\Ai<z}§d({a—|—1,a—|—2,... ya+ [az] —1}) <
<dla+1l)+da+2)+...+dla+Jaz] — 1) <
<cl(a—l—1)5—|—cl(a—|—2)5—|—...—|—cl(a—|— [az] _1)5 <

<([az] —1)-eci(a+[az] —1)° < az-eci(a+ az)’ = cra'tz(z + 1)°.
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We can add a constraint § < 1 (the idea is to have small § anyway), and
since z < 1 we get from the last equation

#Hae, : zi<yANA; <z} < 2¢1a' 2. (15)

If we combine (12), (11), (13), and (15) we get
Plab) = #{n : m> o)+
H{ae, : v <yNA; <z}+H#{z; 2, <yNA; >z}

1
< -4+ y + 2¢ia 2. (16)
y oz

In order to make the last expression minimal, we will try to choose y and z
so that the partial derivations are zero:

0 _ 1.1 _,
ody oy oz
0

@ = ;_2’!/ —|— 201a1+5 = 0

The first equation implies y = /= and we easily get

1 1/3 1 2/3
V= <2cla1"‘5> and z = <2cla1"‘5> '

If we substitute these values of y and z in (16) then we get
-1/3
1 (2cla1+5) /

(2cla1+5)_1/3 (2cla1+5)_2/3

= 3 (261a1+5)1/3 _ (3 - 21/361/3) . L/3+0/3

P(a,b) < + 2¢,a*t? (2cla1+5)_2/3

Since ¢; is a constant and 4 is an arbitrary positive real number, the last
inequality implies

P(a) = O(a1/3+5)

for any positive number 4. This is the third upper bound and it was proven

by Erdés and Shallit [1].
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However, we can improve the last result by a more strict use of inequal-
ity (14).

Firstly, let us note that the inequality (14) can be made more strict.
Namely, since b; < a for all ¢, there can never be b, = a + j for any j =
1,2,...,[az] — 1 although a+ j | a + j. So, instead of (14) we can write

#{z; : :Bi<y/\Ai<z}§d({a—|—1,a—|—2,... ,a—l—[az}—l})—[az]—l—l
(17)

Let n and r be two positive integers such that r < n. We want to get
an upper bound on the number d({n +1,n4+2,...,n+ r}) If we denote
A={n+1n+2,... ,n+r} then

1 divides exactly [r/1] elements of A,
2 divides at least |r/2] elements of A,
3 divides at least |r/3] elements of A,

r — 1 divides at least |r/(r — 1)| elements of A, and
r divides exactly |r/r| elements of A.

Having this in mind, we get

d(A) < dn+1)+dn

=1 =1 =1

There is a remark in [2] (page 272, § 18.2) which claims that Van der Corput
in 1922 proved

d(1)+d(2)+...+d(n) =nlogn+ (2y — 1)n + 0(n33/100),
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where 7 1s Euler’s constant and where log represents the natural logarithm
(log =log,). Then we have

dlA) < (n+r)logn+r)+ 2y —-1(n+7)+o n 4+ 7)33/190) _ plog n
g 2 g
—(2y—1)n — 0(n33/100) —rlogr — (2y — 1)r — 0(r33/100) + 7
= nlog <]_ + C) + TlOg <]_ + ﬁ) + 0(n33/100) 4o
n r
(We used the inequality » < n.) That means that for any real positive
constant cs

d(A) < nlog <1 + C) + rlog <1 + ﬁ) + c2n33/100 + 7
n 7
for n large enough. Now, starting from (17) we have
#H{ae, : 2 <yNA; <z} <
< d({a—l—l,a—|—2,... ya+ [az] —1}) —laz]+1

< alog (1+ %) + ([az] — 1)log (1+ ﬁ) +

—|—c2a33/100 +Jaz] —1—[az] +1

< alog(l+ z) + azlog <1 + > 1 cpa®®/100,

az — 1

We should always keep in mind that z is chosen such that z > 1/a. Using,
as before, (12), (11), (13), and the last inequality, we get

P(avb) = #{xl B2 2 y} +
#H{w, i<y NA; <z}+#{w o mi<yNA >z} (18)
1
< -4+ y + alog(1l+ z) + azlog <1 + L) + c2a33/100.
Yy oz a 1

We want to determine values of y and z so that the following partial deriva-
tions are zero:

9 _ 11

Jy y: oz ’

0 —y a az —1 —a?
E - ?—I_——I_alog(l—l_az—l)+az'az—1—|—a‘(az—1)2
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From the first equation we have y = z'/2. We will not solve the second

equation. Instead, we will approximate it by another one. (We don’t have
to solve the equation, we could even guess values of y and z.)

