
Natural Language Processing
CSCI 4152/6509 — Lecture 18
Sum-Product (Message-passing)
Algorithms for BN Inference

Instructors: Vlado Keselj
Time and date: 16:05 – 17:25, 2-Nov-2023
Location: Rowe 1011
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Previous Lecture

HMM as Bayesian Network

Bayesian Network definition

Burglar-earthquake example

Computational tasks

BN inference using brute force

Complexity of general inference in BNs

Sum-product algorithms (started)
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Computation Problems Solved by Message Passing

Applicable to all inference problems
Two main types of computation:

I Summation of resulting overall products where
variables take different domain values

I Maximization: Finding variable values for
which the resulting overall product is maximized

Two main situations:
I Factor node passing a message to variable node
I Variable node passing a message to factor node
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Four Cases of Message Computation

Actually, we can distinguish 4 cases of message
computation:

1. Factor node with multiple neighbours to variable
node

2. Factor leaf node to variable node

3. Variable node with multiple neighbours to factor
node

4. Variable leaf node to factor node
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Factor Node with Multiple Neighbours Passing a

Message to Variable Node

V1

V2

. . .

Vp

f V

m1

m2

mp

m

for each value V=a calculate m(a):

for all combinations of V1 .. Vp

calculate m1*m2*..mp*f

and keep sum or max

m(a) is resulting sum or max

− case with multiple neighbours
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Factor Node with No Other Neighbours Passing a

Message to Variable Node

f V
m

for each value V=a : m(a) = f(a)

− case with no other neighbours
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Variable Node with Multiple Neighbours Passing a

Message to Factor Node

f2

. . .

fp

V f

f1
m1

m2

mp

m

m(a)=m1(a)*m2(a)*...*mp(a)

− case with multiple neighbours
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Variable Node with No Other Neighbours Passing a

Message to Factor Node

fV
m

− case with no other neighbours

for each value a of V: m(a) = 1
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Solving Inference Tasks

Distinguish the following cases of inference tasks:

1. Marginalization with one variable

2. Marginalization in general

3. Conditioning with one variable

4. Conditioning in general

5. Completion
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Marginalization with One Variable

P(Vi=xi) =?

Apply general message passing rules with summation

At the end

P(Vi=xi) = Mf1→Vi
(xi) · · ·Mfp→Vi

(xi)

Running time: O(nmp+1)
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Marginalization in General

Consider calculating P(V1=x1, ..., Vk=xk).

The variables V1, ..., Vk are called evidence variables
and the instantiated values x1, . . . , xk are called
observed evidence.

An evidence-variable to function message is
computed in the same way as before if x = xj (i.e.,
it is equal to observed evidence), otherwise it is 0.

Final computation is done in any evidence node Vj:

P(V1=x1, ..., Vk=xk) = Mf1→Vj
(xj) · · ·Mfp→Vj

(xj)
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Conditioning with One Variable
Let us assume that we need to calculate the following conditional
probability: P(Vk+1=yk+1|V1=x1, ..., Vk=xk). We can use the same
message passing algorithm as above, treating V1, ..., Vk as evidence
variables, except that

once all of the messages have been passed, then the final
conditional probability can be determined by

P(Vk+1=yk+1|V1=x1, ..., Vk=xk)

=
Mf1→Vk+1

(yk+1) · · ·Mfp→Vk+1
(yk+1)

Z

where Z is a normalization constant over choices of Vk+1; that
is,

Z =
∑
y

Mf1→Vk+1
(y) · · ·Mfp→Vk+1

(y)
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Conditioning in General

To compute arbitrary conditional probability P(Vα = yα|Vβ = xβ),
where α and β are two disjoint sets of indices from {1, . . . , n}, we
can use formula:

P(Vα = yα|Vβ = xβ) =
P(Vα = yα,Vβ = xβ)

P(Vβ = xβ)
,

where we know how to calculate marginal probabilities
P(Vα = yα,Vβ = xβ) and P(Vβ = xβ) using the message-passing
algorithm.
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Completion

Completion with one variable: use conditioning on one variable;
otherwise

y∗k+1, ..., y
∗
n = arg max

yk+1,...,yn

P(Vk+1=yk+1, ..., Vn=yn|V1=x1, ..., Vk=xk)

use the same message passing algorithm as the algorithm for
calculating marginal probability P(V1 = x1, . . . , Vk = xk), except:

Mf→V (x) = max
x1,...,xp

f(x, x1, ..., xp)MV1→f (x1) · · ·MVp→f (xp)

At the end

y∗k+j = arg max
yk+j

Mf1→Vk+j
(yk+j) · · ·Mfp→Vk+j

(yk+j)

Variables must be assigned consistently (check by “hard-wiring”)
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