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Previous Lecture

P0 Topics Discussion

Lecture 10:

Probabilistic approach to NLP

Logical vs. plausible reasoning
Probabilistic approach to NLP

I logical vs. plausible reasoning
I plausible reasoning approaches

Probability theory review

Bayesian inference: generative models
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P0 Topics Discussion (2)

Continued discussion of P0 submissions

Project discussed: P-02
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Probabilistic Modeling

How do we create and use a probabilistic model?
Model elements:

I Random variables
I Model configuration (Random configuration)
I Variable dependencies
I Model parameters

Computational tasks
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Random Variables

Random variable V , defining an event as V = x for
some value x from a domain of values D; i.e., x ∈ D

V = x is usually not a basic event due to having
more variables

An event with two random variables:
V1 = x1, V2 = x2
Multiple random variables: V = (V1, V2, ..., Vn)
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Model Configuration (Random Configuration)

Full Configuration: If a model has n random
variables, then a Full Model Configuration is an
assignment of all the variables:

V1 = x1, V2 = x2, . . . , Vn = xn

Partial configuration: only some variables are
assigned, e.g.:

V1 = x1, V2 = x2, . . . , Vk = xk (k < n)
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Probabilistic Modeling in NLP

Probabilistic Modeling in NLP is a general

framework for modeling NLP problems using

random variables, random configurations, and an

effective ways to reason about probabilities of

these configurations.
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Variable Independence and Dependence

Random variables V1 and V2 are independent if
P(V1=x1, V2=x2) = P(V1=x1)P(V2=x2) for all
x1, x2
or expressed in a different way:
P(V1=x1|V2=x2) = P(V1=x1) for all x1, x2, x3.

Random variables V1 and V2 are conditionally
independent given V3 if, for all x1, x2, x3:
P(V1=x1, V2=x2|V3=x3) =
P(V1=x1|V3=x3)P(V2=x2|V3=x3)

or
P(V1=x1|V2=x2, V3=x3) = P(V1=x1|V3=x3)
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Computational Tasks in Probabilistic Modeling

1. Evaluation: compute probability of a complete
configuration

2. Simulation: generate random configurations

3. Inference: has the following sub-tasks:

3.a Marginalization: computing probability of
a partial configuration,

3.b Conditioning: computing conditional
probability of a completion given an
observation,

3.c Completion: finding the most probable
completion, given an observation

4. Learning: learning parameters of a model from data.
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Illustrative Example: Spam Detection

the problem of spam detection

a probabilistic model for spam detection; random variables:

Caps = ‘Y’ if the message subject line does not contain
lowercase letter, ‘N’ otherwise,

Free = ‘Y’ if the word ‘free’ appears in the message
subject line (letter case is ignored), ‘N’ otherwise,
and

Spam = ‘Y’ if the message is spam, and ‘N’ otherwise.

one random configuration represents one e-mail message
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Random Sample

Data based on sample of 100 email messages

Free Caps Spam Number of messages
Y Y Y 20
Y Y N 1
Y N Y 5
Y N N 0
N Y Y 20
N Y N 3
N N Y 2
N N N 49

Total: 100

What are examples of computational tasks in this example?
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Joint Distribution Model

Probability of each complete configuration is
specified; i.e., the joint probability distribution:

P(V1=x1, ..., Vn=xn)

If each variable can have m possible values, the
model has mn parameters

The model is a large lookup table: For each full
configuration x = (V1=x1, ..., Vn=xn), a parameter
px is specified such that

0 ≤ px ≤ 1 and
∑
x

px = 1
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Example: Spam Detection (Joint Distribution Model)

MLE — Maximum Likelihood Estimation of probabilities:

Free Caps Spam Number of messages p
Y Y Y 20 0.20
Y Y N 1 0.01
Y N Y 5 0.05
Y N N 0 0.00
N Y Y 20 0.20
N Y N 3 0.03
N N Y 2 0.02
N N N 49 0.49

Total: 100 1.00
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Computational Tasks in Joint Distribution Model:

1. Evaluation

Evaluate the probability of a complete configuration
x = (x1, ..., xn).

