
Lecture 18 p.1

Faculty of Computer Science, Dalhousie University 2-Nov-2023
CSCI 4152/6509 — Natural Language Processing

Lecture 18: Sum-Product (Message-passing) Algorithms for BN Inference

Location: Rowe 1011 Instructor: Vlado Keselj
Time: 16:05 – 17:25

Previous Lecture

– HMM as Bayesian Network
– Bayesian Network definition
– Burglar-earthquake example
– Computational tasks
– BN inference using brute force
– Complexity of general inference in BNs
– Sum-product algorithms (started)

Computation Problems Solved by Message Passing

– Applicable to all inference problems
– Two main types of computation:

– Summation of resulting overall products where variables take different domain values
– Maximization: Finding variable values for which the resulting overall product is maximized

– Two main situations:
– Factor node passing a message to variable node
– Variable node passing a message to factor node

Slide notes:

Four Cases of Message Computation
– Actually, we can distinguish 4 cases of message computation:

1. Factor node with multiple neighbours to variable node
2. Factor leaf node to variable node
3. Variable node with multiple neighbours to factor node
4. Variable leaf node to factor node

November 3, 2023, CSCI 4152/6509 http://web.cs.dal.ca/˜vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/


Lecture 18 p.2 CSCI 4152/6509

Factor Node with Multiple Neighbours Passing a Message to Variable Node

V1

V2

. . .

Vp

f V

m1

m2

mp

m

for each value V=a calculate m(a):

for all combinations of V1 .. Vp

calculate m1*m2*..mp*f

and keep sum or max

m(a) is resulting sum or max

− case with multiple neighbours

Factor Node with No Other Neighbours Passing a Message to Variable Node

f V
m

for each value V=a : m(a) = f(a)

− case with no other neighbours

Variable Node with Multiple Neighbours Passing a Message to Factor Node

f2

. . .

fp

V f

f1
m1

m2

mp

m

m(a)=m1(a)*m2(a)*...*mp(a)

− case with multiple neighbours



CSCI 4152/6509 Lecture 18 p.3

Variable Node with No Other Neighbours Passing a Message to Factor Node

fV
m

− case with no other neighbours

for each value a of V: m(a) = 1

16.3.1 Solving Inference Tasks with Message-Passing Algorithms

Slide notes:

Solving Inference Tasks
– Distinguish the following cases of inference tasks:

1. Marginalization with one variable
2. Marginalization in general
3. Conditioning with one variable
4. Conditioning in general
5. Completion

Message-Passing Algorithm for Marginalization with One Variable

We first consider the algorithm when we marginalize only on one variable.

Slide notes:

Marginalization with One Variable
– P(Vi=xi) =?
– Apply general message passing rules with summation
– At the end

P(Vi=xi) = Mf1→Vi(xi) · · ·Mfp→Vi(xi)

– Running time: O(nmp+1)

– MessagesM are vectors of real numbers (u1, ..., um), where uk is a number that summarizes the computation
for the case V = dk, where the domain for all variables is {d1, d2, . . . , dm}.

– Messages are passed from variable nodes to function nodes, and from function nodes to variable nodes.
– A node can send a message to its neighbor only when it has received all of the messages from its other

neighbors.
– Given a tree, the algorithm can start by sending messages from each of the leaves, and stops once every node

has passed a message to every neighbor. At the end, two messages will pass each edge in the graph: one for
each of the two directions.

– Function to variable messages Mf→V (x) are computed by

Mf→V (x) =
∑

x1,...,xp

f(x, x1, ..., xp)MV1→f (x1) · · ·MVp→f (xp)

over all other variables V1, ..., Vp (beside V ) connected to f . If f is connected only to V , then Mf→V (x) =
f(x).



Lecture 18 p.4 CSCI 4152/6509

– Variable to function messages MV→f (x) are computed by

MV→f (x) =

{
1 if only f is connected to V
Mf1→V (x) · · ·Mfp→V (x) otherwise

over all other functions f1, ..., fp (beside f ) adjacent to V .
– Once all of the messages have been passed, then the final marginal for any variable Vi can be calculated by

P(Vi=xi) = Mf1→Vi
(xi) · · ·Mfp→Vi

(xi)

for all f1, ..., fp adjacent to Vj .

