Natural Language Processing CSCI 4152/6509 - Lecture 23 DCG and PCFG

Instructors: Vlado Keselj
Time and date: 16:05-17:25, 28-Nov-2023
Location: Rowe 1011

Previous Lecture

- Natural language syntax:
- phrase structure, clauses, sentences
- Parsing, parse tree examples
- Context-Free Grammars review:
- formal definition
- inducing a grammar from parse trees
- derivations, and other notions
- Bracket representation of a parse tree
- Parsing NL in Prolog using Difference Lists
- Reading: [JM] Ch 12

Basic Definite Clause Grammar (DCG)

- DCG - Prolog built-in mechanism for parsing

Example

$$
\begin{aligned}
& \text { s --> np, vp. } \\
& \text { np --> d, n. } \\
& \text { d --> [the]. } \\
& \text { n }-->[\mathrm{dog}] . \\
& \text { n --> [dogs]. } \\
& \text { vp --> [run]. } \\
& \text { vp --> [runs]. }
\end{aligned}
$$

Building a Parse Tree

A parse tree can be built in the following way:
$\mathrm{s}(\mathrm{s}(\mathrm{Tn}, \mathrm{Tv})) \quad-\mathrm{>} \mathrm{np}(\mathrm{Tn})$, $\mathrm{vp}(\mathrm{Tv})$.
$n p(n p(T d, T n))-->d(T d), n(T n)$.
d(d(the)) --> [the].
n(n(dog)) --> [dog].
n(n(dogs)) --> [dogs].
vp(vp(run)) --> [run].
vp(vp(runs)) --> [runs].
At Prolog prompt we type and obtain:
?- s(X, [the, dog, runs], []).
$\mathrm{X}=\mathrm{s}(\mathrm{np}(\mathrm{d}($ the $), \mathrm{n}(\mathrm{dog})), \mathrm{vp}($ runs $))$;

Handling Agreement

```
s(s(Tn,Tv)) --> np(Tn,A), vp(Tv,A).
np(np(Td,Tn),A) --> d(Td), n(Tn,A).
d(d(the)) --> [the].
n(n(dog),sg) --> [dog].
n(n(dogs),pl) --> [dogs].
vp(vp(run),pl) --> [run].
vp(vp(runs),sg) --> [runs].
```

This grammar will accept sentences "the dog runs" and "the dogs run" but not "the dog run" and "the dogs runs". Other phenomena can be modeled in a similar fashion.

Embedded Code

We can embed additional Prolog code using braces, e.g.: $\mathrm{s}(\mathrm{T}) \quad-->\mathrm{np}(\mathrm{Tn}), \mathrm{vp}(\mathrm{Tv}),\{\mathrm{T}=\mathrm{s}(\mathrm{Tn}, \mathrm{Tv})\}$. and so on, is another way of building the parse tree.

Probabilistic Context-Free Grammar (PCFG)

- Reading: Chapters 13 and 14
- also known as Stochastic Context-Free Grammar (SCFG)
- Handles ambiguous trees using a probabilistic model

Ambiguity Example

Time flies like an arrow.

Time flies like an arrow.

S	$\rightarrow \mathrm{NP} \mathrm{VP}$	VP	\rightarrow	V NP	N	\rightarrow time	V	\rightarrow
N								
NP	$\rightarrow \mathrm{N}$	VP	\rightarrow	V PP	N	\rightarrow	arrow	V

PCFG as a Probabilistic Model

- A generative model based on probabilistic derivation, for example:

$$
\mathrm{S} \Rightarrow \mathrm{NP} \mathrm{VP} \Rightarrow \mathrm{DNVP} \Rightarrow \ldots
$$

- Each step is probabilistic use of one production

Probabilistic Context-Free Grammar Example

S	\rightarrow	NP VP	$/ 1$	VP	\rightarrow	V NP	$/ .5$	N	\rightarrow	time
NP	$\rightarrow \mathrm{N}$	$/ .5$	VP	\rightarrow	V PP	$/ .5$	N	\rightarrow	arrow	$/ .3$
NP	$\rightarrow \mathrm{N} \mathrm{N}$	$/ .2$	PP	\rightarrow	P NP	$/ 1$	N	\rightarrow	flies	$/ .2$
NP	$\rightarrow \mathrm{D} \mathrm{N}$	$/ .4$					D	\rightarrow	an	$/ 1$
V	\rightarrow like	$/ .3$								
V	\rightarrow flies	$/ .7$								
P	\rightarrow like	$/ 1$								

- The following condition must be satisfied for each nonterminal N :

$$
\sum_{i=1}^{n} \mathrm{P}\left(N \rightarrow \alpha_{i}\right)=1
$$

Computational Tasks for PCFG Model

- Evaluation

$$
P(\text { tree })=\text { ? }
$$

- Generation
- Learning
- Inference
- Marginalization

$$
\mathrm{P}(\text { sentence })=?
$$

- Conditioning

$$
\mathrm{P}(\text { tree } \mid \text { sentence })=?
$$

- Completion

$$
\underset{\text { tree }}{\arg \max } \mathrm{P}(\text { tree } \mid \text { sentence })
$$

