Lecture 19: Examples with Message-passing Algorithms

Location: Rowe 1011 Instructor: Vlado Keselj
Time: 16:05-17:25

Previous Lecture

- Message-passing

1. Isolated factor node to variable node
2. Isolated variable node to factor node
3. General factor node to variable node
4. General variable node to factor node

- Inference tasks using message passing

1. Marginalization with one variable
2. Marginalization with multiple variables
3. Conditioning with one variable
4. Conditioning with multiple variables
5. Completion in general

16.4 Message-Passing Inference Algorithm: Burglar-Earthquake Example

In this example we use the previously given Burglar-Earthquake Bayesian Network:

The given tables are:

B	E	A	$\mathrm{P}(A \mid B, E)$
T	T	T	0.95
T	T	F	0.05
T	F	T	0.94
T	F	F	0.06
F	T	T	0.29
F	T	F	0.71
F	F	T	0.001
F	F	F	0.999

A	J	$\mathrm{P}(J \mid A)$
T	T	0.90
T	F	0.10
F	T	0.05
F	F	0.95

A	M	$\mathrm{P}(M \mid A)$
T	T	0.70
T	F	0.30
F	T	0.01
F	F	0.99

Our first step is to translate this network into a factor graph:

The function nodes correspond to conditional probabilities in the following way: $f_{1} \sim \mathrm{P}(B), f_{2} \sim \mathrm{P}(E)$, $f_{3} \sim \mathrm{P}(A \mid B, E), f_{4} \sim \mathrm{P}(J \mid A)$, and $f_{5} \sim \mathrm{P}(M \mid A)$.

Burglar-Earthquake Example Problem

- John called, probability that Burglar is in the house
$-P(B=T \mid J=T)=$?
- Conditioning with one variable

Problem: Calculate the probability that a burglar is in the house, if we know that John has called. We "hard-wire" the variable J to the value T, and analyze which messages we need to compute:

The messages are calculated in the following way:

Calculation of the remaining messages requires a bit more calculations:

$f_{4} \rightarrow A$				
A	J	$J \rightarrow f_{4}$	f_{4}	
$A=T$	T	1	$\cdot 0.90$	$=0.9$
	F	0	$\cdot 0.10$	$=0$
			Σ	$=0.9$
$A=F$	T	1	$\cdot 0.05$	$=0.05$
	F	0	$\cdot 0.95$	$=0$
			Σ	$=0.05$

$f_{5} \rightarrow A$				
A	M	$M \rightarrow f_{5}$	f_{5}	
$A=T$	T	1	$\cdot 0.70$	$=0.7$
	F	1	$\cdot 0.30$	$=0.3$
			Σ	$=1$
$A=F$	T	1	$\cdot 0.01$	$=0.01$
	F	1	$\cdot 0.99$	$=0.99$
			Σ	$=1$

Hence the messages are: \begin{tabular}{c|c}
A \& $f_{4} \rightarrow A$

\hlineT \& 0.9

F \& 0.05

 and

and

\hline

A

\hline
\end{tabular}

multiplication of messages coming into $A:$| | |
| :---: | :---: |
| A | $A \rightarrow f_{3}$ |
| T | 0.9 |
| | F |

Finally, we compute the message $f_{3} \rightarrow B$:

$f_{3} \rightarrow B$						
B	E	A	$E \rightarrow f_{3}$	$A \rightarrow f_{3}$	f_{3}	
$B=T$	T	T	0.002	$\cdot 0.9$	$\cdot 0.95$	$=0.00171$
	T	F	0.002	$\cdot 0.05$	$\cdot 0.05$	$=0.000005$
	F	T	0.998	$\cdot 0.9$	$\cdot 0.94$	$=0.844308$
	F	F	0.998	$\cdot 0.05$	$\cdot 0.06$	$=0.002994$
					Σ	$=0.849017$

$f_{3} \rightarrow B$						
B	E	A	$E \rightarrow f_{3}$	$A \rightarrow f_{3}$	f_{3}	
$B=F$	T	T	0.002	$\cdot 0.9$	$\cdot 0.29$	$=0.000522$
	T	F	0.002	$\cdot 0.05$	$\cdot 0.71$	$=0.000071$
	F	T	0.998	$\cdot 0.9$	$\cdot 0.001$	$=0.0008982$
	F	F	0.998	$\cdot 0.05$	$\cdot 0.999$	$=0.0498501$
					Σ	$=0.0513413$

