Natural Language Processing CSCI 4152/6509 — Lecture 15 POS Tags and Hidden Markov Model

Instructors: Vlado Keselj Time and date: 16:05 – 17:25, 24-Oct-2023 Location: Rowe 1011

Previous Lecture

- N-gram model as Markov chain
- Language model evaluation; Perplexity
- Text classification using language modeling
- N-gram Model Smoothing:
 - Add-one smoothing (Laplace smoothing)
 - Witten-Bell discounting

Part-of-Speech Tags (POS Tags)

- Reading: Sections 5.1–5.2 (Ch. 8 in new edition)
- Word classes called Part-of-Speech (POS) classes
 - also known as syntactic categories, grammatical categories, or lexical categories
- Ambiguous example: Time flies like an arrow. Time flies like an arrow.
 1. N V P D N
 2. N N V D N
 .
- POS tags: labels to indicate POS class
- POS tagging: task of assigning POS tags

• • = • • = •

POS Tag Sets

- Traditionally based on Ancient Greece source: eight parts of speech:
 - nouns, verbs, pronouns, prepositions, adverbs, conjunctions, participle, and articles
- Computer processing introduced a need for a large set of categories
- Useful in NLP, e.g.: named entity recognition, information extraction
- Various POS tag sets (in NLP): Brown Corpus, Penn Treebank, CLAWS, C5, C7,
- We will use the Penn Treebank system of tags

通 ト イヨト イヨト

WSJ Dataset

- WSJ Wall Street Journal data set
- Most commonly used to train and test POS taggers
- Consists of 25 sections, about 1.2 million words

• Example:

Pierre NNP Vinken NNP , , 61 CD years NNS old JJ , , will MD join VB the DT board NN as IN a DT nonexecutive JJ director NN Nov. NNP 29 CD . .
Mr. NNP Vinken NNP is VBZ chairman NN of IN Elsevier NNP N.V. NNP , the DT Dutch NNP publishing VBG group NN . .
Rudolph NNP Agnew NNP , , 55 CD years NNS old JJ and CC former JJ chairman NN of IN Consolidated NNP Gold NNP Fields NNP PLC NNP , was VBD named VBN

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Open and Closed Categories

• Word POS categories are divided into two sets: *open* and *closed* categories:

open categories

- dynamic set
- content words
- larger set
- e.g.: nouns, verbs, adjectives

• closed categories or functional categories:

- fixed set
- small set
- frequent words
- e.g.: articles, auxiliaries, prepositions

A B F A B F

Open Word Categories

- nouns (NN, NNS, NNP, NNPS)
 - concepts, objects, people, and similar
- adjectives (JJ, JJR, JJS)
 - modify (describe) nouns
- verbs (VB, VBP, VBZ, VBG, VBD, VBN)
 - actions
- adverbs (RB, RBR, RBS)
 - modify verbs, but other words too

< 3 > < 3 >

Nouns (NN, NNS, NNP, NNPS)

Nouns refer to people, animals, objects, concepts, and similar.

Features:

- number: singular, plural
- case: subject (nominative), object (accusative)
- Some languages have more cases, and more number values
- Some languages have grammatical gender

Noun Tags and Examples

NN for common singular nouns; e.g., company, year, market

- NNS for common plural nouns; e.g., shares, years, sales, prices, companies
- NNP for proper nouns (names); e.g., Bush, Japan, Federal, New York, Corp, Mr., Friday, James A. Talcott ("James NNP A. NNP Talcott NNP")
- NNPS for proper plural nouns; e.g., Canadians, Americans, Securities, Systems, Soviets, Democrats

- - E + - E +

Adjectives (JJ, JJR, JJS)

- Adjectives describe properties of nouns
- For example: red rose, long journey
- Three inflective forms:

Form	Example	Tag
positive	rich	JJ
comparative	richer	JJR
superlative	richest	JJS

Periphrastic Adjective Forms

- Comparative and superlativ forms in English consist of several words for longer adjectives
- Example: intelligent — more intelligent — the most intelligent
- These are called periphrastic forms
- They are tagged as follows: more JJR intelligent JJ and the DT most JJS intelligent JJ

• • = • • = •

Verbs (VB, VBP, VBZ, VBG, VBD, VBN)

Verbs are used to describe:

- actions; e.g., throw the stone
- activities; e.g., walked along the river
- or states; e.g., have \$50

Verb Tags

Verbs can have different forms and they are tagged accordingly:

