
Lecture 17 p.1

Faculty of Computer Science, Dalhousie University 31-Oct-2022
CSCI 4152/6509 — Natural Language Processing

Lecture 17: HMM as Bayesian Network

Location: Rowe 1011 Instructor: Vlado Keselj
Time: 16:05 – 17:25

Previous Lecture

– HMM POS example
– HMM Computational tasks
– HMM Brute-force approach
– HMM Inference: Viterbi algorithm

16 HMM as Bayesian Network
Slide notes:

HMM as Bayesian Network
– Viterbi algorithm is an efficient way to solve a special

problem:
– completion with known observables and unknown hidden

nodes of an HMM
– General approach:

– Treat HMM as Bayesian Network
– Apply Product-Sum (i.e., “Message-passing”) algorithm

for efficient inference

In the previous section, we saw how we can do efficient inference in an HMM model using the Viterbi algorithm.
The inference task that we were solving was a specialized completion task where we knew values of all observable
variables, and we calculated most likely values of all hidden variables. In order to solve more general inference
tasks, such as marginalization, or for example completion with arbitrary known variables, we would need to modify
the Viterbi algorithm in a non-trivial way, or possibly come up with a significantly different new algorithm.

A much more general and flexible way to approach inference in HMMs is to treat them as Bayesian Networks, since
HMM is a specialized version of a more general model called Bayesian Network.

16.1 Bayesian Networks

Note regarding course scope: Some detailed discussion in this section is not completely covered in the lectures,
so that part will not be used in assignments or the exam. For the purposes of the course, it is sufficient to understand
how product-sum algorithms work and be able to apply them or implement them.

October 31, 2023, CSCI 4152/6509 http://web.cs.dal.ca/˜vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/

Lecture 17 p.2 CSCI 4152/6509

Slide notes:

Bayesian Network Model
– Also known as: Belief Networks, or Bayesian Belief Networks
– A directed acyclic graph (DAG)

– Each node representing a random variable
– Edges representing causality (probabilistic meaning)

– Conditional Probability Table (CPT) for each node
– Bayesian Network assumption:

P(full configuration) =

n∏
i=1

P(Vi|Vπ(i))

The Viterbi algorithm provides an efficient way to solve a particular inference problem in the HMM model. It is
the completion problem of finding the most likely hidden states given the observable values. If we represent the
HMM model in the unrolled graphical form, we can see that this inference problem is only a special case of the
inference problem, and that we may want to calculate other inference formulas, including different marginalization,
conditioning, or completion cases. Many of these problems can be efficiently solved if we see HMM as a special
case of a more general concept of a Bayesian Network.

Bayesian Networks (also known as belief networks, Bayesian belief networks, or decision networks) provide
a way to create structured probabilistic models in a more general way. We saw previously that between the joint
distribution model and the fully independent model we have useful models such as the Naı̈ve Bayes model, the
Ngram or Markov chain model, and the Hidden Markov Model. All of these models had a graphical representation,
and the Bayesian Network model makes this more general by providing a model associated with any directed acyclic
graph.

The following graphs shows dependence structure for the Naı̈ve Bayes model of the spam detection, and for the
Naı̈ve Bayes model in general:

V1

V2 V3
... Vn

Spam

Free Caps

Example

To introduce the general concept of Bayesian Networks, we will consider the known Burglar-Earthquake example,
frequently used in the literature (e.g., the AI textbook by Russell and Norvig):

Alarm

Burglary Earthquake

JohnCalls MaryCalls

CSCI 4152/6509 Lecture 17 p.3

We can follow a topological sort of the above graph and use the chain rule for the conditional probability, which can
be derived from the definition of the conditional probability, to obtain the equation:

P(B,E,A, J,M) = P(B)P(E|B)P(A|B,E)P(J |A,B,E)P(M |J,A,B,E)

The graph denotes some dependence assumptions, which include: B and E are independent variables, hence
P(E|B) = P(E), J depends only on A, hence P(J |A,B,E) = P(J |A), and M depends only on A, hence
P(M |J,A,B,E) = P(M |A). If we make these substitutions in the above equation, we obtain the following,
Bayesian network assumption:

P(B,E,A, J,M) = P(B)P(E)P(A|B,E)P(J |A)P(M |A)

This assumption implies that to evaluate any probability of a complete configuration of the model we need to keep
only the parameters for the following conditional probabilities: P(B), P(E), P(A|B,E), P(J |A), and P(M |A).
These parameters are given in corresponding conditional probability tables (CPTs).

