Natural Language Processing CSCI 4152/6509 - Lecture 10 Introduction to Probabilistic NLP

Instructors: Vlado Keselj
Time and date: 16:05-17:25, 5-Oct-2023
Location: Rowe 1011

Previous Lectures

- Discussion about evaluation methods for classifiers
- Similarity-based Text Classification
- CNG classification method
- Edit distance:
- introduction, properties, dynamic programming approach, example, algorithm

Edit Distance Example (to finish)

- distance between 'there' and 'ythre'

Part III: Probabilistic Approach to NLP
 Logical versus Plausible Reasoning

- As a part of AI (Artificial Intelligence), NLP follows two main approaches to computer reasoning, or computer inference:

1. logical reasoning

- known also as classical, symbolic, knowledge-based AI
- monotonic: once conclusion drawn, never retracted
- certain: conclusions certain, given assumptions

2. plausible reasoning

- examples: probabilistic, fuzzy logic, neural networks
- non-monotonic
- uncertain

Plausible Reasoning

- How to combine ambiguous, incomplete, and contradicting evidence to draw reasonable conclusions?
- Typical approach: make plausible inference of some hidden structure from observations
- Examples:

Observations (input)		Hidden Structure (output)
symptoms	\rightarrow	illness
pixel matrix	\rightarrow	object, relations
speech signal	\rightarrow	phonemes, words
word sequence	\rightarrow	meaning
sentence	\rightarrow	parse tree
word sequence	\rightarrow	POS tags, names, entities
words in e-mail Subject:	\rightarrow	Is message spam? Yes/No
text	\rightarrow	text category (class)

Probabilistic NLP as a Plausible Reasoning Approach

- Regular expressions and finite automata are example of logical or knowledge-based approach to NLP
- Plausible approaches to NLP:

1. Probabilistic: use of Theory of Probability, also known as stochastic or statistical NLP

- Alternative plausible approaches, examples:

2. neural networks,
3. kernel methods,
4. fuzzy logic, fuzzy sets,
5. Dempster-Shafer theory
6. rough sets,
7. default logic, ...

Review of Basics of Probability Theory

- You should have this background from previous courses; this is just a review,
- discussed a bit in the textbook: [JM] 5.5, and [MS] 2.1
- Simple event or basic outcome
- e.g., rolling a die, choosing a letter
- Event space: the set of all outcomes, usually denoted Ω
- Event or outcome is a set of simple events or basic outcomes
- In other words event is any subset of Ω; i.e., $A \subseteq \Omega$
- Each event is associated with a probability, which is a number between 0 and 1, inclusive: $0 \leq \mathrm{P}(A) \leq 1$

Probability Examples

- $\mathrm{P}($ "rolling a 6 with a die" $)=1 / 6$
- Choosing a letter of English alphabet:
- If we choose uniformly: $\mathrm{P}\left({ }^{\prime} \mathrm{a}^{\prime}\right)=1 / 26 \approx 0.04$
- Choosing from a text: $\mathrm{P}\left({ }^{\prime} \mathrm{a}\right.$ ' $) \approx 0.08$
- Remember our output from "Tom Sawyer":

356970.1204 e
288970.0974 t
235280.0793 a
232640.0784 о
202000.0681 n

Probability Axioms

- (Nonnegativity) $\mathrm{P}(A) \geq 0$, for any event A
- (Additivity) for disjoint events A and B, i.e., if $A, B \subset \Omega$ and $A \cap B=\emptyset$, then
$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$
or, more generally,
$\mathrm{P}\left(A_{1} \cup A_{2} \cup \ldots\right)=\mathrm{P}\left(A_{1}\right)+\mathrm{P}\left(A_{2}\right)+\ldots$
- (Normalization) $\mathrm{P}(\Omega)=1$, where Ω is the entire sample space.
- Some consequences of the above axioms are: $\mathrm{P}(\emptyset)=0$ and $\mathrm{P}(\Omega-A)=1-\mathrm{P}(A)$

