
Lecture 12 p.1

Faculty of Computer Science, Dalhousie University 12-Oct-2023
CSCI 4152/6509 — Natural Language Processing

Lecture 12: Probabilistic Modeling

Location: Rowe 1011 Instructor: Vlado Keselj
Time: 16:05 – 17:25

Previous Lecture

– P0 Topics Discussion
– Lecture 10:
– Probabilistic approach to NLP
– Logical vs. plausible reasoning
– Probabilistic approach to NLP

– logical vs. plausible reasoning
– plausible reasoning approaches

– Probability theory review
– Bayesian inference: generative models

Slide notes:

P0 Topics Discussion (2)
– Continued discussion of P0 submissions
– Project discussed: P-02

11.4 Probabilistic Modeling

Slide notes:

Probabilistic Modeling
– How do we create and use a probabilistic model?
– Model elements:

– Random variables
– Model configuration (Random configuration)
– Variable dependencies
– Model parameters

– Computational tasks

Random Variables

Slide notes:

Random Variables
– Random variable V , defining an event as V = x for some value x

from a domain of values D; i.e., x ∈ D
– V = x is usually not a basic event due to having more variables
– An event with two random variables: V1 = x1, V2 = x2
– Multiple random variables: V = (V1, V2, ..., Vn)

October 16, 2023, CSCI 4152/6509 http://web.cs.dal.ca/˜vlado/csci6509/

http://web.cs.dal.ca/~vlado/csci6509/

Lecture 12 p.2 CSCI 4152/6509

It is frequently convenient to define events as V = x, where V is a variable and x is a value from a domain of values
for that variable. This event can be a basic event, but usually it is not since we may have more variables.

Slide notes:

Model Configuration (Random Configuration)
– Full Configuration: If a model has n random variables, then a

Full Model Configuration is an assignment of all the variables:

V1 = x1, V2 = x2, . . . , Vn = xn

– Partial configuration: only some variables are assigned, e.g.:

V1 = x1, V2 = x2, . . . , Vk = xk (k < n)

Random Configuration. A probabilistic model includes a set of random variables with their domains, i.e.,
sets of the possible values of those variables. If all variables are assigned some values, we will call it a random
configuration of the model, or a full random configuration. For example, if V1, V2, . . . , Vn are all random
variables of a model, then an assignment of those variables, such as:

V1 = x1, V2 = x2, . . . , Vn = xn

is a full random configuration. For each such configuration, the model provides a way of calculating its probability;
i.e., calculating the value

P(V1 = x1, V2 = x2, . . . , Vn = xn).

From the probability theory perspective, a model defines an event space, where each full random configuration is a
simple event.

If we assume that random variables are ordered in a certain way, we do not have to list variable names but just
the values, so each full random configuration becomes an n-tuple of values (x1, x2, . . . , xn), which we also call a
vector, and use notation x = (x1, x2, . . . , xn). Vectors are normally n-tuples of numbers, but we generalize this
concept here. When creating a probabilistic model for a problem, we assume that a sequence of full configurations
x(1), ...,x(t) is drawn from some random source:

x(1) = (x11, x12, . . . x1n)
x(2) = (x21, x22, . . . x2n)

...
x(t) = (xt1, xt2, . . . xtn)

...

Again, we assume a fixed number n of components in each configuration, and assume values xij are from a finite
set of values that can be assigned to the variable Vj . For simplicity reasons, we will frequently assume that all
variables get values from the same set {x1, x2, . . . , xm}.

If only some variables as assigned, we will call such assignment a partial configuration. For example, if only
variables V1, V2, . . . , Vk, where k < n are assigned, then we have a partial configuration: V1 = x1, V2 =
x2, . . . , Vk = xk. In probabilistic terms, a partial configuration defines a random event that consists of all full
configurations that satisfy the partial configuration assignment. This event can be described as the following set of
full configurations:

{ (V1 = y1, V2 = y2, . . . , Vn = yn) | y1 = x1 ∧ y2 = x2 ∧ . . . ∧ yk = xk }

or, it is a set of all full configurations (V1 = y1, V2 = y2, . . . , Vn = yn) such that y1 = x1 and y2 = x2 and . . . and
yk = xk.

CSCI 4152/6509 Lecture 12 p.3

Probabilistic modelling in NLP can be described as a general framework for modeling NLP problems using
random variables, random configurations, and finding effective ways of reasoning about probabilities of these
configurations.

