
Lecture 21 p.1

Faculty of Computer Science, Dalhousie University 21-Nov-2023
CSCI 4152/6509 — Natural Language Processing

Lecture 21: Neural Network Models for NLP; Parsing NLP

Location: Rowe 1011 Instructor: Vlado Keselj
Time: 16:05 – 17:25

Previous Lecture

Neural networks and deep learning
– Applications
– Some main developments
– Large deep learning models
– Exponential growth in size of LLMs
– Biological neuron, perceptron, feed-forward network
– Activation functions, softmax function

Neural Language Model

Slide notes:

Neural Language Model

(Jurafsky and Martin)
The model has limited history, similarly to n-gram model

November 22, 2023, CSCI 4152/6509 http://web.cs.dal.ca/˜vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/

Lecture 21 p.2 CSCI 4152/6509

Slide notes:

Recurrent Neural Networks (RNN)
– Simple recurrent neural network presented as a feedforward

network (Jurafsky and Martin, Figure 9.3)
– RNN is trained as a Language model by providing the next word

as output

Slide notes:

RNN Unrolled in Time
– RNN unrolled in time; more clear view of training (Jurafsky and

Martin, Figure 9.5)

Slide notes:

Stacked RNN
– Stacked RNN: Output from lower level is input to higher level;

top level is final output (Jurafsky and Martin, Figure 9.10)

CSCI 4152/6509 Lecture 21 p.3

Slide notes:

Bidirectional RNN
– Bidirectional RNN; trained forward and backward with

concatenated output (Jurafsky and Martin, Figure 9.11)
– Output can be used for sequence labeling, for example

Slide notes:

LSTM — Long Short-Term Memory
– LSTM: xt is input, ht−1 is previous hidden state, ct−1 is previous

long-term context, ht and ct is output (Jurafsky and Martin,
Figure 9.13)

Slide notes:

LSTM Cell
– Another view of LSTM cell (source Wikipedia)

Lecture 21 p.4 CSCI 4152/6509

Slide notes:

Transformers
– Transformers map a sequence of input vectors to a sequence of

output vectors of the same length

x1 x2 . . . xn

↓ ↓
... ↓

y1 y2 . . . yn

Slide notes:

Self-Attention Layer

(Jurafsky and Martin)

Slide notes:

Self-Attention Training
score(xi, xj) = xi · xj

αij = softmax(score(xi, xj)) ∀j ≤ i

yi =
∑
j≤i

αijxj

Slide notes:

Transformer Block

(Jurafsky and Martin)

CSCI 4152/6509 Lecture 21 p.5

Slide notes:

Multihead Attention Layer

(Jurafsky and Martin)

Slide notes:

Encoding Word Positions in Transformers

from: Jurafsky and Martin, 3rd ed. draft

Lecture 21 p.6 CSCI 4152/6509

Slide notes:

Training Transformer as a Language Model

from: Jurafsky and Martin, 3rd ed. draft

Slide notes:

Text Completion with Transformers

from: Jurafsky and Martin, 3rd ed. draft

Part IV

Parsing
In this part, we will move a level above in processing natural languages—parsing, or syntactic processing. For some
practical purposes, we will start with an brief introduction to the Prolog programming language.

Parsing Natural Languages

– Must deal with possible ambiguities
– Decide whether to make a phrase structure or dependency parser
– When parsing NLP, there are generally two approaches:

1. Backtracking to find all parse trees
2. Chart parsing

– Prolog provides a very expressive way to NL parsing
– FOPL is also used to represent semantics

CSCI 4152/6509 Lecture 21 p.7

18 A Brief Introduction to Prolog
In this section, we will first go over a brief Prolog review. Prolog is described in some more details in the lab tutorial.

Slide notes:

Parsing with Prolog
– We will go over a brief Prolog review

– more details are provided in the lab
– Implicative normal form:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ q1 ∨ q2 ∨ . . . ∨ qm

– If m ≤ 1, then the clause is called a Horn clause.
– If resolution is applied to two Horn clauses, the result is again a

Horn clause.
– Inference with Horn clauses is relatively efficient

An implicative normal form is a mathematical logic formula, which is a conjunction of smaller formulae called
clauses, where each clause is in the following form:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ q1 ∨ q2 ∨ . . . ∨ qm

where pi and qi are simple logical statements called propositions.

Note: Just as a reminder, the operator ∧ is the logical AND, operator ∨ is the logical OR, and the operator⇒ is the
logical “implies” operator.

If m ≤ 1, then the clause is called a Horn clause.

When resolution is applied to two Horn clauses, the result is again a Horn clause. Inference on Horn clauses is
relatively efficient.

Rules

A Horn clause with m = 1 is called a rule:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ q1

It is expressed in Prolog as:

q1 :- p1, p2, ..., p_n.