Tag	Form name	Example
VB	base	eat, be, have, walk, do
VBD	past	ate, said, was, were, had
VBG	present participle	eating, including, according, being
VBN	past participle	eaten, been, expected
VBP	present non-3sg	eat, are, have, do, say, 're, 'm
VBZ	present 3sg	eats, is, has, 's, says

Gerund is a noun which has the same form as the present participle; e.g., 'Walking is fun.'

|山田 | 山田 | 山田 |

Verb Features

- number: singular, plural
- person: 1st, 2nd, 3rd
- tense: present, past, future
- aspect: progressive, perfect
- mood: possibility, subjunctive (e.g. 'They requested that he be banned from driving.')
- participles: present participle, past participle
- voice: active, passive:
 "He wrote a book." vs. "A book was written by him."

Verb Tenses

- present: I walk
- infinitive: to walk
- progressive: I am walking
- present perfect: I have walked
- past perfect: I had walked

()

Adverbs (RB, RBR, RBS)

- Adverbs modify verbs, but also other classes; e.g., adjectives and adverbs
- Some examples: allegedly, quickly
- Qualifiers or degree adverbs are closed adverbs; e.g., very, not
- Example of adverbs modifying verbs: She *often* travels to Las Vegas.
- Example of adverbs modifying verbs and adverbs: Unfortunately, John walked home extremely slowly yesterday.
- Example of adverbs modifying adjectives: a very unlikely event
 - a shockingly frank exchange

通 ト イヨ ト イヨト

Adverb Inflections

Adverbs can have three forms, similarly to adjectives;

Tag	Form	Examples
RB	positive	late, often, quickly
RBR	comparative	later, better, less
RBS	superlative	most, best

The superlative adverbs are tagged as RBT in the Brown corpus.

A B F A B F

Adverbial Nouns

- Interesting example of blurred boundary between classes in some cases
- Adverbial nouns are nouns that also behave as adverbs
- Examples: 'home' and 'tomorrow'

I am going home.

but not

* I am going room.

 Tagged as nouns (NN), but in Brown corpus had a separate tag (NNR)

• • = • • = •

- small, fixed, frequent, functional group
- typically no morphological transformations
- include:
 - determiners, pronouns, prepositions, particles, auxiliaries and modal verbs, qualifiers, conjunctions, numbers, interjections

Determiners (DT)

- articles: the, a, an
- demonstratives:
 - this, that, those; some, any; either, neither
- quantifiers: all, some

Interrogative Determiners (WDT)

• what, which, whatever, whichever

Predeterminers (PDT)

- Examples: both, quite, many, all such, half
- Examples in context: "half the debt", "all the negative campaign"
- Interesting classifications of determiners (Bond 2001)
 - by linear order: pre-determiners, central determiners, post-determiners
 - by meaning: quantifiers, possessives, determinatives

- E > - E >

Pronouns (PRP, PRP\$)

- PRP for personal pronouns
- examples: I, you, he, she, it, we, you, they • PRP tag for accusative case (diff. tag in Brown): examples: me, him, her, us, them • PRP tag for reflexive pronouns (diff. in Brown): examples: myself, ourselves, ... • PRP\$ tag for possessive pronouns: examples: your, my, her, his, our, their, its • PRP for second possessives (diff. in Brown):
 - examples: ours, mine, yours, ...

A B M A B M

Wh-pronouns (WP) and Wh-possessive (WP\$)

- wh-pronouns (WP): who, what, whom, whoever, ...
- wh-possessive pronoun (WP\$): whose

• • = • • = •

Prepositions (IN)

- Prepositions reflect spatial or time relationships.
- Examples: of, in, for, on, at, by, concerning, ...

Particles (RP)

- frequently ambiguous and confused with prepositions
- used to create compound verbs
- examples: put off, take off, give in, take on, "went on for days", "put it off"

• • = • • = •

Possessive ending (POS)

- possessive clitic: 's
- Example: John's book
- tagged as: John NNP 's POS book NN

< 3 > < 3 >

Modal Verbs (MD)

- the examples of modal verbs: can, may, could, might, should, will
- and their abbreviations: 'd, 'll
- tag for modal verbs: MD
- negative forms are separated into a modal verb and an adverb 'not' (will be covered); e.g.: 'couldn't' is tagged as "could MD n't RB"
- *Auxiliary verbs* are: be, have, and do; and their different forms
- in Brown: each auxiliary verb has a separate tag
- in Penn Treebank: they are tagged in the same way as common verbs (we will see that later)

Infinitive word 'to' (TO)

- used to denote an infinitive: e.g., to call
- 'na' is marked as TO in 'gonna', 'wanna' and similar; e.g.: "gonna call" is tagged "gon VB na TO call VB"

Qualifiers (RB)

- qualifiers are closed adverbs, and they are tagged as adverbs (RB) (covered later)
- example: not, n't, very
- postqualifiers: enough, indeed

Examples: how, when, where, whenever,...