Since we know that we want to obtain 1/y = 27/ = o(y/a) and az =
o(4/a), we have az — oo and z — 0 when a — co. Using this, we can modify
the second equation by replacing all terms with their orders of magnitude:

—z_3/2—|—a—alogz—a: 0=
2z73?% = —alog z.
An approximate solution to the last equation is z = 1.5%/2a=2/3(log a)~%/2.
This implies y = 1.5*/3a71/3(log a)~*/3. Substituting y and z in (18) we get
P(a,b) < 2- 1.5_1/3a1/3(10g a)1/3 + alog(1l + 1.52/3a_2/3(10g a)_2/3) +

) 2/3 —2/3 -2/3 a
a-1.5"%a7**(log a) 7% - log (”a.1.52/3a—2/3(1oga)—2/3—1)

—|—c2a33/100
= 2y/2/3-a'*(log a)/* + © (a'/*(log a)7**) +
{’/%- a**(log a)'/® + o (a1/3(10g a)l/S)
= 3Y2/3-a"3(loga)’® + o (a1/3(log a)1/3)
— 18- a1/3(10g a)1/3 + o0 (a1/3(10g a)1/3)
2.62074 - a3 (log a)'’® + o (a'/*(log a)'/?) .

%

Hence, we have our last upper bound.
Theorem 2
P(a) < V18 a'3(log a)*/® + o(a/*(log a)*/?)

or

P(a) = O(a?(log a)*/?).

4 Lower Bound

Let 71 < 79 < ... < r, be an increasing sequence of positive integers. Let
us determine for which real numbers « (0 < # < 1) {r;} is a starting subse-
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quence of the sequence {g;} in the Pierce expansion of that number. Using
observations from Section 2, we know that if g, exists (> 0) then

To>x1 > ... > 2pq >0

and

1’

_I_
c 1 1
nt ant 1 g

We have
o e[ = 1)
Tn = (4n Lp— sy T ] .
1 ! r, +1 7,

Note that the interval [1/(r, + 1),1/r,) has the length 1/(r, (7, + 1)). If we

have r,_; = ¢,_1, besides having r,, = q,, then an additional condition has

to be satisfied:
c 1 1
Ty _ .
2 Tp—1 —I' ]- Tp—1

Since we know from (7) that

Lp—1 = f(xn—2) =1- Tn—1Lp—2 (19)

1 1
Ti1 € ( ) fore=1,2... . n—1, and

we get

A & cf! <[ ! 1>>
n—1 = Tpn— n = Tn Lp— y )
n-1 1 /NG 2 1

where the function f is restricted to the formula (19). The set f~! ([1/(rn +

1), l/rn)) is an interval of the size

1 1 1

Tnoi Tt + 1) Tpoirn(re + 1)

Using previous argument as an inductive step, we can continue backwards
and finally get

1 1
G =riNg@=reN... N =71, <= iBOEf_(n_l)([ _>>7
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where the meaning of ="~V should be understood in the “restricted” way
as explained in the inductive step. The set f~(*=1) ([1/(rn +1), l/rn)) is an
interval having the length

1

P1rg .o Ppo1Ta(rn + 1)

We will denote that interval as [.

Let us fix ¢y = 1, g2 = 2, ..., ¢, = n. Then the interval I has the
length 1/(n + 1)!. If we take a positive integer a such that
1 1
- < 21
a (n+1)! (21)

then it is always possible to find a positive integer b (b < a) such that

b
- e I
a

For such a and b, the Pierce series of number a/b satisfies (20). Hence, we
have

Pla,b) = n,

which implies
P(a) > n. (22)

Because of Stirling’s formula n! < n(n/e)", the inequality

a>n <ﬁ>n (n+1) (23)

€

implies (21). However, this is equivalent to

loga >logn + nlogn —n +log(n + 1). (24)

Let a be an integer (large enough to have loglogloga > 0) and let n =
|log a/logloga|. Then
log a

n < ———— and log n < loglog a —logloglog a < loglog a.
loglog a
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These two inequalities imply

log a > nlogn > nlogn —n + logn + log(n + 1),

18

for n large enough. However, the last inequality is the same as (24) and,

since we have

we get

(24) = (23) = (21) = (22)

log a
P(a) > n = :
(a) 2 m Log log aJ

We can state the following theorem:

Theorem 3 For any real constant 1 — € < 1 the inequality

holds for numbers a € N large enough. That inequality implies

If n is any positive integer, and we choose a = lem(2,3, ..