Variable Independence and Dependence

– Random variables V1 and V2 are independent if P(V1=x1, V2=x2) = P(V1=x1)P(V2=x2) for all x1, x2
– or expressed in a different way: P(V1=x1|V2=x2) = P(V1=x1) for all x1, x2, x3.
– Random variables V1 and V2 are conditionally independent given V3 if, for all x1, x2, x3:
P(V1=x1, V2=x2|V3=x3) =
P(V1=x1|V3=x3)P(V2=x2|V3=x3)

– or
P(V1=x1|V2=x2, V3=x3) = P(V1=x1|V3=x3)

As we will see, effective calculation of probabilities and probabilistic inference in general is based on making
assumptions about dependence and independence of variables. Two random variables V1 and V2 are independent if:

P(V1 = x1, V2 = x2) = P(V1 = x1) · P(V2 = x2)

11.5 Computational Tasks in Probabilistic Modeling

The computational tasks in probabilistic modeling can be divided into the following types of tasks:

1. Evaluation: compute probability of a complete configuration
2. Simulation: (sampling, generation) generate random configurations
3. Inference: has the following sub-tasks:

3.a Marginalization: computing probability of a partial configuration,
3.b Conditioning: computing conditional probability of a completion given an observation,
3.c Completion: finding the most probable completion, given an observation

4. Learning: learning parameters of a model from data.

We have four main tasks, and the task of probabilistic inference is divided further in to three subtasks. A more
detailed description of these tasks follows:

1. Evaluation is the task of computing the probability of a full configuration in a probabilistic model; i.e.,
calculating

P(V1 = x1, V2 = x2, . . . , Vn = xn)

A model definition usually provides a straightforward approach to calculate this probability given that we know all
parameters of the model.

2. Simulation is the task of producing full configurations according to a given model. Those configurations
should satisfy the model conditions, which typically means that probabilities of some events should converge to
probabilities specified by the model over many simulated configurations.

3. Inference is divided into three different subtasks: marginalization, conditioning, and completion. Marginal-
ization (3.a) is the problem of computing a marginal probability; i.e., the probability of a partial configuration, such
as:

P(V1 = x1, V2 = x2, . . . , Vk = xk),

Lecture 12 p.4 CSCI 4152/6509

where 1 ≤ k < n. Conditioning (3.b) is the problem of computing a conditional probability, which in terms of
variables of a model typically means a conditional probability of the values of some variables, given the values of
some other variables. For example, a conditioning task could be expressed as:

P(V1 = x1, V2 = x2, . . . , Vk = xk |Vk+1 = xk+1, . . . , Vn = xn).

Generally, we can do efficiently marginalization, we can also do conditioning by definition, as shown in this formula:

P(V1 = x1, V2 = x2, . . . , Vk = xk |Vk+1 = xk+1, . . . , Vn = xn) =
P(V1 = x1, V2 = x2, . . . , Vk = xk)

P(Vk+1 = xk+1, . . . , Vn = xn)

Completion (3.c) is the problem of finding the most probable assignment of some variables, usually called hidden
variables, given some other variables, usually called observed variables. We approach it by finding the assignments
of the hidden variables for which the conditional probability of those assignments given assignments of observed
variables is maximized. For example, this task can be described using the formula

arg max
x1,...,xk

P(V1 = x1, V2 = x2, . . . , Vk = xk |Vk+1 = xk+1, . . . , Vn = xn).

In the completion formula P(α|β), the variables in the α part are called hidden variables and the variables in the β
part are called observed variables, or observables, because normally know, or can observe, variables in the part β,
and we do not know the hidden variables in the part α.

4. Learning is the task of determining the parameters of a probabilistic model given the data that the model is
supposed to describe. Learning model parameters from incomplete data can be challenging. If we have a dataset
with a list of full configurations we can calculate the parameters by counting the occurrences of interesting events.
This is called Maximum Likelihood Estimation (MLE), since it can be shown that in this way we obtain a model
that gives highest likelihood of data used in learning.

To illustrate probabilistic modelling and the computational tasks, we will use the following illustrative example in
spam detection.

Illustrative Example: Spam Detection

The problem of spam detection in e-mail is the problem of automatically detecting whether an arbitrary e-mail
message is spam or not. In a toy model, we assume that we can detect whether a message is spam or not relying
only on the fact whether the ‘Subject:’ header of the message is capitalized (i.e., completely written in uppercase
letters) and whether the ‘Subject:’ header contains the word ‘free’ (uppercase or lowercase). For example, “NEW
MORTGAGE RATE” is likely the subject of a spam message, as well as “Money for Free,” “FREE lunch,” etc.

