Natural Language Processing CSCI 4152/6509 — Lecture 17 HMM as Bayesian Network

Instructors: Vlado Keselj
Time and date: 16:05-17:25, 31-Oct-2022
Location: Rowe 1011

Previous Lecture

- HMM POS example
- HMM Computational tasks
- HMM Brute-force approach
- HMM Inference: Viterbi algorithm

Viterbi Algorithm Example (Repeated)

	$T_{1}\left(W_{1}=\right.$ flies $)$	$T_{2}\left(W_{2}={ }^{*}\right)$	$T_{3}\left(W_{3}=\right.$ like $)$	$T_{4}\left(W_{4}=\right.$ flies $)$
	$\mathrm{P}\left(T_{1}\right) \mathrm{P}\left(W_{1} \mid T_{1}\right)$	$p \cdot \mathrm{P}\left(T_{2} \mid T_{1}\right) \mathrm{P}\left(W_{2} \mid T_{2}\right)$	$p \cdot \mathrm{P}\left(T_{3} \mid T_{2}\right) \mathrm{P}\left(W_{3} \mid T_{3}\right)$	$p \cdot \mathrm{P}\left(T_{4} \mid T_{3}\right) \mathrm{P}\left(W_{4} \mid T_{4}\right)$
D	$0 \times 0=0$	$\begin{aligned} & \text { DD: } 0 \times 0 \times \frac{1}{3}=0 \\ & \text { ND: } \frac{1}{9} \times 0 \times \frac{1}{3}=0 \\ & \text { PD: } 0 \\ & \text { VD: } 0 \\ & \max : 0 \end{aligned}$	DD: $0 \times 0 \times 0=0$ ND: $\frac{1}{90} \times 0 \times=0$ PD: $\frac{1}{50} \times \frac{1}{2} \times 0=0$ VD: $\frac{1}{90} \times 0 \times 0=0$ max: 0	DD: $0 \times 0 \times 0=0$ ND: $0 \times 0 \times 0=0$ PD: $\frac{1}{225} \times 0.5 \times 0=0$ VD: $0 \times 0 \times 0=0$ max: 0
N	$0.5 \times \frac{2}{9}=\frac{1}{9}$	DN: $0 \times 1 \ldots=0$ NN: $\frac{1}{9} \times 0 \ldots=0$ PN: $0 \times \ldots=0$ VN: $0.2 \times 0.5 \times \frac{1}{9}=\frac{1}{90}$ max: $\frac{1}{90}$	DN: $0 \times 1 \times 0=0$ NN: $\frac{1}{90} \times 0 \ldots=0$ PN: $\frac{1}{50} \times 0.5 \times 0=0$ VN: $\frac{1}{90} \times 0.5 \times 0=0$ max: 0	DN: $0 \times 1 \times \frac{2}{9}=0$ NN: $0 \times 0 \times \frac{2}{9}=0$ PN: $\frac{1}{225} \times 0.5 \times \frac{2}{9}=\frac{1}{2025}$ VN: $0 \times 0.5 \times \frac{2}{9}=0$ max: $\frac{1}{2025}$
P	$0 \times 0=0$	DP: $0 \times \ldots=0$ NP: $\frac{1}{9} \times 0.5 \times 0.2=\frac{1}{90}$ PP: $0 \times \ldots=0$ VP: $0.2 \times 0.5 \times 0.2=\frac{1}{50}$ max: $\frac{1}{50}$	DP: $0 \times 0 \times 0.8=0$ NP: $\frac{1}{90} \times 0.5 \times 0.8=\frac{1}{225}$ PP: $\frac{1}{50} \times 0 \times 0.8=0$ VP: $\frac{1}{90} \times 0.5 \times 0.8=\frac{1}{225}$ max: $\frac{1}{225}$	DP: $0 \times 0 \times 0=0$ NP: $0 \times 0.5 \times 0=0$ PP: $\frac{1}{225} \times 0 \times 0=0$ VP: $0 \times 0.5 \times 0=0$ max: 0
V	$0.5 \times 0.4=0.2$	DV: $0 \times \ldots=0$ NV: $\frac{1}{9} \times 0.5 \times 0.2=\frac{1}{90}$ PV: $0 \times \ldots=0$ VV: $0.2 \times 0 \ldots=0$ max: $\frac{1}{90}$	DV: $0 \times 0 \times 0=0$ NV: $\frac{1}{90} \times 0.5 \times 0=0$ PV: $\frac{1}{50} \times 0 \times 0=0$ VV: $\frac{1}{90} \times 0 \times 0=0$ $\max : 0$	DV: $0 \times 0 \times 0.4=0$ NV: $0 \times 0.5 \times 0.4=0$ PV: $\frac{1}{225} \times 0 \times 0.4=0$ VV: $0 \times 0 \times 0.4=0$ $\max : 0$