P(a) > (1—¢)- log a

log log a

log a
P(a) =Q :
(a) (log log a)

b = n then it is easy to see that

This gives

bo
by
by
bs

by

b=n,
amod by =amodn =n—1,
amod by =amod (n —1) =n — 2,

amod by = amod (n —2) =n — 3,

amod b,_; =amod1=0.

P(a,b) =n = P(a) > n.

.,m)— 1 and
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Using the approximation ¢(z) < 1.03883z from [5] (Theorem 12) we get

loga = log(lem(2,3,...,n))
— log(t(n)) < 1.038838n < 1.038838P(a).

Hence,

P(a) > 1.038838 " log a = 0.9626141og a

for infinitely many a.

This relation is proven in [1].

5 Algorithms

Calculating P(a,b)
The algorithm for calculating P(a,b) is the following:

Algorithm: P(a,b)

Input: a,b Two positive integers, b < a

Output: P(a,b)

n < 0

While 5 > 0 do
b« amodb
n+<—n-+1

Return n

AN

Since steps 3 and 4 do not have bit complexity greater than (lga)?, we
get that the bit complexity of the algorithm above is O(P(a)(lg a)?). Using
Theorem 2, this gives upper bound on the running time O(/a - (Ig a)™/?).

The upper bound given in Theorem 2 is very likely far from being tight,
so the bit complexity of O({/a- (lg a)™/?) does not necessarily reflect the true
behavior of the algorithm above.
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Calculating P(a)
Note: The functions P(a,b) and P(a) should be differentiated by the number

of arguments.

When calculating P(a) we are interested also in the least value of b for
which the maximum P(a) = P(a,b) is reached. A simple way of calculat-
ing P(a) is the following:

Algorithm: P,(a)

Input: a A positive integer
Output: P(a), b P(a) = P(a,b)

1. n+1

2. b1

3. Fori+ 1toado

4. If P(a,i) > n then

5. n « P(a,1)

6. b1

7. Return (n,b)

The bit complexity is
a x bit complexity of P(a,b) = O(aP(a)(lga)?) = O(a4/3(lg a)7/3),

so the subscript s means a simple, but also a slow, algorithm.
A faster algorithm with running time O(a(lg a)?) uses the recursive rela-
tion

P(a,b) = P(a,amod b) + 1.

Algorithm: Py(a)

Input: a A positive integer
Output: P(a), b P(a) = P(a,b)
1. Po 0

2. n+10



5 ALGORITHMS 21

3. b+ 0

4. Fori1+ 1toado
5. Pi < Pa mod i + 1
6. If p;, > n then
7. n 4 p;

8. b1

9.

Return (n,b)

The step 5 takes at most (lg a)? running time so the algorithm’s running
time 1s
a(lg a)’.
The drawback is the large amount of memory which the algorithm requires:
the array p; has a + 1 entries, so the memory requirement is

alg P(a) + O(1) = O(alg a).

We can use the inequality b; < 1/(i + 1) to overcome this potential prob-
lem. Thus, the algorithm can be modified so that it uses less memory but
the running time increases. Since access to the elements of a large array does
not have to be very a fast operation (e.g. because of paging) the modified
algorithm which uses less memory could be in practice even faster than the
algorithm above. The modified algorithm with a parameter k € {1,2,... ,a}
represents, actually, the whole spectrum of algorithms between the algo-
rithms Py and P,: k = 1 gives the algorithm P; and k = a gives P.

Algorithm: P, (a, k)

Input:  a,k ke {l,2,... a} parameter
Output: P(a), b P(a) = P(a,b)

1. po+ 0

2. n+0

3. b+ 0

4. For i+ 1to |a/k] do

5. Pi < Pa mod i + 1

6. If p;, > n then



5 ALGORITHMS 22

7. n 4 p;

8. b1

9. For i« |a/k]+1toado
10. p1

11. J ¢ amod i

12. While j > |a/k]| do
13. p<p+1

14. J ¢« amod j

15. p<p+p;

16. If p > n then

17. n<4—p

18. b+

19. Return (n,b)

The running time of the algorithm is

a a

e o <“ - E) ((k=2)(ga)’ + (Iga)’ ) +o(a(lza)’) =
N — S— N——’

loop 4-8 loop 12-14 step 11

loop 9-18

<k P %) a(lg a)? + o(a(lg a)?).