Use a table lookup:

P(V1=x1, ..., Vn=xn) = p(x1,x2,...,xn)

For example:

P(Free = Y,Caps = N, Spam = N) = 0.00

This example illustrates the sparse data problem

Inferred that the probability is zero since the configuration was
not seen before.
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2. Simulation (Joint Distribution Model)
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2. Simulation (Joint Distribution Model)

Simulation is performed by randomly selecting a configuration
according to the probability distribution in the table

Known as the “roulette wheel” method

1. Divide the interval [0, 1] into subintervals of the lengths: p1, p2,
. . . , pmn : I1 = [0, p1), I2 = [p1, p1 + p2),
I3 = [p1 + p2, p1 + p2 + p3), . . . Imn = [p1 + p2 + . . .+ pmn−1, 1)

2. Generate a random number r from the interval [0, 1)

3. r will fall exactly into one of the above intervals, e.g.:
Ii = [p1 + . . .+ pi−1, p1 + . . .+ pi−1 + pi)

4. Generate the configuration number i from the table

5. Repeat steps 2–4 for as many times as the number of
configurations we need to generate
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Joint Distribution Model: 3. Inference

3.a Marginalization

Compute the probability of an incomplete configuration
P(V1=x1, ..., Vk=xk), where k < n:

P(V1=x1, . . . , Vk=xk)

=
∑
yk+1

· · ·
∑
yn

P(V1=x1, . . . , Vk=xk, Vk+1=yk+1, . . . , Vn=yn)

=
∑
yk+1

· · ·
∑
yn

p(x1,...,xk,yk+1,...,yn)

Implementation: iterate through the lookup table and
accumulate probabilities for matching configurations
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Joint Distribution Model: 3.b Conditioning

Compute a conditional probability of assignments of some
variables given the assignments of other variables; for example,

P(V1=x1, . . . , Vk=xk|Vk+1=y1, ..., Vk+l=yl)

=
P(V1=x1, . . . , Vk=xk, Vk+1=y1, ..., Vk+l=yl)

P(Vk+1=y1, ..., Vk+l=yl)

This task can be reduced to two marginalization tasks

If the configuration in the numerator happens to be a full
configuration, that the task is even easier and reduces to one
evaluation and one marginalization.
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Joint Distribution Model: 3.c Completion

Find the most probable completion (y∗k+1, ..., y
∗
n) given a partial

configuration (x1, ..., xk).

y∗k+1, ..., y
∗
n = arg max

yk+1,...,yn

P(Vk+1=yk+1, ..., Vn=yn|V1=x1, ..., Vk=xk)

= arg max
yk+1,...,yn

P(V1=x1, ..., Vk=xk, Vk+1=yk+1, ..., Vn=yn)

P(V1=x1, ..., Vk=xk)

= arg max
yk+1,...,yn

P(V1=x1, . . . , Vk=xk, Vk+1=yk+1, ..., Vn=yn)

= arg max
yk+1,...,yn

p(x1,...,xk,yk+1,...,yn)

Implementation: search through the model table, and from all
configurations that satisfy assignments in the partial configuration, chose
the one with maximal probability.
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Joint Distribution Model: 4. Learning

Estimate the parameters in the model based on given data

Use Maximum Likelihood Estimation (MLE)

Count all full configurations, divide the count by the total number of
configurations, and fill the table:

p(x1,...,xn) =
#(V1=x1, . . . , Vn=xn)

#(∗, . . . , ∗)

With a large number of variables the data size easily becomes insufficient
and we get many zero probabilities — sparse data problem
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Drawbacks of Joint Distribution Model

memory cost to store table,

running-time cost to do summations, and

the sparse data problem in learning (i.e., training).

Other probability models are found by specifying
specialized joint distributions, which satisfy certain
independence assumptions.
The goal is to impose structure on joint distribution
P(V1=x1, ..., Vn=xn). One key tool for imposing
structure is variable independence.
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Fully Independent Model

• Assumption: all variables are independent

P(V1=x1, ..., Vn=xn) = P(V1=x1) · · ·P(Vn=xn).

• Efficient model with a small number of parameters:
O(nm)
• Drawback: usually a too strong assumption
• Fully independent model for the Spam example:

P(Free,Caps, Spam) = P(Free) · P(Caps) · P(Spam)
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Fully Independent Model: [4.] Learning

Spam example:
Free P(Free)

Y 20+1+5+0
100

= 0.26

N 20+3+2+49
100

= 0.74

and similarly,

Caps P(Caps)

Y 20+1+20+3
100

= 0.44

N 5+0+2+49
100

= 0.56

and

Spam P(Spam)

Y 20+5+20+2
100

= 0.47

N 1+0+3+49
100

= 0.53

Hence, in this model any message is a spam with probability 0.47, no
matter what the values of Caps and Free are.
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Evaluation Example

As an example of evaluation, the probability of configuration
(Caps = Y, Free = N, Spam = N) in the fully independent model is:

P(Free = Y,Caps = N, Spam = N) =

= P(Free = Y ) · P(Caps = N) · P(Spam = N) =

= 0.26 · 0.56 · 0.53
= 0.077168 ≈ 0.08
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Fully Independent Model: 2. Simulation

For j = 1, ..., n, independently draw xj according to
P(Vj=xj) using “roulette wheel” for one variable