Hence, our model is based on the following three random variables and each of them gets one of two values Y (for
Yes) or N (for No):

Caps = ‘Y’ if the message subject line does not contain lowercase letter, ‘N’ otherwise,
Free = ‘Y’ if the word ‘free’ appears in the message subject line (letter case is ignored),

‘N’ otherwise, and
Spam = ‘Y’ if the message is spam, and ‘N’ otherwise.

In order to learn what happens in real-world, we open our mailbox, which serves as our random source, randomly
select 100 messages and count how many times each configuration appears.

We might obtain the following table:

CSCI 4152/6509 Lecture 12 p.5

Free Caps Spam Number of messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49

Total: 100

What are examples of computational tasks in this example?

Let us consider our first, straightforward model, called Joint Distribution Model.

11.6 Joint Distribution Model

In the Joint Distribution Model, we specify the complete joint probability distribution, i.e., the probability of
each complete configuration x = (x1, ..., xn):

P(V1=x1, ..., Vn=xn)

In general, we need mn parameters (minus one constraint) to specify an arbitrary joint distribution on n random
variables with m values. One could represent this by a lookup table px(1) , px(2) , . . . , px(mn) , where px(`) gives
the probability that the random variables jointly take on configuration x(`); that is, px(`) = P(V=x(`)). These
numbers are positive and satisfy the constraint that

∑mn

`=1 px(`) = 1.

Example: Spam Detection (continued)

To estimate the joint distribution in our spam detection example, we can simply divide the number of message for
each configuration with the total number of messages:

Free Caps Spam Number of messages p
Y Y Y 20 0.20
Y Y N 1 0.01
Y N Y 5 0.05
Y N N 0 0.00
N Y Y 20 0.20
N Y N 3 0.03
N N Y 2 0.02
N N N 49 0.49

Total: 100 1.00

Estimating probabilities in this way is known as Maximum Likelihood Estimation (MLE), since it can be shown that
in this way the probability P(T |M), where T is our training data and M is the model, is maximized in terms of M .

Evaluation (task 1)

As defined earlier, the evaluation task is to evaluate the probability of a complete configuration x = (x1, ..., xn). In
the case of joint distribution model, we simply use a table lookup operation:

P(V1=x1, ..., Vn=xn) = p(x1,x2,...,xn)

Lecture 12 p.6 CSCI 4152/6509

Using the spam example, an instance of evaluation task is:

P(Free = Y,Caps = N, Spam = N) = 0.00

If we choose some other configuration, we will get a positive probability. This particular configuration has the
probability zero due to the fact that it was not seen in the training data, so our estimate based on simple counting
is 0. This is a drawback of this model, since the number of possible configurations is typically very large and it
is very likely that the training data will not contain some configurations, although any configuration is actually
possible. This example is chosen on purpose to show this drawback of the full joint distribution model called the
sparse data problem.

Simulation (task 2)

Simulation is performed by randomly selecting a full configuration according to the probability distribution in the
table. This can be done by dividing the interval [0, 1) into subintervals, whose lengths are p1, p2, . . . , and pmn . In
most programming languages, there is a random number generator function (a pseudo-random number, to be more
precise), which generates random numbers from the interval [0, 1) according to the uniform probability distribution.
Based on which interval this random number falls in, we choose the full configuration to generate. This method is
known as the “roulette wheel” method, since it can also be represented using a rotating unit disk divided into cut-out
segments (like pizza slices) of areas proportional to the table probabilities, and the generation can be visualized
as rotating the disk until it randomly stops, while a fixed pointer is used to select a segment. In more details, the
following steps can be followed to program this generating procedure:

1. Divide the interval [0, 1] into subintervals of the lengths: p1, p2, . . . , pmn : I1 = [0, p1), I2 = [p1, p1 + p2),
I3 = [p1 + p2, p1 + p2 + p3), . . . Imn = [p1 + p2 + . . .+ pmn−1, 1)

2. Generate a random number r from the interval [0, 1)
3. r will fall exactly into one of the above intervals, e.g.: Ii = [p1 + . . .+ pi−1, p1 + . . .+ pi−1 + pi)
4. Generate the configuration number i from the table
5. Repeat steps 2–4 for as many times as the number of configurations we need to generate

Inference (task 3)

Marginalization (3.a). The task of marginalization is computing a marginal probability; i.e., the probability of a
partial configuration, such as P(X1=x1, ..., Xk=xk), where k < n:

P(V1=x1, ..., Vk=xk)

=
∑
yk+1

· · ·
∑
yn

P(V1=x1, ..., Vk=xk, Vk+1=yk+1, ..., Vn=yn)

=
∑
yk+1

· · ·
∑
yn

p(x1,...,xk,yk+1,...,yn)

We need to be able to evaluate complete configurations and then sum over mn−k possible completions, where m is
the number of elements in the domain of yk+1, . . . , yn. This can be implemented by iterating through the model
table and accumulating all probabilities that correspond to the matching configurations; i.e., all full configurations
that satisfy the assignments given by the partial configuration for which we calculate the probability.

