
Natural Language Processing
CSCI 4152/6509 — Lecture 10
Introduction to Probabilistic NLP

Instructors: Vlado Keselj
Time and date: 16:05 – 17:25, 5-Oct-2023
Location: Rowe 1011

CSCI 4152/6509, Vlado Keselj Lecture 10 1 / 17



Previous Lectures

Discussion about evaluation methods for classifiers

Similarity-based Text Classification

CNG classification method
Edit distance:

I introduction, properties, dynamic programming
approach, example, algorithm
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Edit Distance Example (to finish)
distance between ‘there’ and ‘ythre’
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Part III: Probabilistic Approach to NLP

Logical versus Plausible Reasoning

As a part of AI (Artificial Intelligence), NLP follows two main
approaches to computer reasoning, or computer inference:

1. logical reasoning

I known also as classical, symbolic, knowledge-based AI
I monotonic: once conclusion drawn, never retracted
I certain: conclusions certain, given assumptions

2. plausible reasoning

I examples: probabilistic, fuzzy logic, neural networks
I non-monotonic
I uncertain
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Plausible Reasoning

How to combine ambiguous, incomplete, and contradicting
evidence to draw reasonable conclusions?

Typical approach: make plausible inference of some hidden
structure from observations

Examples:

Observations (input) Hidden Structure (output)
symptoms → illness

pixel matrix → object, relations
speech signal → phonemes, words

word sequence → meaning
sentence → parse tree

word sequence → POS tags, names, entities
words in e-mail Subject: → Is message spam? Yes/No

text → text category (class)
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Probabilistic NLP as a Plausible Reasoning Approach

Regular expressions and finite automata are example of logical
or knowledge-based approach to NLP

Plausible approaches to NLP:

1. Probabilistic: use of Theory of Probability, also known as
stochastic or statistical NLP

I Alternative plausible approaches, examples:
2. neural networks,
3. kernel methods,
4. fuzzy logic, fuzzy sets,
5. Dempster-Shafer theory
6. rough sets,
7. default logic, . . .
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Review of Basics of Probability Theory

You should have this background from previous courses; this is
just a review,

I discussed a bit in the textbook: [JM] 5.5, and [MS] 2.1

Simple event or basic outcome

I e.g., rolling a die, choosing a letter

Event space: the set of all outcomes, usually denoted Ω

Event or outcome is a set of simple events or basic outcomes

In other words event is any subset of Ω; i.e., A ⊆ Ω

Each event is associated with a probability, which is a number
between 0 and 1, inclusive: 0 ≤ P(A) ≤ 1
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Probability Examples

P(“rolling a 6 with a die”) = 1/6

Choosing a letter of English alphabet:

I If we choose uniformly: P(‘a’) = 1/26 ≈ 0.04
I Choosing from a text: P(‘a’) ≈ 0.08
I Remember our output from “Tom Sawyer”:

35697 0.1204 e

28897 0.0974 t

23528 0.0793 a

23264 0.0784 o

20200 0.0681 n

...
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Probability Axioms

(Nonnegativity) P(A) ≥ 0, for any event A

(Additivity) for disjoint events A and B, i.e., if A,B ⊂ Ω and
A ∩B = ∅, then
P(A ∪B) = P(A) + P(B)
or, more generally,
P(A1 ∪ A2 ∪ . . .) = P(A1) + P(A2) + . . .

(Normalization) P(Ω) = 1, where Ω is the entire sample
space.

Some consequences of the above axioms are:
P(∅) = 0 and P(Ω− A) = 1− P(A)
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Independent and Dependent Events

Independent events A and B (definition):
P(A,B) = P(A) · P(B)

Use of comma in: P(A,B) = P(A ∩B)

Example: choosing two letters in text

1 Choosing independently:
P(‘t’) = 0.1,P(‘h’) = 0.07,P(‘t’, ‘h’) = 0.007

2 Choosing two consecutive letters (dependent events):
P(‘t’, ‘h’) = 0.04
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Conditional Probability

Conditional probability

P(A|B) =
P(A,B)

P(B)

Expressing independency using conditional probability

Two events A are B are independent if and only if:

P(A|B) = P(A)

This is an alternative definition of independent events.
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Annotation with More Events

There is a bit of flexibility in using notation; e.g.,

P(A,B,C) = P(A ∩B ∩ C)

P(A|B,C) = P(A|B ∩ C)

P(A,B,C|D,E, F ) = P(A ∩B ∩ C|D ∩ E ∩ F )

and so on.

Three independent events: P(A,B,C) = P(A)P(B)P(C)

Conditionally independent events

P(A,B|C) = P(A|C) · P(B|C)
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Bayes’ Theorem

Bayes’ theorem (one form):

P(A|B) =
P(B|A) · P(A)

P(B)

The second form is based on breaking the set B into disjoint
sets B = A1 ∪ A2 ∪ . . .:

P(Ai|B) =
P(B|Ai) · P(Ai)

P(B)
=

P(B|Ai) · P(Ai)∑
i P(B|Ai)P(Ai)
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Bayesian Inference and Generative Models

We will use Bayesian Inference on Generative Models

Generative Models, also known as Forward Generative Models

One way of representing knowledge with a probabilistic model

↓ world

truth ↓
↓ sensor

evidence ↓
observed measurement
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Notation Remark: max and argmax

max is the maximum value of a function

arg max is an argument value for which function achieves the
maximum

4 = arg max f(x)
x

3 = max f(x)
x y = f(x)
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Bayesian Inference: Using Bayes’ Theorem

Bayesian inference is a principle of combining evidence

conclusion = arg max
possible truth

P (possible truth|evidence)

= arg max
possible truth

P (evidence|possible truth)P (possible truth)

P (evidence)

= arg max
possible truth

P (evidence|possible truth)P (possible truth)

application to speech recognition: acoustic model and language model
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Bayesian Inference: Speech Recognition Example

evidence → sound

possible truth → utterance (words spoken)

our best guess about utterance → utterance*

utterance* = arg max
all utterances

P (utterance|sound)

= arg max
all utterances

P (sound|utterance)P (utterance)

P (sound)

= arg max
utterance

P (sound|utterance)P (utterance)
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