Facts

A clause with m = 0 is called a fact:
p1 ∧ p2 ∧ . . . ∧ pn ⇒ >

is expressed in Prolog as:

p1, p2, ..., p_n.

or

:- p1, p2, ..., p_n.

and it is called a fact.

Lecture 21 p.8 CSCI 4152/6509

Running Prolog

It is covered in more details in the lab how to run Prolog interpreter. We use a Prolog interpreter called SWI Prolog
and it is available on the timberlea server. The lab also covers how to write a program, load it and execute it
using interpreter.

Rabbit and Franklin Example

The ‘rabbit and franklin’ example in Prolog:

hare(rabbit).
turtle(franklin).
faster(X,Y) :- hare(X), turtle(Y).

Save the program in a file, e.g., named file.prolog and load the file using the command [’file.prolog’].
The Prolog interpreter uses prompt ‘?-’. After loading the file, on Prolog prompt, type:

faster(rabbit,franklin).

After this there is some difference between Prolog interpreters. The newest SWI-Prolog will simply print ‘true’
and go back to the prompt. The previous version of SWI-Prolog would print ‘Yes’ waiting for user input. The user
should type semicolon (;) and then the Prolog prompt would appear.

Try faster(X,franklin). and faster(X,Y). in the similar fashion (keep pressing the semicolon if user
input is required until the Prolog prompt is obtained in the both cases).

Slide notes:

Unification and Backtracking
– Two important features of Prolog: unification and backtracking
– Prolog expressions are generally mathematical symbolic

expressions, called terms
– Unification is an operation of making two terms equal by

substituting variables with some terms
– Backtracking: Prolog uses backtracking to satisfy given goal;

i.e., to prove given term expression, by systematically trying
different rules and facts, which are given in the program

Example in Unification and Backtracking

– What happens after we type:
?- faster(rabbit,franklin).

– Prolog will search for a ‘matching’ fact or head of a rule:
faster(rabbit,franklin) and
faster(X,Y) :- ...

– ‘Matching’ here means unification
– After unifying faster(rabbit,franklin) and faster(X,Y) with substitution X←rabbit and
Y←franklin, the rule becomes:
faster(rabbit,franklin) :- hare(rabbit), turtle(franklin).

Example (continued)

– Prolog interpreter will now try to satisfy predicates at the right hand side: hare(rabbit) and turtle(franklin)
and it will easily succeed based on the same facts

CSCI 4152/6509 Lecture 21 p.9

– If it does not succeed, it can generally try other options through backtracking

Variables

Variable names in Prolog start with an uppercase letter or an underscore character (‘]). The variable name _ (just an
underscore) is special because it denotes a special, so-called anonymous variable. Two occurrences of this variable
can represent arbitrary different values, and there is no connection between them. This variable is used a placeholder
in terms for part that is generally ignored.

Slide notes:

Variables in Prolog
– Variable names start with uppercase letter or underscore (‘ ’)
– is a special, anonymous variable
– Examples:

?- faster(rabbit,franklin).
Yes ;
...
?- faster(rabbit,X).
X = franklin ;
...
?- hare(X).
X = rabbit ;

Lists (Arrays), Structures.

Lists are implemented as linked lists. Structures (records) are expressed as terms. Examples:

In program: person(john,public,’123-456’).

Interactively: ?- person(john,X,Y).

[] is an empty list.

A list is created as a nested term, usually a special function ‘.’ (dot):

?- is_list(.(a, .(b, .(c, [])))).

List Notation

(.(a, .(b, .(c, []))) is the same as [a,b,c]

This is also equivalent to:

[a | [b | [c | []]]]

or

[a, b | [c]]

A frequent Prolog expression is: [H|T]
where H is head of the list, and T is the tail, which is another list.

Example: Calculating Factorial

factorial(0,1).

Lecture 21 p.10 CSCI 4152/6509

factorial(N,F) :- N>0, M is N-1, factorial(M,FM),
F is FM*N.

After saving in factorial.prolog and loading to Prolog:

?- [’factorial.prolog’].
% factorial.prolog compiled 0.00 sec, 1,000 bytes

Yes
?- factorial(6,X).

X = 720 ;

Example: List Membership

Example (testing membership of a list):

member(X, [X|_]).
member(X, [_|L]) :- member(X,L).

	IV Parsing
	A Brief Introduction to Prolog
	Natural Language Syntax
	Context-Free Grammars (CFG) Review
	Parsing Natural Language in Prolog
	Parsing Natural Language in Prolog using Difference Lists
	Definite Clause Grammar (DCG)
	Building a Parse Tree in DCG
	Example of Handling Agreement in DCG
	Embedded Code in DCG