Independent and Dependent Events

- Independent events A and B (definition):

$$
\mathrm{P}(A, B)=\mathrm{P}(A) \cdot \mathrm{P}(B)
$$

- Use of comma in: $\mathrm{P}(A, B)=\mathrm{P}(A \cap B)$
- Example: choosing two letters in text
(1) Choosing independently:

$$
\mathrm{P}\left({ }^{\prime} \mathrm{t}^{\prime}\right)=0.1, \mathrm{P}\left(\mathrm{'h}^{\prime}\right)=0.07, \mathrm{P}\left(\mathrm{'t}^{\prime},{ }^{\prime} \mathrm{h} \text { ' }\right)=0.007
$$

(2) Choosing two consecutive letters (dependent events): $\mathrm{P}\left({ }^{\prime} \mathrm{t}\right.$ ', 'h') $=0.04$

Conditional Probability

- Conditional probability

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A, B)}{\mathrm{P}(B)}
$$

- Expressing independency using conditional probability Two events A are B are independent if and only if:

$$
\mathrm{P}(A \mid B)=\mathrm{P}(A)
$$

This is an alternative definition of independent events.

Annotation with More Events

- There is a bit of flexibility in using notation; e.g.,
- $\mathrm{P}(A, B, C)=\mathrm{P}(A \cap B \cap C)$
- $\mathrm{P}(A \mid B, C)=\mathrm{P}(A \mid B \cap C)$
- $\mathrm{P}(A, B, C \mid D, E, F)=\mathrm{P}(A \cap B \cap C \mid D \cap E \cap F)$
- and so on.
- Three independent events: $\mathrm{P}(A, B, C)=\mathrm{P}(A) \mathrm{P}(B) \mathrm{P}(C)$
- Conditionally independent events

$$
\mathrm{P}(A, B \mid C)=\mathrm{P}(A \mid C) \cdot \mathrm{P}(B \mid C)
$$

Bayes' Theorem

- Bayes' theorem (one form):

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(B \mid A) \cdot \mathrm{P}(A)}{\mathrm{P}(B)}
$$

- The second form is based on breaking the set B into disjoint sets $B=A_{1} \cup A_{2} \cup \ldots$:

$$
\mathrm{P}\left(A_{i} \mid B\right)=\frac{\mathrm{P}\left(B \mid A_{i}\right) \cdot \mathrm{P}\left(A_{i}\right)}{\mathrm{P}(B)}=\frac{\mathrm{P}\left(B \mid A_{i}\right) \cdot \mathrm{P}\left(A_{i}\right)}{\sum_{i} \mathrm{P}\left(B \mid A_{i}\right) \mathrm{P}\left(A_{i}\right)}
$$

Bayesian Inference and Generative Models

- We will use Bayesian Inference on Generative Models
- Generative Models, also known as Forward Generative Models
- One way of representing knowledge with a probabilistic model

Notation Remark: max and argmax

- max is the maximum value of a function
- $\arg \max$ is an argument value for which function achieves the maximum

Bayesian Inference: Using Bayes' Theorem

- Bayesian inference is a principle of combining evidence

$$
\begin{aligned}
\text { conclusion } & =\underset{\text { possible truth }}{\arg \max } P(\text { possible truth } \mid \text { evidence }) \\
& =\underset{\text { possible truth }}{\arg \max } \frac{P(\text { evidence } \mid \text { possible truth }) P(\text { possible truth })}{P(\text { evidence })} \\
& =\underset{\text { possible truth }}{\arg \max } P(\text { evidence } \mid \text { possible truth }) P(\text { possible truth })
\end{aligned}
$$

- application to speech recognition: acoustic model and language model

Bayesian Inference: Speech Recognition Example

- evidence \rightarrow sound
- possible truth \rightarrow utterance (words spoken)
- our best guess about utterance \rightarrow utterance*

$$
\begin{aligned}
\text { utterance }^{*} & =\underset{\text { all utterances }}{\arg \max } P(\text { utterance } \mid \text { sound }) \\
& =\underset{\text { all utterances }}{\arg \max } \frac{P(\text { sound } \mid \text { utterance }) P(\text { utterance })}{P(\text { sound })} \\
& =\underset{\text { utterance }}{\arg \max } P(\text { sound } \mid \text { utterance }) P(\text { utterance })
\end{aligned}
$$