Conditioning (3.b). Conditioning is the task of computing a conditional probability in the form of probability of
assignments of some variables given the assignments of other variables. This probability can be calculated as:

P(V1=x1, . . . , Vk=xk|Vk+1=y1, ..., Vk+l=yl)

=
P(V1=x1, . . . , Vk=xk, Vk+1=y1, ..., Vk+l=yl)

P(Vk+1=y1, ..., Vk+l=yl)

so we see that it is reduced to two marginalization tasks. If the configuration in the numerator happens to be a full
configuration, that the task is even easier and reduces to one evaluation and one marginalization.

CSCI 4152/6509 Lecture 12 p.7

Completion (3.c). Completion is the task of finding the most probable completion (y∗k+1, ..., y
∗
n) of a partial

configuration (x1, ..., xk).

y∗k+1, ..., y
∗
n = arg max

yk+1,...,yn

P(Vk+1=yk+1, ..., Vn=yn|V1=x1, ..., Vk=xk)

= arg max
yk+1,...,yn

P(V1=x1, ..., Vk=xk, Vk+1=yk+1, ..., Vn=yn)

P(V1=x1, ..., Vk=xk)

= arg max
yk+1,...,yn

P(V1=x1, . . . , Vk=xk, Vk+1=yk+1, ..., Vn=yn)

= arg max
yk+1,...,yn

p(x1,...,xk,yk+1,...,yn)

We can implement this by iterating through the model table, and from all configurations match the assignments in
the given partial configuration find one with the maximal probability.

Learning (task 4)

Learning is the task of estimating the model parameters based on the given data. We use the Maximum Likelihood
Estimation (MLE), mentioned before; i.e., for each full configuration we count the number of times this configura-
tion occurred in the data, and divide this number by the total number of the full configurations in the data. This can
be expressed using the following formula:

p(x1,...,xn) =
#(V1=x1, . . . , Vn=xn)

#(∗, . . . , ∗)

We use the hash or number symbol (‘#’) to denote the number of occurrences of a pattern in a dataset. In the
above example, #(x1, . . . , xn) denotes the number of full configurations (x1, . . . , xn) in the give dataset, and the
expression #(∗, . . . , ∗) denotes the number of all configurations in the given dataset.

With a large number of variables the data size easily becomes insufficient and we get many zero probabilities —
sparse data problem

Drawbacks of Joint Distribution Model

– memory cost to store table,
– running-time cost to do summations, and
– the sparse data problem in learning (i.e., training).

Other probability models are found by specifying specialized joint distributions, which satisfy certain indepen-
dence assumptions.

The goal is to impose structure on joint distribution P(V1=x1, ..., Vn=xn). One key tool for imposing structure is
variable independence.

11.7 Fully Independent Model

In a fully independent model we assume that all variables are independent, i.e.,

P(V1=x1, ..., Vn=xn) = P(V1=x1) · · ·P(Vn=xn).

It is an efficient model with a small number of parameters: O(nm), where n is the number of variables and m is the
number of distinct values of the variables.

The drawback of the model is that the independence assumption is too strong for the model to be useful in any
applications.

Lecture 12 p.8 CSCI 4152/6509

Fully Independent Model for the Spam Example

If we apply the fully independent model to the spam example, we obtain the following assumption formula:

P(Free,Caps, Spam) = P(Free) · P(Caps) · P(Spam)

This yields a very restricted form of joint distribution where we can represent each component distribution separately.
For a random variable Vj , one can represent P(Vj=x) by a lookup table with m parameters (minus one constraint).
Let pj,x denote the probability Vj takes on value x. That is, pj,x = P(Vj =x). These numbers are positive and
satisfy the constraint

∑m
x=1 pj,x = 1 for each j. Thus, the joint distribution over V1, ..., Vn can be represented

by n×m positive numbers minus n constraints. The previous tasks (simulation, evaluation, and inference) now
become almost trivial. Admittedly this is a silly model as far as real applications go, but it clearly demonstrates the
benefits of structure (in its most extreme form).