Let us assume that the conditional tables for our example are:

B P(B)
T 0.001
F 0.999

E P(E)
T 0.002
F 0.998

B E A P(A|B,E)
T T T 0.95
T T F 0.05
T F T 0.94
T F F 0.06
F T T 0.29
F T F 0.71
F F T 0.001
F F F 0.999

A J P(J |A)
T T 0.90
T F 0.10
F T 0.05
F F 0.95

A M P(M |A)
T T 0.70
T F 0.30
F T 0.01
F F 0.99

The following is a formal definition of Bayesian Network:

Definition 16.1 (Bayesian Network) A Bayesian Network is defined by a directed acyclic graph (DAG) and a
collection of conditional probability tables, where nodes in the graph represent random variables and directed
edges in the graph represent conditional independence assumptions. The edges represent causality among the
random variable nodes so that there is an edge from a variable to another variable if and only if there is a direct
dependence between these variables. If Vj (1 ≤ j ≤ n) are the random variables and Vπ(j) are parent variables of
any variable Vj , i.e., then the Bayesian Network assumption can be written in the following way:

P(all variables) =
n∏
j=1

P(Vj |Vπ(j))

Hence, a Bayesian network consists of two components: a directed graph and a set of lookup tables for conditional
probabilities for each variable Vi. If π(i) are parent nodes of Vi, then for all possible values of variables Vπ(i) and
Vi, the conditional probability table (CPT) specifies the probability of P(Vi|Vπ(i)).

Example (Burglar-Earthquake cont’d)

The tables for the Burglar-Earthquake example:

Lecture 17 p.4 CSCI 4152/6509

B P(B)
T 0.001
F 0.999

E P(E)
T 0.002
F 0.998

B E A P(A|B,E)
T T T 0.95
T T F 0.05
T F T 0.94
T F F 0.06
F T T 0.29
F T F 0.71
F F T 0.001
F F F 0.999

A J P(J |A)
T T 0.90
T F 0.10
F T 0.05
F F 0.95

A M P(M |A)
T T 0.70
T F 0.30
F T 0.01
F F 0.99

Number of Parameters

If the number of parent nodes is k, and if we assume that each variable may have m different values, than the
conditional probability table has mk+1 rows. For each of mk combinations of values of parent notes, there is one
constraint on the probability distribution

∑
x P(Vi = x|Vπ(i)) = 1, which will result in mk constraints; i.e., there

are mk+1 −mk = (m− 1)mk free parameters. If the maximal number of parents for a whole network is k, then
the total number of free parameters is not grater than n(m− 1)mk.

Example. For example, let us calculate the number of free parameters of the following Bayesian Network:

V

V V

V3

1 2

4

The Bayesian assumption for the network above is:

P(V1=x1, V2=x2, V3=x3, V4=x4)

= P(V1=x1) P(V2=x2) P(V3=x3|V1=x1) P(V4=x4|V1=x1, V2=x2)

How many parameters are needed to represent the network?

For each variable store a conditional probability table of size

m ·m#parents −m#parents (constraints)

For the above network, the number of free parameters is:

m+m+m2 +m3 parameters
−1− 1−m−m2 constraints
= m3 +m− 2

Representational Power

Using the Bayesian network model we can represent many other models: the full joint distribution model, fully
independent model, Naı̈ve Bayes model, Hidden Markov Model, and other structured models.

Some examples of the Bayesian Networks are:

CSCI 4152/6509 Lecture 17 p.5

V

V

V

V

V V V V

V

V V

V

1

2

3

4

1 2 3 4

3

1 2

4

(1) (2) (3)

Number of parameters in each model:

(1) (m− 1) + (m2 −m) + (m3 −m2) + (m4 −m3) = m4 − 1

(2) (m− 1) + (m− 1) + (m− 1) + (m− 1) = 4m− 4

(3) solved above: m3 +m− 2

16.2 Computational Tasks

Evaluation

The calculate probability of a complete configuration, we multiply corresponding conditional probabilities:

P(V1=x1, ..., Vn=xn) =

n∏
i=1

P(Vi=xi|Vπ(i)=xπ(i))

Simulation

For i = 1, ..., n, draw xj according to P(Vj = xj |Vπ(j) = xπ(j)). Conjoin (x1, ..., xn) to form a complete
configuration.

Learning

Learning with predetermined network graph, and from complete observations can be done by direct MLE; i.e.,
counting.