This algorithm is efficient: There are 2n− 1 edges in an undirected tree containing 2n nodes (n variables and n
function nodes). 2(2n− 1) messages get sent (one in each direction along each edge). Each function to variable
message can be computed in time O(mp) where p is the number of function neighbors, each variable to function
message can be computed in time O(mp) where p is the number of variable neighbors, and the final marginal can be
computed in time O(mp). Thus, the total running time is bounded by O(nmp) where p is the maximum number of
neighbors of any node in the graph. This is linear in n and polynomial in m (but exponential in p, so the maximum
number of neighbors has to be bounded).

Message-passing Algorithm for Marginalization in General

Slide notes:

Marginalization in General
– Consider calculating P(V1=x1, ..., Vk=xk).
– The variables V1, ..., Vk are called evidence variables and the

instantiated values x1, . . . , xk are called observed evidence.
– An evidence-variable to function message is computed in the

same way as before if x = xj (i.e., it is equal to observed
evidence), otherwise it is 0.

– Final computation is done in any evidence node Vj :

P(V1=x1, ..., Vk=xk) = Mf1→Vj
(xj) · · ·Mfp→Vj

(xj)

Consider computing the marginal of one particular partial configuration P(V1 = x1, ..., Vk = xk). The variables
V1, ..., Vk are called evidence variables and the instantiated values x1, . . . , xk are called observed evidence. Then
we can compute the desired probability by using the same message passing algorithm as above, except:

– An evidence-variable to function message is computed in the same way as before if x = xj (i.e., it is equal to
observed evidence), otherwise it is 0. I.e.,

MV→f (x) =

 0 if x 6= xj
1 if x = xj and only f is adjacent to V
Mf1→V (x) · · ·Mfp→V (x) otherwise (x = xj)

over all other functions f1, ..., fp (besides f ) adjacent to V .
– Once all of the messages have been passed, then the final marginal can be determined by taking any evidence

variable Vj ∈ {V1, ..., Vk} and computing

P(V1=x1, ..., Vk=xk) = Mf1→Vj
(xj) · · ·Mfp→Vj

(xj)

over all f1, ..., fp adjacent to Vj .



CSCI 4152/6509 Lecture 18 p.5

Message-passing Algorithm for Conditioning with One Variable

Let us assume that we need to calculate the following conditional probability: P(Vk+1=yk+1|V1=x1, ..., Vk=xk).
We can use the same message passing algorithm as above, treating V1, ..., Vk as evidence variables, except that

– once all of the messages have been passed, then the final conditional probability can be determined by

P(Vk+1=yk+1|V1=x1, ..., Vk=xk)

=
Mf1→Vk+1

(yk+1) · · ·Mfp→Vk+1
(yk+1)

Z

where Z is a normalization constant over choices of Vk+1; that is,

Z =
∑
y

Mf1→Vk+1
(y) · · ·Mfp→Vk+1

(y)

Message-passing Algorithm for Conditioning in General

To compute arbitrary conditional probability P(Vα = yα|Vβ = xβ), where α and β are two disjoint sets of indices
from {1, . . . , n}, we can use formula:

P(Vα = yα|Vβ = xβ) =
P(Vα = yα,Vβ = xβ)

P(Vβ = xβ)
,

where we know how to calculate marginal probabilities P(Vα = yα,Vβ = xβ) and P(Vβ = xβ) using the
message-passing algorithm.

Message-passing Algorithm for Completion

If we are computing completion with one variable, it is easy to use the algorithm for conditioning on one variable to
obtain the result.

However, for completion in general, we apply a new message passing algorithm.

To compute
y∗k+1, ..., y

∗
n = arg max

yk+1,...,yn

P(Vk+1=yk+1, ..., Vn=yn|V1=x1, ..., Vk=xk)

we can use the same message passing algorithm as the algorithm for calculating marginal probability P(V1 =
x1, . . . , Vk = xk), except:

– Function to variable messages Mf→V (x) are computed by

Mf→V (x) = max
x1,...,xp

f(x, x1, ..., xp)MV1→f (x1) · · ·MVp→f (xp)

over all other variables V1, ..., Vp (besides V ) adjacent to f .
– Once all of the messages have been passed, then the maximum probability completion for any free variable
Vk+j can be calculated by

y∗k+j = arg max
yk+j

Mf1→Vk+j
(yk+j) · · ·Mfp→Vk+j

(yk+j)

over all f1, ..., fp containing Vk+j .
– If there are two or more values for a variable for which the maximal conditional probability is reached, we

need to make sure that all variables are assigned consistently by hard-wiring the chosen variable value.


	Solving Inference Tasks with Message-Passing Algorithms
	Message-Passing Inference Algorithm: Burglar-Earthquake Example
	Message Passing Algorithm: POS Tagging Example

