Lecture 21 p.1

Faculty of Computer Science, Dalhousie University

CSCI 4152/6509 — Natural Language Processing
Lecture 21: Neural Network Models for NLP; Parsing NLP

Location: Rowe 1011 Instructor: Vlado Keselj
Time: 16:05 — 17:25

21-Nov-2023

Previous Lecture

Neural networks and deep learning

Applications

— Some main developments

Large deep learning models

Exponential growth in size of LLMs

— Biological neuron, perceptron, feed-forward network
Activation functions, softmax function

Neural Language Model
Slide notes:
Neural Language Model
p(aardvark|...) p(fish|...) p(for]...) p(zebral...)
1 ! R
il) = s9)w Osspha Ay W
U ya\i xdh
=)
Hidden layer B ”]ld:} dyx1
W / Y '\){f ’,/f\‘“‘_[dyx3d
Projection layer \.6’.//:....-, e YT g -c---;:‘i- 3dx1
embeddings t T i
bedd: for bedd: for bedd for
E word 35 word 9935 Wword 45150
| for | all | the [72 132
W3 W2 Wi-1 W,
—_—
(Jurafsky and Martin)
The model has limited history, similarly to n-gram model

November 22, 2023, CSCI 4152/6509 http://web.cs.dal.ca/~vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/

Lecture 21 p.2

Slide notes:

Recurrent Neural Networks (RNN)
— Simple recurrent neural network presented as a feedforward
network (Jurafsky and Martin, Figure 9.3)
— RNN is trained as a Language model by providing the next word

as output
C Yt)
L |
G D
U w
C hy_q) C X)

Slide notes:

RNN Unrolled in Time

— RNN unrolled in time; more clear view of training (Jurafsky and
Martin, Figure 9.5)

v U w
Cwm) R Cwm
v U —w
hy % O

Slide notes:

Stacked RNN

— Stacked RNN: Output from lower level is input to higher level,
top level is final output (Jurafsky and Martin, Figure 9.10)

P
)
O e —"
(oG ——1))

| | | |

CSCI 4152/6509

CSCI 4152/6509

Slide notes:

Bidirectional RNN

— Bidirectional RNN; trained forward and backward with
concatenated output (Jurafsky and Martin, Figure 9.11)
— Output can be used for sequence labeling, for example

Y1 Yo Y3 Yn

concatenated
»U outputs

(L] RNN 2

[Q 1} 1} RNN 1

Slide notes:

LSTM — Long Short-Term Memory
— LSTM: z, is input, h;_; is previous hidden state, c;_; is previous
long-term context, h; and ¢; is output (Jurafsky and Martin,
Figure 9.13)

g —

heq—

Slide notes:

LSTM Cell
— Another view of LSTM cell (source Wikipedia)

he

—Cy

hy

Layer ComponentwiseCopy Concatenate

Legend: — P

Lecture 21 p.3

Lecture 21 p.4 CSCI 4152/6509

Slide notes:

Transformers

— Transformers map a sequence of input vectors to a sequence of
output vectors of the same length

r1T T2 ... Tp
ool
Yy Y2 oo YUn

Slide notes:
Self-Attention Layer

Self-Attention
Layer

(Jurafsky and Martin)

Slide notes:
Self-Attention Training

score(z;, ;) = x; - T

a;; = softmax(score(x;, x;)) Vj <1

Yi = E Qi Tj

J<i
Slide notes:
Transformer Block
& - T\
Transformer (Layer Normalize)
Block
Residual
connection [Feedforward Layer]
(Layer Normalize)
>
Residual
connection [Self-Attention Layer]

e J

®e6 - 6)

(Jurafsky and Martin)

CSCI 4152/6509

Slide notes:

Multihead Attention Layer

Project down to d > 0
e —————
(Cvowiw, Head 4)
'\Aﬂtlftgl:t?:: [W wEs WYy / Head 3]
Layer (weuwe, W, a2)
(wo.wk,wY, Headt | //}/
AN 7
\!/x
&6 D
(Jurafsky and Martin)