Inference in Bayesian Networks

One way to handle all inference tasks in Bayesian Networks is to use the brute force method. Using the same
summation techniques as in the Joint distribution method, we can do marginalization, conditioning, and completion
in Bayesian Networks as well. Although this method does not necessarily use a lot of memory, it is prohibitively
expensive in terms of running time. The running time is the same as in the Joint distribution model, i.e., it is
exponential. For example, there are 25 = 512 possible configurations in the Burglar-Earthquake example network.

Lecture 17 p.6 CSCI 4152/6509

Inference Example using Brute Force

By using the tables we can easily compute the probability of any complete configuration. With appropriate
summations and by using the definitions of marginal and conditional probability, we can also solve other inference
problems. For example, if we want to calculate P(B = T |J = T), i.e., the probability that a burglar is in the house
if John told us over the phone that the alarm is on, we first use the definition of the conditional probability:

P(B = T |J = T) =
P(B = T, J = T)

P(J = T)

The marginal probability P(B = T, J = T) can be calculated using the formula:

P(B = T, J = T) =
∑

E,A,M

P(B = T,E,A, J = T,M)

=
∑

E,A,M

P(B = T)P(E)P(A|B = T,E)P(J = T |A)P(M |A)

Hence,

P(B = T, J = T) =

P(B = T)P(E = T)P(A = T |B = T,E = T)P(J = T |A = T)P(M = T |A = T)

+ P(B = T)P(E = T)P(A = T |B = T,E = T)P(J = T |A = T)P(M = F |A = T)

+ P(B = T)P(E = T)P(A = F |B = T,E = T)P(J = T |A = F)P(M = T |A = F)

+ P(B = T)P(E = T)P(A = F |B = T,E = T)P(J = T |A = F)P(M = F |A = F)

+ P(B = T)P(E = F)P(A = T |B = T,E = F)P(J = T |A = T)P(M = T |A = T)

+ P(B = T)P(E = F)P(A = T |B = T,E = F)P(J = T |A = T)P(M = F |A = T)

+ P(B = T)P(E = F)P(A = F |B = T,E = F)P(J = T |A = F)P(M = T |A = F)

+ P(B = T)P(E = F)P(A = F |B = T,E = F)P(J = T |A = F)P(M = F |A = F)

= 0.001 · 0.002 · 0.95 · 0.9 · 0.7
+ 0.001 · 0.002 · 0.95 · 0.9 · 0.3
+ 0.001 · 0.002 · 0.05 · 0.05 · 0.01
+ 0.001 · 0.002 · 0.05 · 0.05 · 0.99
+ 0.001 · 0.998 · 0.94 · 0.9 · 0.7
+ 0.001 · 0.998 · 0.94 · 0.9 · 0.3
+ 0.001 · 0.998 · 0.06 · 0.05 · 0.01
+ 0.001 · 0.998 · 0.06 · 0.05 · 0.99
= 8.49017 · 10−4

To calculate P(J = T), we can represent it as P(J = T) = P(B = T, J = T) + P(B = F, J = T) and first

CSCI 4152/6509 Lecture 17 p.7

calculate P(B = F, J = T):

P(B = F, J = T) =
∑

E,A,M

P(B = F,E,A, J = T,M)

=
∑

E,A,M

P(B = F)P(E)P(A|B = F,E)P(J = T |A)P(M |A)

= P(B = F)P(E = T)P(A = T |B = F,E = T)P(J = T |A = T)P(M = T |A = T)

+ P(B = F)P(E = T)P(A = T |B = F,E = T)P(J = T |A = T)P(M = F |A = T)

+ P(B = F)P(E = T)P(A = F |B = F,E = T)P(J = T |A = F)P(M = T |A = F)

+ P(B = F)P(E = T)P(A = F |B = F,E = T)P(J = T |A = F)P(M = F |A = F)

+ P(B = F)P(E = F)P(A = T |B = F,E = F)P(J = T |A = T)P(M = T |A = T)

+ P(B = F)P(E = F)P(A = T |B = F,E = F)P(J = T |A = T)P(M = F |A = T)

+ P(B = F)P(E = F)P(A = F |B = F,E = F)P(J = T |A = F)P(M = T |A = F)

+ P(B = F)P(E = F)P(A = F |B = F,E = F)P(J = T |A = F)P(M = F |A = F)

