
Natural Language Processing
CSCI 4152/6509 — Lecture 21
Neural Network Models for NLP; Parsing
NLP

Instructors: Vlado Keselj
Time and date: 16:05 – 17:25, 21-Nov-2023
Location: Rowe 1011

CSCI 4152/6509, Vlado Keselj Lecture 21 1 / 33

Previous Lecture

Neural networks and deep learning

Applications

Some main developments

Large deep learning models

Exponential growth in size of LLMs

Biological neuron, perceptron, feed-forward network

Activation functions, softmax function

CSCI 4152/6509, Vlado Keselj Lecture 21 2 / 33

Neural Language Model

(Jurafsky and Martin)
The model has limited history, similarly to n-gram model

CSCI 4152/6509, Vlado Keselj Lecture 21 3 / 33

Recurrent Neural Networks (RNN)

Simple recurrent neural network presented as a
feedforward network (Jurafsky and Martin, Figure
9.3)

RNN is trained as a Language model by providing
the next word as output

CSCI 4152/6509, Vlado Keselj Lecture 21 4 / 33

RNN Unrolled in Time

RNN unrolled in time; more clear view of training
(Jurafsky and Martin, Figure 9.5)

CSCI 4152/6509, Vlado Keselj Lecture 21 5 / 33

Stacked RNN

Stacked RNN: Output from lower level is input to
higher level; top level is final output (Jurafsky and
Martin, Figure 9.10)

CSCI 4152/6509, Vlado Keselj Lecture 21 6 / 33

Bidirectional RNN

Bidirectional RNN; trained forward and backward
with concatenated output (Jurafsky and Martin,
Figure 9.11)

Output can be used for sequence labeling, for
example

CSCI 4152/6509, Vlado Keselj Lecture 21 7 / 33

LSTM — Long Short-Term Memory

LSTM: xt is input, ht−1 is previous hidden state, ct−1
is previous long-term context, ht and ct is output
(Jurafsky and Martin, Figure 9.13)

CSCI 4152/6509, Vlado Keselj Lecture 21 8 / 33

LSTM Cell

Another view of LSTM cell (source Wikipedia)

CSCI 4152/6509, Vlado Keselj Lecture 21 9 / 33

Transformers

Transformers map a sequence of input vectors to a
sequence of output vectors of the same length

x1 x2 . . . xn

↓ ↓ ... ↓
y1 y2 . . . yn

CSCI 4152/6509, Vlado Keselj Lecture 21 10 / 33

Self-Attention Layer

(Jurafsky and Martin)

CSCI 4152/6509, Vlado Keselj Lecture 21 11 / 33

Self-Attention Training

score(xi, xj) = xi · xj
αij = softmax(score(xi, xj)) ∀j ≤ i

yi =
∑
j≤i

αijxj

CSCI 4152/6509, Vlado Keselj Lecture 21 12 / 33

Transformer Block

(Jurafsky and Martin)
CSCI 4152/6509, Vlado Keselj Lecture 21 13 / 33

Multihead Attention Layer

(Jurafsky and Martin)
CSCI 4152/6509, Vlado Keselj Lecture 21 14 / 33

Encoding Word Positions in Transformers

from: Jurafsky and Martin, 3rd ed. draft

CSCI 4152/6509, Vlado Keselj Lecture 21 15 / 33

Training Transformer as a Language Model

from: Jurafsky and Martin, 3rd ed. draft

CSCI 4152/6509, Vlado Keselj Lecture 21 16 / 33

Text Completion with Transformers

from: Jurafsky and Martin, 3rd ed. draft

CSCI 4152/6509, Vlado Keselj Lecture 21 17 / 33

Parsing Natural Languages

Must deal with possible ambiguities

Decide whether to make a phrase structure or
dependency parser
When parsing NLP, there are generally two
approaches:

1 Backtracking to find all parse trees
2 Chart parsing

Prolog provides a very expressive way to NL parsing

FOPL is also used to represent semantics

CSCI 4152/6509, Vlado Keselj Lecture 21 18 / 33

Parsing with Prolog

We will go over a brief Prolog review
I more details are provided in the lab

Implicative normal form:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ q1 ∨ q2 ∨ . . . ∨ qm

If m ≤ 1, then the clause is called a Horn clause.

If resolution is applied to two Horn clauses, the result
is again a Horn clause.

Inference with Horn clauses is relatively efficient

CSCI 4152/6509, Vlado Keselj Lecture 21 19 / 33

Rules

A Horn clause with m = 1 is called a rule:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ q1

It is expressed in Prolog as: q1 :- p1, p2, ..., p_n.