Hence, the message $f_{3} \rightarrow B$ is: | B | $f_{3} \rightarrow B$ |
| :---: | :---: |
| T | 0.849017 |
| F | 0.0513413 |

Final Calculation $P(B=T \mid J=T)$
Now, we can compute $\mathrm{P}(B=T \mid J=T)$ by multiplying component-wise the messages arriving at B, and by normalizing the result:

$$
\begin{aligned}
P(B=T \mid J=T) & =\frac{f_{1} \rightarrow B(T) \cdot f_{3} \rightarrow B(T)}{f_{1} \rightarrow B(T) \cdot f_{3} \rightarrow B(T)+f_{1} \rightarrow B(F) \cdot f_{3} \rightarrow B(F)} \\
& =\frac{0.001 \cdot 0.849017}{0.001 \cdot 0.849017+0.999 \cdot 0.513413}=0.01628373
\end{aligned}
$$

16.5 Message Passing Algorithm: POS Tagging Example

The HMM tagging using message passing would work as follows:

Training data:

```
swat V flies N like P ants N
time N flies V like P an D arrow N
```

Trained HMM Model:

T_{1}	$\mathrm{P}\left(T_{1}\right)$
N	0.5
V	0.5

T_{i-1}	T_{i}	$\mathrm{P}\left(T_{i} \mid T_{i-1}\right)$
D	N	1
N	P	0.5
N	V	0.5
P	D	0.5
P	N	0.5
V	N	0.5
V	P	0.5

T_{i}	W_{i}	$\mathrm{P}\left(W_{i} \mid T_{i}\right)$
D	an	$2 / 3 \approx 0.666666667$
D	*	$1 / 3 \approx 0.333333333$
N	ants	$2 / 9 \approx 0.222222222$
N	arrow	$2 / 9 \approx 0.222222222$
N	flies	$2 / 9 \approx 0.222222222$
N	time	$2 / 9 \approx 0.222222222$
N	*	$1 / 9 \approx 0.111111111$
P	like	0.8
P	$*$	0.2
V	flies	0.4
V	swat	0.4
V	$*$	0.2

Tagging Example

Slide notes:

Tagging Example

- Example: "flies are like flies"
- Represent HMM as the following Bayesian Network:

Let us again use the example sentence "flies are like flies", which we used in a previous example with HMM. First, we will represent HMM configuration as a Bayesian Network with observable variables "hard-wired" to their values, as follows:

Slide notes:
POS Tagging as Message Passing

- Solving a completion problem
- Algorithm steps:
- Create a factor graph
- Hard-wire output variables
- Use message passing with maximization
- Find maximum-likely completion
- We will calculate only necessary messages

The corresponding factor graph is:

The messages are calculated as follows:

T_{1}	m_{1}			
D	0		W_{1}	m_{2}
N	0.5, flies	1		
P	0		an	0
V	0.5		\vdots	0

Calculation of m_{3} is done as follows:

The other messages are:

T_{1}	$m_{4}\left(=m_{1} \cdot m_{3}\right)$		T_{2}	m_{5}
D	$0 \cdot 0=0$			
D	D	0		
N	$0.5 \cdot 2 / 9=1 / 9$		N	0.1

m_{5}		
$T_{2}=D$	$T_{1}=D: 0 \cdot f_{3}$	
	$T_{1}=N: \frac{1}{9} \cdot 0$	$=0$
	$T_{1}=P: 0 \cdot 0.5$	$=0$
	$T_{1}=V: 0.2 \cdot 0$	$=0$
		$\max : 0$

$$
\begin{array}{rll}
& =0 \\
& T_{1}=N: \frac{1}{9} \cdot 0 & =0 \\
& T_{1}=P: 0 \cdot 0.5 & =0 \\
& T_{1}=V: 0.2 \cdot 0.5 & =0.1 \\
& & \text { max:0.1 }
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{rll|}
\end{array} \\
&
\end{aligned}
$$