= 0.999 · 0.002 · 0.29 · 0.9 · 0.7
+ 0.999 · 0.002 · 0.29 · 0.9 · 0.3
+ 0.999 · 0.002 · 0.71 · 0.05 · 0.01
+ 0.999 · 0.002 · 0.71 · 0.05 · 0.99
+ 0.999 · 0.998 · 0.001 · 0.9 · 0.7
+ 0.999 · 0.998 · 0.001 · 0.9 · 0.3
+ 0.999 · 0.998 · 0.999 · 0.05 · 0.01
+ 0.999 · 0.998 · 0.999 · 0.05 · 0.99
= 5.12899587 · 10−2

Now, we calculate

P(J = T) = P(B = T, J = T) + P(B = F, J = T) = 8.49017 · 10−4 + 5.12899587 · 10−2 = 0.0521389757,

and finally

P(B = T |J = T) =
P(B = T, J = T)

P(J = T)
=

8.49017 · 10−4

0.0521389757
= 0.0162837299467699.

Even this small example illustrates inefficiency of this approach.

Complexity of General Inference in Bayesian Networks

In general, we know that for some Bayesian networks the inference must be costly: for example, inference with an
arbitrary joint distribution model is expensive, and a joint distribution model can be regarded as a special case of a
Bayesian network. The size of the joint distribution model is exponentially large due to the large mn look up table
(m is the size of the domain, and n is the number of random variables).

On the other hand, inference in some very simple Bayesian networks such as the fully independent model and the
Naı̈ve Bayes model can be done efficiently. Inference in HMMs can also be done efficiently. An interesting question
is: Can we find some other networks where inference is also easy?

We could first notice that the number of parents per node is limited in the special Bayesian networks that we
mentioned: in the fully independent model all notes have 0 parents, in the Naı̈ve Bayes model all nodes have at

Lecture 17 p.8 CSCI 4152/6509

most 1 parent, and in the HMM each node has at most 1 parent as well. So, the first idea is to restrict the maximal
number of parents in each node.

If the maximal number of parents is 1, then inference can be done efficiently, and we will see this soon. If the
maximal number of parents is 2, inference can be hard. The representation size (the table size) is still polynomial,
but the inference task can be NP-hard. We can prove that inference in Bayesian Networks with at most 2 parents is
NP-hard by the NP-reduction from the Circuit satisfiability problem, or, equivalently, to satisfiability of an arbitrary
boolean function. A sketch of this proof is as follows: If we have an arbitrary circuit satisfiability problem it can be
represented as a directional circuit with some 0/1 inputs, boolean gates (AND, OR, and NOT), and an output. The
satisfiability problem is the question of whether it is possible to set input nodes to the values 0 or 1 in such a way
that we obtain 1 at the output node. We can turn this circuit into a Bayesian Network but attaching a node to each
input and assigning probability 0.5 to 0 or 1 values. The probability tables are simple 0-1 tables corresponding to
associated boolean operations. Satisfiability of the circuit is then equivalent to verifying that the marginal probability
of the output node is greater than zero.

We will show that a Bayesian network in which each node has at most one parent node allows for efficient inference.
Actually, more generally, if the Bayesian network graph has a shape of the tree; i.e., its undirected version of the
graph is a tree, then we know how to do inference efficiently.

16.3 Sum-Product Algorithms for Bayesian Networks

Slide notes:

Sum-Product Algorithms for Bayesian Networks
– Basic idea: optimizing sum-product calculation using graph

structure
Described in “Factor graphs and the Sum-Product Algorithm” by
Kschishang, Frey, and Loeliger in 2000

– Algorithm overview:
1. Construction of a factor graph
2. Message-passing algorithms

– Construction of the factor graph
– Principles of message passing

The algorithms for inference (marginalization, conditioning, and completion) in tree Bayesian networks can be
formulated conveniently as message passing algorithms, also known as product-sum algorithms. The algorithm
was re-invented in different disguises in Hidden Markov Models, Kalman filters, Error-correcting codes, Bayesian
Networks, and similar.2

Before presenting the message passing algorithms, let us first see on an example how we can do marginalization
efficiently on a Bayesian network, using the BN assumption and the sum separation rule:

Example

Note: This example is not covered in class.

This example illustrates the underlying mathematical computation that leads to the message passing algorithms that
we will cover. Let us assume that we have the following Bayesian Network:

2The paper introducing the message passing algorithms is “Factor Graphs and the Sum-Product Algorithm” by Frank R. Kschishang, Brendan
J. Frey, and Hans-Andrea Loeliger in 2000.