CSCI 4152/6509, Vlado Keselj Lecture 21 20 / 33

Facts

A clause with m = 0 is called a fact:

p1 ∧ p2 ∧ . . . ∧ pn ⇒ >

is expressed in Prolog as: p1, p2, ..., p_n.

or :- p1, p2, ..., p_n.

and it is called a fact.

CSCI 4152/6509, Vlado Keselj Lecture 21 21 / 33

Rabbit and Franklin Example

The ‘rabbit and franklin’ example in Prolog:
hare(rabbit).

turtle(franklin).

faster(X,Y) :- hare(X), turtle(Y).

Save the program in a file, load the file.
After loading the file, on Prolog prompt, type:
faster(rabbit,franklin).

Try: faster(X,franklin). and faster(X,Y).

CSCI 4152/6509, Vlado Keselj Lecture 21 22 / 33

Rabbit and Franklin Example
hare(rabbit).

turtle(franklin).

faster(X,Y) :- hare(X), turtle(Y).

?- faster(rabbit,franklin).

CSCI 4152/6509, Vlado Keselj Lecture 21 23 / 33

Rabbit and Franklin Example
hare(rabbit).

turtle(franklin).

faster(X,Y) :- hare(X), turtle(Y).

?- faster(X,franklin).

CSCI 4152/6509, Vlado Keselj Lecture 21 24 / 33

Rabbit and Franklin Example
hare(rabbit).

turtle(franklin).

faster(X,Y) :- hare(X), turtle(Y).

?- faster(X,Y).

CSCI 4152/6509, Vlado Keselj Lecture 21 25 / 33

Unification and Backtracking

Two important features of Prolog: unification and
backtracking

Prolog expressions are generally mathematical
symbolic expressions, called terms

Unification is an operation of making two terms
equal by substituting variables with some terms

Backtracking: Prolog uses backtracking to satisfy
given goal; i.e., to prove given term expression, by
systematically trying different rules and facts, which
are given in the program

CSCI 4152/6509, Vlado Keselj Lecture 21 26 / 33

Example in Unification and Backtracking

What happens after we type:
?- faster(rabbit,franklin).

Prolog will search for a ‘matching’ fact or head of a
rule:
faster(rabbit,franklin) and
faster(X,Y) :- ...

‘Matching’ here means unification

After unifying faster(rabbit,franklin) and
faster(X,Y) with substitution X←rabbit and
Y←franklin, the rule becomes:
faster(rabbit,franklin) :-

hare(rabbit), turtle(franklin).

CSCI 4152/6509, Vlado Keselj Lecture 21 27 / 33

Example (continued)

Prolog interpreter will now try to satisfy predicates at
the right hand side: hare(rabbit) and
turtle(franklin) and it will easily succeed based
on the same facts

If it does not succeed, it can generally try other
options through backtracking

CSCI 4152/6509, Vlado Keselj Lecture 21 28 / 33

Variables in Prolog

Variable names start with uppercase letter or
underscore (‘ ’)

is a special, anonymous variable

Examples: ?- faster(rabbit,franklin).

Yes ;

...

?- faster(rabbit,X).

X = franklin ;

...

?- hare(X).

X = rabbit ;

CSCI 4152/6509, Vlado Keselj Lecture 21 29 / 33

Lists (Arrays), Structures.

Lists are implemented as linked lists. Structures (records)
are expressed as terms. Examples:
In program: person(john,public,’123-456’).

Interactively: ?- person(john,X,Y).

[] is an empty list.
A list is created as a nested term, usually a special
function ‘.’ (dot):
?- is_list(.(a, .(b, .(c, [])))).

CSCI 4152/6509, Vlado Keselj Lecture 21 30 / 33

List Notation

(.(a, .(b, .(c, []))) is the same as [a,b,c]

This is also equivalent to:
[a | [b | [c | []]]]

or
[a, b | [c]]

A frequent Prolog expression is: [H|T]

where H is head of the list, and T is the tail, which is
another list.

CSCI 4152/6509, Vlado Keselj Lecture 21 31 / 33

Example: Calculating Factorial

factorial(0,1).

factorial(N,F) :- N>0, M is N-1, factorial(M,FM),

F is FM*N.

After saving in factorial.prolog and loading to Prolog:
?- [’factorial.prolog’].

% factorial.prolog compiled 0.00 sec, 1,000 bytes

Yes

?- factorial(6,X).

X = 720 ;

CSCI 4152/6509, Vlado Keselj Lecture 21 32 / 33

Example: List Membership

Example (testing membership of a list):

member(X, [X|_]).

member(X, [_|L]) :- member(X,L).

CSCI 4152/6509, Vlado Keselj Lecture 21 33 / 33