Example: Spam Detection (continued)

The fully independent model is almost useless in our spam detection example because it assumes that the three
random variables: Caps, Free, and Spam are independent. In other words, its assumption is that knowing whether a
message has a capitalized subject or contains the word ‘Free’ in the subject cannot help us in determining whether
the message is spam or not, which is not in accordance with our earlier assumption.

Anyway, let us see what happens when we apply the fully independent model to our example. From the training
data:

Free Caps Spam Number of messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49

Total: 100

we generate the following probability tables of independent variables:

Free P(Free)
Y 20+1+5+0

100 = 0.26

N 20+3+2+49
100 = 0.74

and similarly,

Caps P(Caps)
Y 20+1+20+3

100 = 0.44

N 5+0+2+49
100 = 0.56

and
Spam P(Spam)

Y 20+5+20+2
100 = 0.47

N 1+0+3+49
100 = 0.53

Hence, in this model any message is a spam with probability 0.47, no matter what the values of Caps and Free are.

This is example of MLE Learning (computational task 4.).

As an example of evaluation, the probability of configuration (Caps = Y,Free = N, Spam = N) in the fully
independent model is:

P(Free = Y,Caps = N, Spam = N) =

= P(Free = Y) · P(Caps = N) · P(Spam = N) = 0.26 · 0.56 · 0.53
= 0.077168 ≈ 0.08

CSCI 4152/6509 Lecture 12 p.9

2. Simulation (Fully Independent Model)

For j = 1, ..., n, independently draw xj according to P(Vj=xj) (using the lookup table representation). Conjoin
(x1, ..., xn) to form a complete configuration.

3. Inference in Fully Independent Model

3.a Marginalization in Fully Independent Model

The probability of a partial configuration (V1=x1, . . . , Vk=xk) is

P (V1=x1, . . . , Vk=xk) = P (V1=x1) · . . . · P (Vk=xk)

This formula can be obvious, but it can also be derived.

Derivation of Marginalization Formula

P(V1=x1, ..., Vk=xk) =
∑
yk+1

· · ·
∑
yn

P(V1=x1, ..., Vk=xk, Vk+1=yk+1, ..., Vn=yn)

=
∑
yk+1

· · ·
∑
yn

P(V1=x1) · · ·P(Vk=xk)P(Vk+1=yk+1) · · ·P(Vn=yn)

= P(V1=x1) · · ·P(Vk=xk)

 ∑
yk+1

P(Vk+1=yk+1)

 ∑
yk+2

· · ·

∑
yn

P(Vn=yn)

= P(V1=x1) · · ·P(Vk=xk)

 ∑
yk+1

P(Vk+1=yk+1)

 · · ·

∑
yn

P(Vn=yn)

= P(V1=x1) · · ·P(Vk=xk)

Only have to lookup and multiply k numbers.

Note

It is important to note a general rule which we used to separate summations in the above tasks of Marginalization
and Completion: If a and b are two variables, and f(a) and g(b) are two functions, such that f(a) does not depend
on b and g(b) does not depend on a, then:

∑
a

∑
b

f(a)g(b) =
∑
a

f(a)

(∑
b

g(b)

)
(because f(a) is a constant for summation over b)

=

(∑
b

g(b)

)
·

(∑
a

f(a)

)
(because

∑
b

g(b) is a constant for sumation over a)

=

(∑
a

f(a)

)
·

(∑
b

g(b)

)

Lecture 12 p.10 CSCI 4152/6509

If we assume that f(a) ≥ 0 and g(b) ≥ 0, the same rule applies for maxa and maxb:

max
a

max
b
f(a)g(b) =

= max
a

f(a)

(
max

b
g(b)

)
(because f(a) is a constant for maximization over b)

=

(
max

b
g(b)

)
·
(
max

a
f(a)

)
(because max

b
g(b) is a constant for maximization over a)

=
(
max

a
f(a)

)
·
(
max

b
g(b)

)

3.b Conditioning in Fully Independent Model

P(Vk+1=yk+1, ..., Vn=yn|V1=x1, ..., Vk=xk)

=
P(V1=x1, ..., Vk=xk, Vk+1=yk+1, ..., Vn=yn)

P(V1=x1, . . . , Vk=xk)

=
P(V1=x1) · · ·P(Vk=xk)P(Vk+1=yk+1) · · ·P(Vn=yn)

P(V1=x1) · · ·P(Vk=xk)
= P(Vk+1=yk+1) · · ·P(Vn=yn)

Only have to lookup and multiply n− k numbers.