CSCI 4152/6509 Lecture 17 p.9

V

V V

V3

1 2

4

and that we want to compute P (V4 = x4):

=
∑
x1

∑
x2

∑
x3

P (V1 = x1, V2 = x2, V3 = x3, V4 = x4)

=
∑
x1

∑
x2

∑
x3

P (V1 = x1)P (V2 = x2)P (V3 = x3|V1 = x1)

P (V4 = x4|V1 = x1, V2 = x2)

This computation has m3 − 1 additions and 3m3 multiplications, which is very expensive (as expensive as the joint
distribution model).

Let us think of conditional probabilities as functions:

f1(x1) = P (V1 = x1)

f2(x2) = P (V2 = x2)

f3(x1, x3) = P (V3 = x3|V1 = x1)

f4(x1, x2, x4) = P (V4 = x4|V1 = x1, V2 = x2)

and let us try to calculate the value of the above expression with less additions and multiplications. We use the fact
that summations of factors which depend on variables x2 and x3 can be separated.

P (V4 = x4) =

=
∑
x1

∑
x2

∑
x3

f1(x1)f2(x2)f3(x1, x3)f4(x1, x2, x4)

=
∑
x1

f1(x1)
∑
x3

f3(x1, x3)
∑
x2

f2(x2)f4(x1, x2, x4)

=
∑
x1

f1(x1)

(∑
x2

f2(x2)f4(x1, x2, x4)

)∑
x3

f3(x1, x3)

We can calculate number of operations: First, for each value of x1 we make m multiplications in sum over x2,
m− 1 additions in sum over x2, m− 1 additions in sum over x3, and two more multiplications of these two sums
and f1, which adds up to m + 2 multiplications and 2m − 2 additions. This is repeated m times, which makes
m2 + 2m multiplications and 2m2 − 2m additions. After that, we make additional m− 1 additions, which makes
m2 + 2m multiplications, and 2m2 −m− 1 additions.

This is significantly better than 3m3 multiplications and m3 − 1 additions.

Breaking up a brute-force formula as in this example into more efficient computations gets more complicated and
harder to manage in general Bayesian Networks. It can be done relatively efficiently in tree-structured Bayesian
Networks; i.e., networks that do not have cycles when they graphs are treated as undirected graphs.

Message Passing Algorithms Framework

Applying the message passing algorithms to Bayesian Network inference consists of two steps:

1. translation of a BN into a factor graph, and
2. message exchange between nodes in the factor graph.

Lecture 17 p.10 CSCI 4152/6509

Factor graph

The first step in Bayesian network inference is to convert the Bayesian network graph into a factor graph. A factor
graph is an an undirected graph in which each variable is represented with one “round” node and one “square” node
representing the corresponding conditional probability table (CPT). The square node is connected with all variables
appearing in CPT. So, if V is a variable in a Bayesian network, the following transformation is applied.

V

V2V1 Vp

V

V2V1 Vp.

f

Example:

Using the Burglar-Earthquake example:

J M

A

EB

J M

A

EB

f4

f3

f5

f1 f2

Principles of Message Passing

– A message summarizes computation in the corresponding part of graph
– Messages are vectors of real numbers
– Each node passes to each neighbour node a message exactly once
– To pass a message to a neighbour node, a node needs to receive messages from all other neighbour nodes
– Important property: a tree-structured Bayesian Network leads to a tree factor graph

An important property of this transformation is that if the original Bayesian Network is a tree then the resulting
factor graph will also be a tree.

CSCI 4152/6509 Lecture 17 p.11

Message Passing Example: Order of Message Computation

J M

A

EB

J M

A

EB

f4

f3

f5

f1 f2

1 1

1 1

2 2

2 2

3 3

4 4

4 4

5 5

5 5

The basic overall concept captured with a factor graph with nodes V1, ..., Vn and factors (or functions) f1, ..., fk, is
that the probability (or some other form of calculation result) of the whole configuration is calculated as the product
of factors, which depend on variables, which they are connected to; i.e.,

P(V1=x1, ..., Vn=xn) =

k∏
j=1

fj(xj)

where xj = the values of variables connected to fj .

After constructing the factor graph, we can handle each inference task using a message passing algorithm.

	HMM as Bayesian Network
	Bayesian Networks
	Computational Tasks
	Sum-Product Algorithms for Bayesian Networks
	Solving Inference Tasks with Message-Passing Algorithms

	Message-Passing Inference Algorithm: Burglar-Earthquake Example
	Message Passing Algorithm: POS Tagging Example