Slide notes:

Encoding Word Positions in Transformers

Transformer
Blocks

Composite
Embeddings
(input + position)

Word
Embeddings
Position
Embeddings

®
‘

Janet

will back the

[gv] A simple way to model position: simply adding an embedding representation
of the absolute position to the input word embedding.

from: Jurafsky and Martin, 3rd ed. draft

Lecture 21 p.5

Lecture 21 p.6 CSCI 4152/6509

Slide notes:

Training Transformer as a Language Model

Next word Iung and thanks for aII

T
1
\ -1%, \ |-.M.. | [= w ‘—lugm | e 1,. o ... = g2 les

— 6 S ®
i

Linear Layer

|
Transformer [—]

Block =

m-ﬂ ~
-

Input
Embeddings

So long and thanks for

Training a transformer as a language model.
from: Jurafsky and Martin, 3rd ed. draft

Slide notes:

Text Completion with Transformers

Completion Text

ar”? the)
1 i
P B
Sample from Softmax [J.[I.DJ i (mﬂl]-u
i i
i

linear layer E'I,

Transformer
Blocks
S ¥ F
Embeddings L

[
So

.
Prefix Text

JOTTER] Autoregressive text completion with transformers.

from: Jurafsky and Martin, 3rd ed. draft

Part IV

Parsing

In this part, we will move a level above in processing natural languages—parsing, or syntactic processing. For some
practical purposes, we will start with an brief introduction to the Prolog programming language.

Parsing Natural Languages

— Must deal with possible ambiguities
Decide whether to make a phrase structure or dependency parser
— When parsing NLP, there are generally two approaches:
1. Backtracking to find all parse trees
2. Chart parsing
— Prolog provides a very expressive way to NL parsing
FOPL is also used to represent semantics

CSCI 4152/6509 Lecture 21 p.7

18 A Brief Introduction to Prolog

In this section, we will first go over a brief Prolog review. Prolog is described in some more details in the lab tutorial.

Slide notes:

Parsing with Prolog

We will go over a brief Prolog review
— more details are provided in the lab
— Implicative normal form:

PIADP2N ... ADPp=qVqgV...Vqn

If m < 1, then the clause is called a Horn clause.

If resolution is applied to two Horn clauses, the result is again a
Horn clause.

Inference with Horn clauses is relatively efficient

An implicative normal form is a mathematical logic formula, which is a conjunction of smaller formulae called
clauses, where each clause is in the following form:

PIADP2AN .. AP =@ V@R V...V
where p; and g¢; are simple logical statements called propositions.

Note: Just as a reminder, the operator A is the logical AND, operator V is the logical OR, and the operator = is the
logical “implies” operator.

If m < 1, then the clause is called a Horn clause.

When resolution is applied to two Horn clauses, the result is again a Horn clause. Inference on Horn clauses is
relatively efficient.

Rules

A Horn clause with m = 1 is called a rule:

PLADP2AN ... ANDpp=>q1

It is expressed in Prolog as:

gl :- pl, p2, ..., p_n.

Facts

A clause with m = 0 is called a fact:
PLAD2A ... ADp =T

is expressed in Prolog as:
el, p2, ..., p_n.

or

= pl, p2, ..., p_n.

and it is called a fact.

Lecture 21 p.8 CSCI 4152/6509

Running Prolog

It is covered in more details in the lab how to run Prolog interpreter. We use a Prolog interpreter called SWI Prolog
and it is available on the t imberlea server. The lab also covers how to write a program, load it and execute it
using interpreter.

Rabbit and Franklin Example

The ‘rabbit and franklin’ example in Prolog:

hare (rabbit) .
turtle (franklin) .
faster (X,Y) :—- hare(X), turtle(Y).