To calculate m_{9}, we have the following intermediate calculations:

m_{9}		m_{9}	$$	
$T_{3}=D$	$T_{2}=D: 0 \cdot 0 \quad=0$	$T_{3}=N$		
	$T_{2}=N: \frac{1}{90} \cdot 0 \quad=0$			
	$T_{2}=P: \frac{1}{50} \cdot 0.5=0.01$			
	$T_{2}=V: \frac{1}{90} \cdot 0 \quad=0$			
	max:0.01			
m_{9}	$m_{8} \cdot f_{3}$			
$T_{3}=P$	$T_{2}=D: 0 \cdot 0 \quad=0$			
	$T_{2}=N: \frac{1}{90} \cdot 0.5=1 / 180$			
	$T_{2}=P: \frac{1}{50} \cdot 0 \quad=0$			
	$T_{2}=V: \frac{1}{90} \cdot 0.5=1 / 180$			
	max:1/180			

To calculate m_{13}, we have the following intermediate calculations:

m_{13}		$m_{12} \cdot f_{3}$
$T_{4}=V$	$T_{3}=D: 0 \cdot 0$	$=0$
	$T_{3}=N: 0 \cdot 0.5$	$=0$
	$T_{3}=P: \frac{1}{225} \cdot 0$	$=0$
	$T_{3}=V: 0 \cdot 0$	$=0$
		max:0

To maximize the product of probabilities of T_{4} we calculate:

T_{4}	$m_{13} \cdot m^{2}$
D	$\frac{1}{450}$.
N	$\frac{1}{450} \cdot$
P	$0 \cdot 0$
V	$0 \cdot 0$.
value. We ca	
T_{3}	
D	m_{17}
N	$2 / 9$
P	$1 / 9$
V	$1 / 9$

To find optimal T_{3} we calculate:

| T_{3} | $m_{9} \cdot m_{11} \cdot m_{17}$ | | |
| :---: | :---: | :--- | :--- | :--- |
| D | $0.01 \cdot 0 \cdot \frac{2}{9}$ | $=0$ | |
| N | $0.01 \cdot 0 \cdot 0$ | $=0$ | |
| P | $\frac{1}{180} \cdot 0.8 \cdot \frac{1}{9}$ | $=1 / 2025$ | |
| V | $\frac{1}{180} \cdot 0 \cdot \frac{1}{9}$ | $=0$ | |\quad and we obtain: $T_{3}^{*}=P$

T_{3}	$m_{18}=m_{17} \cdot m_{11}$		T_{2}	$m_{19}=m_{18} \cdot f_{3}$ for $T_{3}=P$
	Then,	0		$\frac{4}{45} \cdot 0=0$
N	0	N	$\frac{4}{45} \cdot \frac{1}{2}=2 / 45$	
P	$\frac{1}{9} \cdot 0.8=4 / 45$	P	$\frac{4}{45} \cdot 0=0$	
V	0		V	$\frac{4}{45} \cdot \frac{1}{2}=2 / 45$

To find optimal T_{2} we calculate:

T_{2}	$m_{19} \cdot m_{5} \cdot m_{7}$	
D	$0 \cdot 0 \cdot \frac{1}{3}$	$=0$
N	$\frac{2}{45} \cdot 0.1 \cdot \frac{1}{9}$	$=1 / 2025$

To find optimal T_{1} we calculate:

T_{1}	$m_{1} \cdot m_{3} \cdot m_{21}$	
D	$0 \cdot 0 \cdot 0$	$=0$

$\begin{array}{lcl}N & 0.5 \cdot \frac{2}{9} \cdot \frac{1}{225} & =1 / 2025 \\ P & 0 \cdot 0 \cdot 0 & =0\end{array}$ and we obtain $T_{1}^{*}=N$.
$\begin{array}{ll}P & 0 \cdot 0 \cdot 0\end{array}=0$
V $0.5 \cdot 0.4 \cdot 0=0$

To summarize, the most probable values of unknown variables T_{1}, T_{2}, T_{3}, and T_{4} are:

$$
T_{1}^{*}=N \quad T_{2}^{*}=V \quad T_{3}^{*}=P \quad T_{4}^{*}=N
$$