Evaluation example: time flies like an arrow (1st meaning)

Evaluation

$$
\mathrm{P}(\text { tree })=0.5 \mathrm{x} 0.7 \mathrm{x} 1 \mathrm{x} 1 \mathrm{x} 0.3 \mathrm{x} 0.4 \times 0.4 \times 1 \times 0.5 \mathrm{x} 1=0.0084
$$

Evaluation example: time flies like an arrow (2nd meaning)

Similouly

Generction (sompling)
$S \Rightarrow$ NP $V P \Rightarrow N V P \Rightarrow$ flies VP \Rightarrow.
$\begin{array}{lll}S \rightarrow \text { NPVP/1 } & \begin{array}{ll}N P \rightarrow N 10.3 & N \rightarrow \text { time } 10.5 \\ N P \rightarrow N N 10.2 & N\end{array} \quad \rightarrow \text { anow } 10.3\end{array}$
$N P \rightarrow D N 10.4 \mathrm{~N} \rightarrow$ flies 10.2
-choose rute vanblomif accorbing to the given distribstion

Question: Is the procen going to stop?
A: Stops woth probability 1 if the greemmon is proper.
Good News: A grammon leoned from a cannss is alwasts propa.

Learning and Inference

Expressing PCFGs in DCGs

Let us consider the previous example of a PCFG:

S	$\rightarrow \mathrm{NP} \mathrm{VP}$	$/ 1$	VP	$\rightarrow \mathrm{V} \mathrm{NP}$	$/ .5$	N	\rightarrow	time	$/ .5$	
NP	$\rightarrow \mathrm{N}$	$/ .4$	VP	$\rightarrow \mathrm{V} \mathrm{PP}$	$/ .5$	N	\rightarrow	arrow	$/ .3$	
NP	$\rightarrow \mathrm{N} \mathrm{N}$	$/ .2$	PP	\rightarrow	P NP	$/ 1$	N	\rightarrow	flies	$/ .2$
NP	$\rightarrow \mathrm{D} \mathrm{N}$	1.4					D	\rightarrow	an	$/ 1$
V	\rightarrow like	$/ .3$								
V	\rightarrow flies	$/ .7$								
P	\rightarrow like	$/ 1$								

The probabilities can be calculated as an addition argument:

```
s(T,P) --> np(T1,P1), vp(T2,P2),
    {T = s(T1,T2), P is P1 * P2 * 1}.
np(T,P) --> n(T1,P1), {T = n(T1), P is P1 * 0.4}.
and so on.
```


Full PCFG Expressed in DCG

```
s(s(Tn,Tv),P) --> np(Tn,P1), vp(Tv,P2), {P is P1 * P2}.
np(np(T),P) --> n(T,P1), {P is P1 * 0.4}.
np(np(T1,T2),P) --> n(T1,P1), n(T2,P2),
                                {P is P1 * P2 * 0.2}.
np(np(Td,Tn),P) --> d(Td,P1), n(Tn,P2),
                                {P is P1 * P2 * 0.4}.
v(v(like), 0.3) --> [like].
v(v(flies), 0.7) --> [flies].
p(p(like), 1.0) --> [like].
vp(vp(Tv,Tn), P) --> v(Tv, P1), np(Tn, P2),
                                {P is P1 * P2 * 0.5}.
vp(vp(Tv,Tp), P) --> v(Tv, P1), pp(Tp, P2),
    {P is P1 * P2 * 0.5}.
pp(pp(Tp,Tn), P) --> p(Tp, P1), np(Tn, P2),
                                    {P is P1 * P2}.
n(n(time), 0.5) --> [time].
n(n(arrow), 0.3) --> [arrow].
```


Example Run in Prolog Interpreter

?- s(T,P, [time,flies, like, an, arrow], []).
the interpreter would reply with: $\mathrm{T}=\mathrm{s}(\mathrm{np}(\mathrm{n}$ (time)) , $\operatorname{vp}(v(f l i e s), p p(p(l i k e), n p(d(a n), n(a r r o w))))$
$\mathrm{P}=0.0084$
and after typing ; (semi-colon), we get: $\mathrm{T}=\mathrm{s}(\mathrm{np}(\mathrm{n}$ (time), $\mathrm{n}(\mathrm{flies})$), $\mathrm{vp}(\mathrm{v}(\mathrm{like}), \mathrm{np}(\mathrm{d}(\mathrm{an}), \mathrm{n}($ arrow) $))$)
$P=0.00036$
After typing second '; ', the interpreter reports 'No' since there are no more parse trees.