Notice that the running time for £k = 1 and k = 2 is the same. This means
that the choice k = 2 is better even when we are primarily interested in
achieving a good running time and not concerned about memory. The mem-
ory requirement for the algorithm P, is

a

7 lg P(a) + O(1).

According to Theorem 2, this gives the memory usage of

a

% lga+ O(1).
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6 Numerical Results

Table 1 contains the longest cases for Pierce Expansions; 1.e. for all values n =
1,2,... .49 the values of a

a=min{a : P(a) =n},

and of b
b=min{b : P(a,b) =n},

are given. P(a) is calculated for all values of a up to 3600000. Table 2 gives
the shortest cases for Pierce expansions, i.e. for all n € {1,2,... ,49} and for

a€{1,2,...,3600000} the column a is defined to be
a =max{a : P(a) =n},

and b is

b=min{b : P(a,b) =n}.

This tables changes with each new calculation of P(a). After calculating
P(a) for a > 3600000, we can expect that only the entries P(a) < 15 in the
table will remain the same.

Figure 2 gives a graph showing a grey area which includes the graph of
function P. The lower and upper bounds obtained are also presented. We
can note that the lower bound doesn’t seem so bad while the upper bound
is really loose. The dotted lines present some speculations about bounds:
the lower one has the formula 2log a/logloga and the upper one has the
formula 0.25 - (log a)?.
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n b a b a
1 1 1 26 3749 5879
2 2 3 27 6546 17747
3 3 5 28 | 11201 17747
4 4 11 29 2159 23399
5 7 11 30 2360 23399
6 12 19 31 5186 23399
7 22 35 32 6071 23399
8 30 47 33 8664 23399
9 32 53 34 | 14735 23399
10 61 95 35 | 59745 93596
11 65 103 36 | 68482 | 186479
12 115 179 37 | 117997 | 186479
13 161 251 38 | 175672 | 278387
14 189 299 39 | 268618 | 442679
15 296 503 40 | 135585 | 493919
16 470 743 41 | 178909 | 493919
17 598 | 1019 42 | 314752 | 493919
18 841 | 1319 43 | 490652 | 830939
19 904 | 1439 44 | 76800 | 1371719
20 | 1856 | 2939 45 | 116789 | 1371719
21| 2158 | 3359 46 | 125493 | 1371719
22 | 2416 | 3959 47 | 290641 | 1371719
23 | 1925 | 5387 48 | 540539 | 1371719
24 | 3462 | 5387 49 | 831180 | 1371719
25 | 2130 | 5879 3600000

Table 1: The Longest Cases for Pierce Expansions

24
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n b a b a
1 1 2 26 | 2173029 3599980
2 4 6 27 | 2266788 3599995
3 13 24 28 | 2310242 3599990
4 41 72 29 | 2060744 3599982
5 146 240 30 | 2276141 3599992
6 407 720 31 | 2273176 3599994
7 1537 2880 32 | 2273313 3599996
8 3667 6720 33 | 2271838 3599984
9 10291 20160 34 | 2197792 3599979
10 31261 60480 35 | 2271841 3599969
11 | 126223 | 241920 36 | 2173023 3599999
12 | 259591 | 483840 37 | 2298936 3599998
13 | 501953 | 950400 38 | 2268946 3599879
14 | 895247 | 1647360 39 | 2653511 3598558
15 | 2117833 | 3507840 40 | 2273868 3597299
16 | 2004599 | 3598560 41 | 2294962 3596207
17 | 2283651 | 3595200 42 | 2294608 3595649
18 | 2107085 | 3598848 43 | 2269649 3590997
19 | 2114425 | 3599640 44 | 2535257 3576382
20 | 2069477 | 3600000 45 | 2217162 3477599
21 | 2034242 | 3599856 46 | 2182157 3427199
22 | 2173221 | 3599960 47 Not found
23 | 2123394 | 3599872 48 Not found
24 | 2272080 | 3599988 49 | 1662360 2743438
25 | 2119295 | 3599946 3600000

Table 2: The Shortest Cases for Pierce Expansions

25
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%]
P(@) k
50
Longest Cases
25
"""""""""""""" Lower bound log a/loglog a
0 1'00 20000 250000 1008000 a 35(;000

Figure 2: The upper and lower bound
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