3.c Completion in Fully Independent Model

y∗k+1, ..., y
∗
n = arg max

yk+1,...,yn

P(Vk+1=yk+1, ..., Vn=yn|V1=x1, ..., Vk=xk)

= arg max
yk+1,...,yn

P(Vk+1=yk+1) · · ·P(Vn=yn)

= arg max
yk+1

P(Vk+1=yk+1)

[
arg max

yk+2

· · ·
[

arg max
yn

P(Vn=yn)

]]
(Since max and arg max distributes over product just like sum.
That is, maxi axi = amaxi xi (for a, xi ≥ 0)
just like

∑
i axi = a

∑
i xi.)

=

[
arg max

yk+1

P(Vk+1=yk+1)

]
· · ·
[

arg max
yn

P(Vn=yn)

]

=

[
arg max

yk+1

pk+1,yk+1

]
· · ·
[

arg max
yn

pn,yn

]
Only have to search through m possible completions for each of the n− k variables separately.

Joint Distribution Model vs. Fully Independent Model

The Fully Independent Model addresses the previous issues with the joint distribution model, but it suffers from a
too strong assumption and too little structure, so it usually does not model accurately the real relationships among
variables.

CSCI 4152/6509 Lecture 12 p.11

Structured probability models are a compromise solution between previous two models. Structured probability
models are more efficient than the joint distribution model and they address the issue of the sparse training data, and
in the same time they model important dependencies among random variables.

One of the simplest models of this kind is the Naı̈ve Bayes Model.

12 Naı̈ve Bayes Classification Model
Slide notes:

Naı̈ve Bayes Classification Model
– Fully independent model is not useful in classification: class

variable should be dependent on other variables
– A solution: make class variable dependent, but everything else

independent
– Let V1 be the class variable
– V2, V3, . . . , Vn are input variables (features)
– Classification can be expressed as

arg max
x1

P(V1 = x1|V2 = x2, V3 = x3, . . . , Vn = xn)

In the Naı̈ve Bayes model we assume that all variables are independent except one distinguished variable, which is
usually called the class variable since the model is used for classification. The other variables are called features
or attributes. Since in the classification task the features are used as input and the class variable produces the
classification result or output, we also call the feature variables the input variables and the class variable the output
variable.

If we assume that the variable V1 is the output variable, and the variables V2, V3, . . . , Vn are the input variables,
then in the classification problem can be expressed as a conditional probability computation problem, or completion
problem of the probability:

arg max
x1

P(V1 = x1|V2 = x2, V3 = x3, . . . , Vn = xn)

or
arg max

V1

P(V1|V2, V3, . . . , Vn)

for short. After applying Bayes theorem we obtain:

P(V1|V2, V3, . . . , Vn) =
P(V2, V3, . . . , Vn|V1) · P(V1)

P(V2, V3, . . . , Vn)

Now, we use the Naı̈ve Bayes independence assumption, which is that the variables V2, V3, . . . , Vn are conditionally
independent given V1. Then, the above equation becomes:

P(V1|V2, V3, . . . , Vn) =
P(V2, V3, . . . , Vn|V1) · P(V1)

P(V2, V3, . . . , Vn)

=
P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1) · P(V1)

P(V2, V3, . . . , Vn)

The conditional probabilities P(Vi|V1) for i ∈ {2 . . . n} can be efficiently computed and stored, and they eliminate
the sparse data problem. To be clear about the independence assumption that we made, let us repeat it here, the
Naı̈ve Bayes Independence Assumption (1) can be stated as follows:

P(V2, V3, . . . , Vn|V1) = P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1)

Lecture 12 p.12 CSCI 4152/6509

If we multiply both sides with P(V1) and use definition of conditional probability, we the second way of expressing
the Naı̈ve Bayes Independence Assumption (2) is:

P(V1, V2, V3, . . . , Vn) = P(V1) · P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1)

Graphical Representation: Naı̈ve Bayes Model

Assumption:

P(V1, V2, V3, . . . , Vn) = P(V1) · P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1)

...

V1

V2 V3 Vn

	Probabilistic Modeling
	Computational Tasks in Probabilistic Modeling
	Joint Distribution Model
	Fully Independent Model
	Naïve Bayes Classification Model
	Computational Tasks in the Naïve Bayes Model
	Number of Parameters
	Spam Example Summary