HMM as Bayesian Network

- Viterbi algorithm is an efficient way to solve a special problem:
- completion with known observables and unknown hidden nodes of an HMM
- General approach:
- Treat HMM as Bayesian Network
- Apply Product-Sum (i.e., "Message-passing") algorithm for efficient inference

Bayesian Network Model

- Also known as: Belief Networks, or Bayesian Belief Networks
- A directed acyclic graph (DAG)
- Each node representing a random variable
- Edges representing causality (probabilistic meaning)
- Conditional Probability Table (CPT) for each node
- Bayesian Network assumption:

$$
\mathrm{P}(\text { full configuration })=\prod_{i=1}^{n} \mathrm{P}\left(V_{i} \mid \mathbf{V}_{\pi(i)}\right)
$$

Bayesian Network Example

Bayesian Network Assumption

- Bayesian Network Assumption for previous example:
$\mathrm{P}(B, E, A, J, M)=\mathrm{P}(B) \mathrm{P}(E) \mathrm{P}(A \mid B, E) \mathrm{P}(J \mid A) \mathrm{P}(M \mid A)$
- Probability of a complete configuration is a product of conditional probabilities
- Each node corresponds to one conditional probability:
$\mathrm{P}(B), \mathrm{P}(E), \mathrm{P}(A \mid B, E), \mathrm{P}(J \mid A), \mathrm{P}(M \mid A)$
- CPTs (Conditional Probability Tables are model parameters)

Conditional Probability Tables

Computational Tasks

- Evaluation:

$$
\mathrm{P}\left(V_{1}=x_{1}, \ldots, V_{n}=x_{n}\right)=\prod_{i=1}^{n} \mathrm{P}\left(V_{i}=x_{i} \mid \mathbf{V}_{\pi(i)}=\mathbf{x}_{\pi(i)}\right)
$$

- Simulation
- Learning from complete observations
- Inference in Bayesian Networks

Inference Example using Brute Force

$$
\begin{aligned}
& \mathrm{P}(B=T \mid J=T)=\frac{\mathrm{P}(B=T, J=T)}{\mathrm{P}(J=T)} \\
& \mathrm{P}(B=T, J=T)=\sum_{E, A, M} \mathrm{P}(B=T, E, A, J=T, M) \\
&=\sum_{E, A, M} \mathrm{P}(B=T) \mathrm{P}(E) \mathrm{P}(A \mid B=T, E) \\
& \approx 8.49017 \cdot 10^{-4}
\end{aligned}
$$

(continued)

$$
\begin{gathered}
\mathrm{P}(J=T)=\mathrm{P}(B=T, J=T)+\mathrm{P}(B=F, J=T) \\
\mathrm{P}(J=T)=\mathrm{P}(B=T, J=T)+\mathrm{P}(B=F, J=T) \approx \\
8.49017 \cdot 10^{-4}+5.12899587 \cdot 10^{-2}=0.0521389757
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{P}(B=T \mid J=T)=\frac{\mathrm{P}(B=T, J=T)}{\mathrm{P}(J=T)} \approx \\
& \frac{8.49017 \cdot 10^{-4}}{0.0521389757} \approx 0.0162837299467699 .
\end{aligned}
$$

General Inference in Bayesian Networks

- In some Bayesian Networks inference is always expensive; e.g., joint distribution has a very large number of parameters
- Can we be more efficient if number of parent nodes is limited?
- Naïve Bayes or HMM has a limit of parents to 1
- If we limit number of parents to 2 , this may already lead to an NP-hard inference problem
- Proof: a reduction from Circuit Satisfiability problem

Sum-Product Algorithms for Bayesian Networks

- Basic idea: optimizing sum-product calculation using graph structure
Described in "Factor graphs and the Sum-Product Algorithm" by Kschishang, Frey, and Loeliger in 2000
- Algorithm overview:
(1) Construction of a factor graph
(2) Message-passing algorithms
- Construction of the factor graph
- Principles of message passing

Factor Graph

- Introduce factor nodes:

- Factor graph captures the structure of computation

Factor Graph Example

Principles of Message Passing

- A message summarizes computation in the corresponding part of graph
- Messages are vectors of real numbers
- Each node passes to each neighbour node a message exactly once
- To pass a message to a neighbour node, a node needs to receive messages from all other neighbour nodes
- Important property: a tree-structured Bayesian Network leads to a tree factor graph

Message Passing Ex.: Order of Computation