- 4 同 6 4 日 6 4 日 6

Conjunctions (CC)

- words that connect phrases
- coordinate conjunctions (tag: CC) connect coordinate phrases:
- examples; and, or, but, yet, plus, versus, ...
- subordinate conjunctions connect phrases where one is subordinate to another
- examples: if, although, that, because, ...
- subordinate conjunctions are tagged as prepositions (IN) in Penn Treebank
- in Brown corpus, they used to be tagged CS

• • = • • = •

Numbers (CD)

Numbers behave in a similar way to adjectives: they also modify nouns.

There are two kinds of numbers:

- cardinals or cardinal numbers; for example: 1, 0, 100.34, hundred
- ordinals or ordinal numbers; for example: first, second, 3rd, 4th

Cardinal numbers are tagged as **CD** Ordinal numbers have a separate tag in the Brown corpus—OD. In the Penn Treebank corpus, they are tagged as *adjectives: JJ*

通 ト イヨ ト イヨト

Interjections (UH)

Examples: yes, no, well, oh, quack, OK, please, indeed, hello, Congratulations, ...

A B M A B M

Existential 'there' (EX) Belongs to closed word category; example: "There/EX are/VBP three/CD classes/NNS per/IN week/NN"
 Foreign Words (FW)
 Examples: de (tour de France), perestroika, pro, des
 List Items (LS)
 Examples: 1, 2, 3, 4, a., b., c., first, second, etc.
 Punctuation

Punctuation

Examples	Tag	Description
<pre> , : ! ? ({ [<</pre>	, : () ;; , \$ # SYM	comma mid-sentence separator sentence end open parenthesis closed parenthesis open quote closed quote dollar sign pound sign everything else

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Some Tagged Examples

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.

Book/VB that/DT flight/NN ./.

Does/VBZ that/DT flight/NN serve/VB dinner/NN ?/.

It/PRP does/VBZ a/DT first-rate/JJ job/NN ./.

'''' When/WRB the/DT sell/NN programs/NNS hit/VBP
,/, you/PRP can/MD hear/VB the/DT order/NN
printers/NNS start/VB to/TO go/VB ''/'' on/IN the/DT
Big/NNP Board/NNP trading/NN floor/NN ,/, says/VBZ
one/CD specialist/NN there/RB ./.

``/`` Do/VBP you/PRP make/VB sweatshirts/NNS or/CC
sparkplugs/NNS ?/.

Hidden Markov Model (HMM)

- How do we apply Probabilistic Modelling to POS tagging?
- Idea: Model POS tag sequence as a Markov Chain
 - We can only observe words, which are generated from tags based on a probability distribution
- Model: a hidden Markov Chain with observable symbols emitted from hidden states based on a probability distribution
- This model is known as *Hidden Markov Model* (*HMM*)

< 3 > < 3 >

Markov Chain Example

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

HMM Example

3

イロト イヨト イヨト イヨト

HMM Formal Definition

- Five-tuple: (Q, π, a, V, b) (there are other variations)
- 1. set of states $Q = \{q_1, q_2, ..., q_N\}$
- 2. initial distribution π : $\pi(q)$ for each state q
- 3. transition probabilities $a{:}\ a(q,s)$ for any two states q and s
- 4. output vocabulary $V = \{o_1, o_2, \ldots, o_m\}$
- 5. output probability b: b(q, o) for each state q and observable o

HMM Assumption

• Another graphical representation

• HMM Assumption

$$P(X_1, O_1, \dots, X_n, O_n) = P(X_1) \cdot P(O_1 | X_1) \cdot P(X_2 | X_1) \cdot P(O_2 | X_2) \cdot \dots \cdot P(X_n | X_{n-1}) \cdot P(O_n | X_n)$$

∃ ► < ∃ ►</p>

HMM Application Areas

- Language Modelling
- Acoustic Modelling
- Part-of-Speech tagging (POS tagging)
- Many kinds of sequence tagging (e.g., extracting bio-medical terms)