Conjoin (x1, ..., xn) to form a complete configuration.
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3. Inference in Fully Independent Model

3.a Marginalization in Fully Independent Model
The probability of a partial configuration
(V1=x1, . . . , Vk=xk) is

P (V1=x1, . . . , Vk=xk) = P (V1=x1) · . . . · P (Vk=xk)

This formula can be obvious, but it can also be derived.
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Derivation of Marginalization Formula

P(V1=x1, ..., Vk=xk) =
∑
yk+1

· · ·
∑
yn

P(V1=x1, ..., Vk=xk, Vk+1=yk+1, ..., Vn=yn)

=
∑
yk+1

· · ·
∑
yn

P(V1=x1) · · ·P(Vk=xk)P(Vk+1=yk+1) · · ·P(Vn=yn)

= P(V1=x1) · · ·P(Vk=xk)

∑
yk+1

P(Vk+1=yk+1)

∑
yk+2

· · ·

[∑
yn

P(Vn=yn)

]
= P(V1=x1) · · ·P(Vk=xk)

∑
yk+1

P(Vk+1=yk+1)

 · · ·[∑
yn

P(Vn=yn)

]
= P(V1=x1) · · ·P(Vk=xk)
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A Note on Sum-Product Computation

∑
a

∑
b

f(a)g(b) =
∑
a

f(a)

(∑
b

g(b)

)
(because f(a) is a constant for summation over b)

=

(∑
b

g(b)

)
·

(∑
a

f(a)

)
(because

∑
b

g(b) is a constant for sumation over a)

=

(∑
a

f(a)

)
·

(∑
b

g(b)

)
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Similar Note for Max-Product Computation

If we assume that f(a) ≥ 0 and g(b) ≥ 0, the same rule applies for maxa and
maxb:

max
a

max
b

f(a)g(b) =

= max
a

f(a)

(
max

b
g(b)

)
(because f(a) is a constant for maximization over b)

=

(
max

b
g(b)

)
·
(
max

a
f(a)

)
(because max

b
g(b) is a constant for maximization over a)

=
(
max

a
f(a)

)
·
(
max

b
g(b)

)
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3.b Conditioning in Fully Independent Model

P(Vk+1=yk+1, ..., Vn=yn|V1=x1, ..., Vk=xk)

=
P(V1=x1, ..., Vk=xk, Vk+1=yk+1, ..., Vn=yn)

P(V1=x1, . . . , Vk=xk)

=
P(V1=x1) · · ·P(Vk=xk)P(Vk+1=yk+1) · · ·P(Vn=yn)

P(V1=x1) · · ·P(Vk=xk)

= P(Vk+1=yk+1) · · ·P(Vn=yn)
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3.c Completion in Fully Independent Model

y∗k+1, ..., y
∗
n = arg max

yk+1,...,yn

P(Vk+1=yk+1, ..., Vn=yn|V1=x1, ..., Vk=xk)

= arg max
yk+1,...,yn

P(Vk+1=yk+1) · · ·P(Vn=yn)

=

[
arg max

yk+1

P(Vk+1=yk+1)

]
· · ·
[
arg max

yn

P(Vn=yn)

]
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Joint Distribution Model vs. Fully Independent

Model

Fully Independent Model addresses some issues of
the Joint Distribution Model

Efficient and small number of parameters

However: too strong assumption, no structure

Too trivial to be usable
Better method: Structured probability models

I compromise between no dependence and too much
dependence
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Näıve Bayes Classification Model

Fully independent model is not useful in classification:
class variable should be dependent on other variables

A solution: make class variable dependent, but
everything else independent

Let V1 be the class variable

V2, V3, . . . , Vn are input variables (features)

Classification can be expressed as

arg max
x1

P(V1 = x1|V2 = x2, V3 = x3, . . . , Vn = xn)
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Näıve Bayes Independence Assumption

After applying Bayes theorem we obtain:

P(V1|V2, V3, . . . , Vn) =
P(V2, V3, . . . , Vn|V1) · P(V1)

P(V2, V3, . . . , Vn)

We assume that V2, V3, . . . , Vn are conditionally independent
given V1: Näıve Bayes Independence Assumption (1):

P(V2, V3, . . . , Vn|V1) = P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1)

or as an equivalent formula for Näıve Bayes Independence
Assumption (2):

P(V1, V2, . . . , Vn) = P(V1) · P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1)
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Graphical Representation: Näıve Bayes Model

Assumption:

P(V1, V2, V3, . . . , Vn) = P(V1) · P(V2|V1) · P(V3|V1) · . . . · P(Vn|V1)

...

V1

V2 V3 Vn
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