Save the program in a file, e.g., named file.prolog and load the file using the command [’ file.prolog’].
The Prolog interpreter uses prompt ‘?—". After loading the file, on Prolog prompt, type:

faster (rabbit, franklin) .

)

After this there is some difference between Prolog interpreters. The newest SWI-Prolog will simply print ‘true
and go back to the prompt. The previous version of SWI-Prolog would print ‘Yes’ waiting for user input. The user
should type semicolon (;) and then the Prolog prompt would appear.

Try faster (X, franklin) . and faster (X, Y) . in the similar fashion (keep pressing the semicolon if user
input is required until the Prolog prompt is obtained in the both cases).

Slide notes:

Unification and Backtracking

— Two important features of Prolog: unification and backtracking

— Prolog expressions are generally mathematical symbolic
expressions, called terms

— Unification is an operation of making two terms equal by
substituting variables with some terms

— Backtracking: Prolog uses backtracking to satisfy given goal;
i.e., to prove given term expression, by systematically trying
different rules and facts, which are given in the program

Example in Unification and Backtracking

What happens after we type:
?— faster (rabbit, franklin).
— Prolog will search for a ‘matching’ fact or head of a rule:
faster (rabbit, franklin) and
faster (X,Y) :-
— ‘Matching’ here means unification
— After unifying faster (rabbit, franklin) and faster (X,Y) with substitution X<—rabbit and
Y« franklin, the rule becomes:
faster (rabbit, franklin) :- hare (rabbit), turtle(franklin).

Example (continued)

— Prolog interpreter will now try to satisfy predicates at the right hand side: hare (rabbit) and turtle (franklin)
and it will easily succeed based on the same facts

CSCI 4152/6509 Lecture 21 p.9

— If it does not succeed, it can generally try other options through backtracking

Variables

Variable names in Prolog start with an uppercase letter or an underscore character (‘_]). The variable name __ (just an
underscore) is special because it denotes a special, so-called anonymous variable. Two occurrences of this variable
can represent arbitrary different values, and there is no connection between them. This variable is used a placeholder
in terms for part that is generally ignored.

Slide notes:

Variables in Prolog

— Variable names start with uppercase letter or underscore (")
— _is a special, anonymous variable
— Examples:

?— faster (rabbit, franklin).
Yes ;

?— faster (rabbit,X).
X = franklin ;

?— hare (X) .
X = rabbit ;

Lists (Arrays), Structures.

Lists are implemented as linked lists. Structures (records) are expressed as terms. Examples:
In program: person (john, public,’123-456") .

Interactively: ?— person (john,X,Y).

[1 is an empty list.

A list is created as a nested term, usually a special function ‘.’ (dot):

?- is_list(.(a, .(b, .(c, [1)))).

List Notation

(.(a, .(b, .(c, [1))) isthesameas [a, b, c]

This is also equivalent to:

or
la, b | [c]]

A frequent Prolog expression is: [H|T]
where H is head of the list, and T is the tail, which is another list.

Example: Calculating Factorial

factorial(0,1).

Lecture 21 p.10

factorial (N,F) :- N>0, M is N-1, factorial (M,FM),
F is FM=*N.

After saving in factorial .prolog and loading to Prolog:

?— [’ factorial.prolog’].
% factorial.prolog compiled 0.00 sec, 1,000 bytes

Yes
?—- factorial(6,X).

X = 720 ;

Example: List Membership

Example (testing membership of a list):

member (X, [X|_]).
member (X, [_|L]) :— member (X,L).

CSCI 4152/6509

	IV Parsing
	A Brief Introduction to Prolog
	Natural Language Syntax
	Context-Free Grammars (CFG) Review
	Parsing Natural Language in Prolog
	Parsing Natural Language in Prolog using Difference Lists
	Definite Clause Grammar (DCG)
	Building a Parse Tree in DCG
	Example of Handling Agreement in DCG
	Embedded Code in DCG

